ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.49 by dl, Fri Nov 5 23:01:47 2010 UTC vs.
Revision 1.55 by dl, Mon Nov 15 12:51:54 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 226 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
239     *
240     * Note: there are some cheats in arrive() that rely on unarrived
241     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortMask = 0xffff;
244 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final int  PARTIES_MASK   = 0xffff0000;
249 >    private static final long LPARTIES_MASK  = 0xffff0000L; // long version
250 >    private static final long ONE_ARRIVAL    = 1L;
251 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
252 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
253 >
254 >    // The following unpacking methods are usually manually inlined
255  
256      private static int unarrivedOf(long s) {
257 <        return (int) (s & ushortMask);
257 >        return ((int) s) & UNARRIVED_MASK;
258      }
259  
260      private static int partiesOf(long s) {
261 <        return ((int) s) >>> 16;
261 >        return (((int) s) & PARTIES_MASK) >>> PARTIES_SHIFT;
262      }
263  
264      private static int phaseOf(long s) {
265 <        return (int) (s >>> 32);
265 >        return (int) (s >>> PHASE_SHIFT);
266      }
267  
268      private static int arrivedOf(long s) {
269          return partiesOf(s) - unarrivedOf(s);
270      }
271  
264    private static long stateFor(int phase, int parties, int unarrived) {
265        return ((((long) phase) << 32) | (((long) parties) << 16) |
266                (long) unarrived);
267    }
268
269    private static long trippedStateFor(int phase, int parties) {
270        long lp = (long) parties;
271        return (((long) phase) << 32) | (lp << 16) | lp;
272    }
273
274    /**
275     * Returns message string for bad bounds exceptions.
276     */
277    private static String badBounds(int parties, int unarrived) {
278        return ("Attempt to set " + unarrived +
279                " unarrived of " + parties + " parties");
280    }
281
272      /**
273       * The parent of this phaser, or null if none
274       */
# Line 290 | Line 280 | public class Phaser {
280       */
281      private final Phaser root;
282  
293    // Wait queues
294
283      /**
284       * Heads of Treiber stacks for waiting threads. To eliminate
285       * contention when releasing some threads while adding others, we
286       * use two of them, alternating across even and odd phases.
287       * Subphasers share queues with root to speed up releases.
288       */
289 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
290 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
289 >    private final AtomicReference<QNode> evenQ;
290 >    private final AtomicReference<QNode> oddQ;
291  
292      private AtomicReference<QNode> queueFor(int phase) {
293 <        Phaser r = root;
294 <        return ((phase & 1) == 0) ? r.evenQ : r.oddQ;
293 >        return ((phase & 1) == 0) ? evenQ : oddQ;
294 >    }
295 >
296 >    /**
297 >     * Main implementation for methods arrive and arriveAndDeregister.
298 >     * Manually tuned to speed up and minimize race windows for the
299 >     * common case of just decrementing unarrived field.
300 >     *
301 >     * @param adj - adjustment to apply to state -- either
302 >     * ONE_ARRIVAL (for arrive) or
303 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
304 >     */
305 >    private int doArrive(long adj) {
306 >        for (;;) {
307 >            long s;
308 >            int phase, unarrived;
309 >            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
310 >                return phase;
311 >            else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    Phaser par;
316 >                    long p = s & LPARTIES_MASK; // unshifted parties field
317 >                    long lu = p >>> PARTIES_SHIFT;
318 >                    int u = (int)lu;
319 >                    int nextPhase = (phase + 1) & MAX_PHASE;
320 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
321 >                    if ((par = parent) == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        par.doArrive(u == 0?
329 >                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357 >     */
358 >    private int doRegister(int registrations) {
359 >        long adj = (long)registrations; // adjustment to state
360 >        adj |= adj << PARTIES_SHIFT;
361 >        Phaser par = parent;
362 >        for (;;) {
363 >            int phase, parties;
364 >            long s = par == null? state : reconcileState();
365 >            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
366 >                return phase;
367 >            if ((parties = (((int)s) & PARTIES_MASK) >>> PARTIES_SHIFT) != 0 &&
368 >                (((int)s) & UNARRIVED_MASK) == 0)
369 >                internalAwaitAdvance(phase, null); // wait for onAdvance
370 >            else if (parties + registrations > MAX_PARTIES)
371 >                throw new IllegalStateException(badRegister(s));
372 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
373 >                return phase;
374 >        }
375      }
376  
377      /**
378 <     * Returns current state, first resolving lagged propagation from
311 <     * root if necessary.
