ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.49 by dl, Fri Nov 5 23:01:47 2010 UTC vs.
Revision 1.57 by dl, Fri Nov 19 16:03:24 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 226 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
239     *
240     * Note: there are some cheats in arrive() that rely on unarrived
241     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortMask = 0xffff;
244 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
264    private static long stateFor(int phase, int parties, int unarrived) {
265        return ((((long) phase) << 32) | (((long) parties) << 16) |
266                (long) unarrived);
267    }
268
269    private static long trippedStateFor(int phase, int parties) {
270        long lp = (long) parties;
271        return (((long) phase) << 32) | (lp << 16) | lp;
272    }
273
274    /**
275     * Returns message string for bad bounds exceptions.
276     */
277    private static String badBounds(int parties, int unarrived) {
278        return ("Attempt to set " + unarrived +
279                " unarrived of " + parties + " parties");
280    }
281
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 290 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
293    // Wait queues
294
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284       * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286       * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292 <        Phaser r = root;
293 <        return ((phase & 1) == 0) ? r.evenQ : r.oddQ;
292 >        return ((phase & 1) == 0) ? evenQ : oddQ;
293 >    }
294 >
295 >    /**
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357 >     */
358 >    private int doRegister(int registrations) {
359 >        // assert registrations > 0;
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int phase = (int)(s >>> PHASE_SHIFT);
366 >            if (phase < 0)
367 >                return phase;
368 >            int parties = (int)s >>> PARTIES_SHIFT;
369 >            if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376      }
377  
378      /**
379 <     * Returns current state, first resolving lagged propagation from
311 <     * root if necessary.
379 >     * Returns message string for out of bounds exceptions on registration.
380       */
381 <    private long getReconciledState() {
382 <        return (parent == null) ? state : reconcileState();
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384      }
385  
386      /**
387 <     * Recursively resolves state.
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388       */
389      private long reconcileState() {
390          Phaser par = parent;
391          long s = state;
392          if (par != null) {
393 <            int phase, rootPhase;
394 <            while ((phase = phaseOf(s)) >= 0 &&
395 <                   (rootPhase = phaseOf(root.state)) != phase &&
396 <                   (rootPhase < 0 || unarrivedOf(s) == 0)) {
397 <                long parentState = par.getReconciledState();
398 <                int parentPhase = phaseOf(parentState);
399 <                int parties = partiesOf(s);
400 <                long next = trippedStateFor(parentPhase, parties);
401 <                if (phaseOf(root.state) == rootPhase &&
402 <                    parentPhase != phase &&
403 <                    state == s && casState(s, next)) {
404 <                    releaseWaiters(phase);
405 <                    if (parties == 0) // exit if the final deregistration
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406                          break;
407                  }
408                  s = state;
# Line 348 | Line 417 | public class Phaser {
417       * phaser will need to first register for it.
418       */
419      public Phaser() {
420 <        this(null);
420 >        this(null, 0);
421      }
422  
423      /**
# Line 372 | Line 441 | public class Phaser {
441       * @param parent the parent phaser
442       */
443      public Phaser(Phaser parent) {
444 <        int phase = 0;
376 <        this.parent = parent;
377 <        if (parent != null) {
378 <            this.root = parent.root;
379 <            phase = parent.register();
380 <        }
381 <        else
382 <            this.root = this;
383 <        this.state = trippedStateFor(phase, 0);
444 >        this(parent, 0);
445      }
446  
447      /**
# Line 395 | Line 456 | public class Phaser {
456       * or greater than the maximum number of parties supported
457       */
458      public Phaser(Phaser parent, int parties) {
459 <        if (parties < 0 || parties > ushortMask)
459 >        if (parties >>> PARTIES_SHIFT != 0)
460              throw new IllegalArgumentException("Illegal number of parties");
461 <        int phase = 0;
461 >        int phase;
462          this.parent = parent;
463          if (parent != null) {
464 <            this.root = parent.root;
464 >            Phaser r = parent.root;
465 >            this.root = r;
466 >            this.evenQ = r.evenQ;
467 >            this.oddQ = r.oddQ;
468              phase = parent.register();
469          }
470 <        else
470 >        else {
471              this.root = this;
472 <        this.state = trippedStateFor(phase, parties);
472 >            this.evenQ = new AtomicReference<QNode>();
473 >            this.oddQ = new AtomicReference<QNode>();
474 >            phase = 0;
475 >        }
476 >        long p = (long)parties;
477 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478      }
479  
480      /**
481       * Adds a new unarrived party to this phaser.
482       * If an ongoing invocation of {@link #onAdvance} is in progress,
483 <     * this method waits until its completion before registering.
483 >     * this method may wait until its completion before registering.
484       *
485       * @return the arrival phase number to which this registration applied
486       * @throws IllegalStateException if attempting to register more
# Line 424 | Line 493 | public class Phaser {
493      /**
494       * Adds the given number of new unarrived parties to this phaser.
495       * If an ongoing invocation of {@link #onAdvance} is in progress,
496 <     * this method waits until its completion before registering.
496 >     * this method may wait until its completion before registering.
497       *
498       * @param parties the number of additional parties required to trip barrier
499       * @return the arrival phase number to which this registration applied
# Line 441 | Line 510 | public class Phaser {
510      }
511  
512      /**
444     * Shared code for register, bulkRegister
445     */
446    private int doRegister(int registrations) {
447        Phaser par = parent;
448        long s;
449        int phase;
450        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
451            int p = partiesOf(s);
452            int u = unarrivedOf(s);
453            int unarrived = u + registrations;
454            int parties = p + registrations;
455            if (par == null