378 >     * Returns message string for out of bounds exceptions on registration.
379       */
380 <    private long getReconciledState() {
381 <        return (parent == null) ? state : reconcileState();
380 >    private String badRegister(long s) {
381 >        return "Attempt to register more than " +
382 >            MAX_PARTIES + " parties for " + stateToString(s);
383      }
384  
385      /**
386 <     * Recursively resolves state.
386 >     * Recursively resolves lagged phase propagation from root if necessary.
387       */
388      private long reconcileState() {
389          Phaser par = parent;
390 <        long s = state;
391 <        if (par != null) {
392 <            int phase, rootPhase;
393 <            while ((phase = phaseOf(s)) >= 0 &&
394 <                   (rootPhase = phaseOf(root.state)) != phase &&
395 <                   (rootPhase < 0 || unarrivedOf(s) == 0)) {
396 <                long parentState = par.getReconciledState();
397 <                int parentPhase = phaseOf(parentState);
398 <                int parties = partiesOf(s);
399 <                long next = trippedStateFor(parentPhase, parties);
400 <                if (phaseOf(root.state) == rootPhase &&
401 <                    parentPhase != phase &&
402 <                    state == s && casState(s, next)) {
403 <                    releaseWaiters(phase);
404 <                    if (parties == 0) // exit if the final deregistration
405 <                        break;
406 <                }
407 <                s = state;
390 >        if (par == null)
391 >            return state;
392 >        Phaser rt = root;
393 >        for (;;) {
394 >            long s, u;
395 >            int phase, rPhase, pPhase;
396 >            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397 >                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398 >                return s;
399 >            long pState = par.parent == null? par.state : par.reconcileState();
400 >            if (state == s) {
401 >                if ((rPhase < 0 || (((int)s) & UNARRIVED_MASK) == 0) &&
402 >                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 >                     pPhase == ((phase + 1) & MAX_PHASE)))
404 >                    UNSAFE.compareAndSwapLong
405 >                        (this, stateOffset, s,
406 >                         (((long) pPhase) << PHASE_SHIFT) |
407 >                         (u = s & LPARTIES_MASK) |
408 >                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 >                else
410 >                    releaseWaiters(phase); // help release others
411              }
412          }
342        return s;
413      }
414  
415      /**
# Line 348 | Line 418 | public class Phaser {
418       * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
# Line 372 | Line 442 | public class Phaser {
442       * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
376 <        this.parent = parent;
377 <        if (parent != null) {
378 <            this.root = parent.root;
379 <            phase = parent.register();
380 <        }
381 <        else
382 <            this.root = this;
383 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
# Line 395 | Line 457 | public class Phaser {
457       * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties >>> PARTIES_SHIFT != 0)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483       * If an ongoing invocation of {@link #onAdvance} is in progress,
484 <     * this method waits until its completion before registering.
484 >     * this method may wait until its completion before registering.
485       *
486       * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
# Line 424 | Line 494 | public class Phaser {
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496       * If an ongoing invocation of {@link #onAdvance} is in progress,
497 <     * this method waits until its completion before registering.
497 >     * this method may wait until its completion before registering.
498       *
499       * @param parties the number of additional parties required to trip barrier
500       * @return the arrival phase number to which this registration applied
# Line 435 | Line 505 | public class Phaser {
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_PARTIES)
509 +            throw new IllegalStateException(badRegister(state));
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
444     * Shared code for register, bulkRegister
445     */
446    private int doRegister(int registrations) {
447        Phaser par = parent;
448        long s;
449        int phase;
450        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
451            int p = partiesOf(s);
452            int u = unarrivedOf(s);
453            int unarrived = u + registrations;
454            int parties = p + registrations;
455            if (par == null || phase == phaseOf(root.state)) {
456                if (parties > ushortMask || unarrived > ushortMask)
457                    throw new IllegalStateException(badBounds(parties,
458                                                              unarrived));
459                else if (p != 0 && u == 0)       // back off if advancing
460                    Thread.yield();              // not worth actually blocking
461                else if (casState(s, stateFor(phase, parties, unarrived)))
462                    break;
463            }
464        }
465        return phase;
466    }
467
468    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517       * in turn wait for others via {@link #awaitAdvance}).  It is an
518       * unenforced usage error for an unregistered party to invoke this
# Line 476 | Line 523 | public class Phaser {
523       * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        Phaser par = parent;
480 <        long s;
481 <        int phase;
482 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
483 <            int parties = partiesOf(s);
484 <            int unarrived = unarrivedOf(s) - 1;
485 <            if (parties == 0 || unarrived < 0)
486 <                throw new IllegalStateException(badBounds(parties,
487 <                                                          unarrived));
488 <            else if (unarrived > 0) {           // Not the last arrival
489 <                if (casState(s, s - 1))         // s-1 adds one arrival
490 <                    break;
491 <            }
492 <            else if (par == null) {             // directly trip
493 <                if (casState(s, trippedStateFor(onAdvance(phase, parties) ? -1 :
494 <                                                ((phase + 1) & phaseMask),
495 <                                                parties))) {
496 <                    releaseWaiters(phase);
497 <                    break;
498 <                }
499 <            }
500 <            else if (phaseOf(root.state) == phase && casState(s, s - 1)) {
501 <                par.arrive();                   // cascade to parent
502 <                reconcileState();
503 <                break;
504 <            }
505 <        }
506 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
# Line 520 | Line 540 | public class Phaser {
540       * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar to arrive, but too different to merge
524 <        Phaser par = parent;
525 <        long s;
526 <        int phase;
527 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
528 <            int parties = partiesOf(s) - 1;
529 <            int unarrived = unarrivedOf(s) - 1;
530 <            if (parties < 0 || unarrived < 0)
531 <                throw new IllegalStateException(badBounds(parties,
532 <                                                          unarrived));
533 <            else if (unarrived > 0) {
534 <                if (casState(s, stateFor(phase, parties, unarrived)))
535 <                    break;
536 <            }
537 <            else if (par == null) {
538 <                if (casState(s, trippedStateFor(onAdvance(phase, parties)? -1:
539 <                                                (phase + 1) & phaseMask,
540 <                                                parties))) {
541 <                    releaseWaiters(phase);
542 <                    break;
543 <                }
544 <            }
545 <            else if (phaseOf(root.state) == phase &&
546 <                     casState(s, stateFor(phase, parties, 0))) {
547 <                if (parties == 0)
548 <                    par.arriveAndDeregister();
549 <                else
550 <                    par.arrive();
551 <                reconcileState();
552 <                break;
553 <            }
554 <        }
555 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
# Line 576 | Line 564 | public class Phaser {
564       * Awaits the phase of the barrier to advance from the given phase
565       * value, returning immediately if the current phase of the
566       * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.  It is an unenforced usage error for an
580 <     * unregistered party to invoke this method.
567 >     * is terminated.
568       *
569       * @param phase an arrival phase number, or negative value if
570       * terminated; this argument is normally the value returned by a
# Line 586 | Line 573 | public class Phaser {
573       * if terminated or argument is negative
574       */
575      public int awaitAdvance(int phase) {
576 +        int p;
577          if (phase < 0)
578              return phase;
579 <        int p = getPhase();
580 <        if (p != phase)
579 >        else if ((p = (int)((parent == null? state : reconcileState())
580 >                            >>> PHASE_SHIFT)) == phase)
581 >            return internalAwaitAdvance(phase, null);
582 >        else
583              return p;
594        return untimedWait(phase);
584      }
585  
586      /**
# Line 599 | Line 588 | public class Phaser {
588       * value, throwing {@code InterruptedException} if interrupted
589       * while waiting, or returning immediately if the current phase of
590       * the barrier is not equal to the given phase value or this
591 <     * barrier is terminated. It is an unenforced usage error for an
603 <     * unregistered party to invoke this method.
591 >     * barrier is terminated.
592       *
593       * @param phase an arrival phase number, or negative value if
594       * terminated; this argument is normally the value returned by a
# Line 611 | Line 599 | public class Phaser {
599       */
600      public int awaitAdvanceInterruptibly(int phase)
601          throws InterruptedException {
602 +        int p;
603          if (phase < 0)
604              return phase;
605 <        int p = getPhase();
606 <        if (p != phase)
607 <            return p;
608 <        return interruptibleWait(phase);
605 >        if ((p = (int)((parent == null? state : reconcileState())
606 >                       >>> PHASE_SHIFT)) == phase) {
607 >            QNode node = new QNode(this, phase, true, false, 0L);
608 >            p = internalAwaitAdvance(phase, node);
609 >            if (node.wasInterrupted)
610 >                throw new InterruptedException();
611 >        }
612 >        return p;
613      }
614  
615      /**
# Line 625 | Line 618 | public class Phaser {
618       * InterruptedException} if interrupted while waiting, or
619       * returning immediately if the current phase of the barrier is
620       * not equal to the given phase value or this barrier is
621 <     * terminated.  It is an unenforced usage error for an
629 <     * unregistered party to invoke this method.
621 >     * terminated.
622       *
623       * @param phase an arrival phase number, or negative value if
624       * terminated; this argument is normally the value returned by a
# Line 644 | Line 636 | public class Phaser {
636                                           long timeout, TimeUnit unit)
637          throws InterruptedException, TimeoutException {
638          long nanos = unit.toNanos(timeout);
639 +        int p;
640          if (phase < 0)
641              return phase;
642 <        int p = getPhase();
643 <        if (p != phase)
644 <            return p;
645 <        return timedWait(phase, nanos);
642 >        if ((p = (int)((parent == null? state : reconcileState())
643 >                       >>> PHASE_SHIFT)) == phase) {
644 >            QNode node = new QNode(this, phase, true, true, nanos);
645 >            p = internalAwaitAdvance(phase, node);
646 >            if (node.wasInterrupted)
647 >                throw new InterruptedException();
648 >            else if (p == phase)
649 >                throw new TimeoutException();
650 >        }
651 >        return p;
652      }
653  
654      /**
655 <     * Forces this barrier to enter termination state. Counts of
656 <     * arrived and registered parties are unaffected. If this phaser
657 <     * has a parent, it too is terminated. This method may be useful
658 <     * for coordinating recovery after one or more tasks encounter
659 <     * unexpected exceptions.
655 >     * Forces this barrier to enter termination state.  Counts of
656 >     * arrived and registered parties are unaffected.  If this phaser
657 >     * is a member of a tiered set of phasers, then all of the phasers
658 >     * in the set are terminated.  If this phaser is already
659 >     * terminated, this method has no effect.  This method may be
660 >     * useful for coordinating recovery after one or more tasks
661 >     * encounter unexpected exceptions.
662       */
663      public void forceTermination() {
664 <        Phaser r = root;    // force at root then reconcile
664 >        // Only need to change root state
665 >        final Phaser root = this.root;
666          long s;
667 <        while (phaseOf(s = r.state) >= 0)
668 <            r.casState(s, stateFor(-1, partiesOf(s), unarrivedOf(s)));
669 <        reconcileState();
670 <        releaseWaiters(0);  // ensure wakeups on both queues
671 <        releaseWaiters(1);
667 >        while ((s = root.state) >= 0) {
668 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
669 >                                          s, s | TERMINATION_PHASE)) {
670 >                releaseWaiters(0); // signal all threads
671 >                releaseWaiters(1);
672 >                return;
673 >            }
674 >        }
675      }
676  
677      /**
# Line 677 | Line 682 | public class Phaser {
682       * @return the phase number, or a negative value if terminated
683       */
684      public final int getPhase() {
685 <        return phaseOf(getReconciledState());
685 >        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
686      }
687  
688      /**
# Line 686 | Line 691 | public class Phaser {
691       * @return the number of parties
692       */
693      public int getRegisteredParties() {
694 <        return partiesOf(getReconciledState());
694 >        return partiesOf(parent==null? state : reconcileState());
695      }
696  
697      /**
# Line 696 | Line 701 | public class Phaser {
701       * @return the number of arrived parties
702       */
703      public int getArrivedParties() {
704 <        return arrivedOf(getReconciledState());
704 >        return arrivedOf(parent==null? state : reconcileState());
705      }
706  
707      /**
# Line 706 | Line 711 | public class Phaser {
711       * @return the number of unarrived parties
712       */
713      public int getUnarrivedParties() {
714 <        return unarrivedOf(getReconciledState());
714 >        return unarrivedOf(parent==null? state : reconcileState());
715      }
716  
717      /**
# Line 734 | Line 739 | public class Phaser {
739       * @return {@code true} if this barrier has been terminated
740       */
741      public boolean isTerminated() {
742 <        return getPhase() < 0;
742 >        return (parent == null? state : reconcileState()) < 0;
743      }
744  
745      /**
# Line 750 | Line 755 | public class Phaser {
755       * which case no advance occurs.
756       *
757       * <p>The arguments to this method provide the state of the phaser
758 <     * prevailing for the current transition. (When called from within
759 <     * an implementation of {@code onAdvance} the values returned by
760 <     * methods such as {@code getPhase} may or may not reliably
761 <     * indicate the state to which this transition applies.)
758 >     * prevailing for the current transition.  The effects of invoking
759 >     * arrival, registration, and waiting methods on this Phaser from
760 >     * within {@code onAdvance} are unspecified and should not be
761 >     * relied on.
762 >     *
763 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
764 >     * {@code onAdvance} is invoked only for its root Phaser on each
765 >     * advance.
766       *
767       * <p>The default version returns {@code true} when the number of
768       * registered parties is zero. Normally, overrides that arrange
# Line 778 | Line 787 | public class Phaser {
787       * @return a string identifying this barrier, as well as its state
788       */
789      public String toString() {
790 <        long s = getReconciledState();
790 >        return stateToString(reconcileState());
791 >    }
792 >
793 >    /**
794 >     * Implementation of toString and string-based error messages
795 >     */
796 >    private String stateToString(long s) {
797          return super.toString() +
798              "[phase = " + phaseOf(s) +
799              " parties = " + partiesOf(s) +
800              " arrived = " + arrivedOf(s) + "]";
801      }
802  
803 <    // methods for waiting
803 >    // Waiting mechanics
804 >
805 >    /**
806 >     * Removes and signals threads from queue for phase
807 >     */
808 >    private void releaseWaiters(int phase) {
809 >        AtomicReference<QNode> head = queueFor(phase);
810 >        QNode q;
811 >        int p;
812 >        while ((q = head.get()) != null &&
813 >               ((p = q.phase) == phase ||
814 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
815 >            if (head.compareAndSet(q, q.next))
816 >                q.signal();
817 >        }
818 >    }
819 >
820 >    /**
821 >     * Tries to enqueue given node in the appropriate wait queue.
822 >     *
823 >     * @return true if successful
824 >     */
825 >    private boolean tryEnqueue(int phase, QNode node) {
826 >        releaseWaiters(phase-1); // ensure old queue clean
827 >        AtomicReference<QNode> head = queueFor(phase);
828 >        QNode q = head.get();
829 >        return ((q == null || q.phase == phase) &&
830 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
831 >                head.compareAndSet(node.next = q, node));
832 >    }
833 >
834 >    /** The number of CPUs, for spin control */
835 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
836 >
837 >    /**
838 >     * The number of times to spin before blocking while waiting for
839 >     * advance, per arrival while waiting. On multiprocessors, fully
840 >     * blocking and waking up a large number of threads all at once is
841 >     * usually a very slow process, so we use rechargeable spins to
842 >     * avoid it when threads regularly arrive: When a thread in
843 >     * internalAwaitAdvance notices another arrival before blocking,
844 >     * and there appear to be enough CPUs available, it spins
845 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
846 >     * uniprocessors, there is at least one intervening Thread.yield
847 >     * before blocking. The value trades off good-citizenship vs big
848 >     * unnecessary slowdowns.
849 >     */
850 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
851 >
852 >    /**
853 >     * Possibly blocks and waits for phase to advance unless aborted.
854 >     *
855 >     * @param phase current phase
856 >     * @param node if non-null, the wait node to track interrupt and timeout;
857 >     * if null, denotes noninterruptible wait
858 >     * @return current phase
859 >     */
860 >    private int internalAwaitAdvance(int phase, QNode node) {
861 >        Phaser current = this;       // to eventually wait at root if tiered
862 >        boolean queued = false;      // true when node is enqueued
863 >        int lastUnarrived = -1;      // to increase spins upon change
864 >        int spins = SPINS_PER_ARRIVAL;
865 >        for (;;) {
866 >            int p, unarrived;
867 >            Phaser par;
868 >            long s = current.state;
869 >            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
870 >                if (node != null)
871 >                    node.onRelease();
872 >                releaseWaiters(phase);
873 >                return p;
874 >            }
875 >            else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0 &&
876 >                     (par = current.parent) != null) {
877 >                current = par;       // if all arrived, use parent
878 >                par = par.parent;
879 >                lastUnarrived = -1;
880 >            }
881 >            else if (unarrived != lastUnarrived) {
882 >                if ((lastUnarrived = unarrived) < NCPU)
883 >                    spins += SPINS_PER_ARRIVAL;
884 >            }
885 >            else if (spins > 0) {
886 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
887 >                    Thread.yield();  // yield midway through spin
888 >            }
889 >            else if (node == null)   // must be noninterruptible
890 >                node = new QNode(this, phase, false, false, 0L);
891 >            else if (node.isReleasable()) {
892 >                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
893 >                    return phase;    // aborted
894 >            }
895 >            else if (!queued)
896 >                queued = tryEnqueue(phase, node);
897 >            else {
898 >                try {
899 >                    ForkJoinPool.managedBlock(node);
900 >                } catch (InterruptedException ie) {
901 >                    node.wasInterrupted = true;
902 >                }
903 >            }
904 >        }
905 >    }
906  
907      /**
908       * Wait nodes for Treiber stack representing wait queue
# Line 793 | Line 910 | public class Phaser {
910      static final class QNode implements ForkJoinPool.ManagedBlocker {
911          final Phaser phaser;
912          final int phase;
796        final long startTime;
797        final long nanos;
798        final boolean timed;
913          final boolean interruptible;
914 <        volatile boolean wasInterrupted = false;
914 >        final boolean timed;
915 >        boolean wasInterrupted;
916 >        long nanos;
917 >        long lastTime;
918          volatile Thread thread; // nulled to cancel wait
919          QNode next;
920  
921          QNode(Phaser phaser, int phase, boolean interruptible,
922 <              boolean timed, long startTime, long nanos) {
922 >              boolean timed, long nanos) {
923              this.phaser = phaser;
924              this.phase = phase;
808            this.timed = timed;
925              this.interruptible = interruptible;
810            this.startTime = startTime;
926              this.nanos = nanos;
927 +            this.timed = timed;
928 +            this.lastTime = timed? System.nanoTime() : 0L;
929              thread = Thread.currentThread();
930          }
931  
932          public boolean isReleasable() {
933 <            return (thread == null ||
934 <                    phaser.getPhase() != phase ||
935 <                    (interruptible && wasInterrupted) ||
936 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
933 >            Thread t = thread;
934 >            if (t != null) {
935 >                if (phaser.getPhase() != phase)
936 >                    t = null;
937 >                else {
938 >                    if (Thread.interrupted())
939 >                        wasInterrupted = true;
940 >                    if (interruptible && wasInterrupted)
941 >                        t = null;
942 >                    else if (timed) {
943 >                        if (nanos > 0) {
944 >                            long now = System.nanoTime();
945 >                            nanos -= now - lastTime;
946 >                            lastTime = now;
947 >                        }
948 >                        if (nanos <= 0)
949 >                            t = null;
950 >                    }
951 >                }
952 >                if (t != null)
953 >                    return false;
954 >                thread = null;
955 >            }
956 >            return true;
957          }
958  
959          public boolean block() {
960 <            if (Thread.interrupted()) {
961 <                wasInterrupted = true;
962 <                if (interruptible)
826 <                    return true;
827 <            }
828 <            if (!timed)
960 >            if (isReleasable())
961 >                return true;
962 >            else if (!timed)
963                  LockSupport.park(this);
964 <            else {
965 <                long waitTime = nanos - (System.nanoTime() - startTime);
832 <                if (waitTime <= 0)
833 <                    return true;
834 <                LockSupport.parkNanos(this, waitTime);
835 <            }
964 >            else if (nanos > 0)
965 >                LockSupport.parkNanos(this, nanos);
966              return isReleasable();
967          }
968  
# Line 844 | Line 974 | public class Phaser {
974              }
975          }
976  
977 <        boolean doWait() {
978 <            if (thread != null) {
979 <                try {
980 <                    ForkJoinPool.managedBlock(this);
981 <                } catch (InterruptedException ie) {
852 <                    wasInterrupted = true; // can't currently happen
853 <                }
854 <            }
855 <            return wasInterrupted;
977 >        void onRelease() { // actions upon return from internalAwaitAdvance
978 >            if (!interruptible && wasInterrupted)
979 >                Thread.currentThread().interrupt();
980 >            if (thread != null)
981 >                thread = null;
982          }
857    }
983  
859    /**
860     * Removes and signals waiting threads from wait queue.
861     */
862    private void releaseWaiters(int phase) {
863        AtomicReference<QNode> head = queueFor(phase);
864        QNode q;
865        while ((q = head.get()) != null) {
866            if (head.compareAndSet(q, q.next))
867                q.signal();
868        }
869    }
870
871    /**
872     * Tries to enqueue given node in the appropriate wait queue.
873     *
874     * @return true if successful
875     */
876    private boolean tryEnqueue(QNode node) {
877        AtomicReference<QNode> head = queueFor(node.phase);
878        return head.compareAndSet(node.next = head.get(), node);
879    }
880
881    /**
882     * Enqueues node and waits unless aborted or signalled.
883     *
884     * @return current phase
885     */
886    private int untimedWait(int phase) {
887        QNode node = null;
888        boolean queued = false;
889        boolean interrupted = false;
890        int p;
891        while ((p = getPhase()) == phase) {
892            if (Thread.interrupted())
893                interrupted = true;
894            else if (node == null)
895                node = new QNode(this, phase, false, false, 0, 0);
896            else if (!queued)
897                queued = tryEnqueue(node);
898            else if (node.doWait())
899                interrupted = true;
900        }
901        if (node != null)
902            node.thread = null;
903        releaseWaiters(phase);
904        if (interrupted)
905            Thread.currentThread().interrupt();
906        return p;
907    }
908
909    /**
910     * Interruptible version
911     * @return current phase
912     */
913    private int interruptibleWait(int phase) throws InterruptedException {
914        QNode node = null;
915        boolean queued = false;
916        boolean interrupted = false;
917        int p;
918        while ((p = getPhase()) == phase && !interrupted) {
919            if (Thread.interrupted())
920                interrupted = true;
921            else if (node == null)
922                node = new QNode(this, phase, true, false, 0, 0);
923            else if (!queued)
924                queued = tryEnqueue(node);
925            else if (node.doWait())
926                interrupted = true;
927        }
928        if (node != null)
929            node.thread = null;
930        if (p != phase || (p = getPhase()) != phase)
931            releaseWaiters(phase);
932        if (interrupted)
933            throw new InterruptedException();
934        return p;
935    }
936
937    /**
938     * Timeout version.
939     * @return current phase
940     */
941    private int timedWait(int phase, long nanos)
942        throws InterruptedException, TimeoutException {
943        long startTime = System.nanoTime();
944        QNode node = null;
945        boolean queued = false;
946        boolean interrupted = false;
947        int p;
948        while ((p = getPhase()) == phase && !interrupted) {
949            if (Thread.interrupted())
950                interrupted = true;
951            else if (nanos - (System.nanoTime() - startTime) <= 0)
952                break;
953            else if (node == null)
954                node = new QNode(this, phase, true, true, startTime, nanos);
955            else if (!queued)
956                queued = tryEnqueue(node);
957            else if (node.doWait())
958                interrupted = true;
959        }
960        if (node != null)
961            node.thread = null;
962        if (p != phase || (p = getPhase()) != phase)
963            releaseWaiters(phase);
964        if (interrupted)
965            throw new InterruptedException();
966        if (p == phase)
967            throw new TimeoutException();
968        return p;
984      }
985  
986      // Unsafe mechanics
# Line 974 | Line 989 | public class Phaser {
989      private static final long stateOffset =
990          objectFieldOffset("state", Phaser.class);
991  
977    private final boolean casState(long cmp, long val) {
978        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
979    }
980
992      private static long objectFieldOffset(String field, Class<?> klazz) {
993          try {
994              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines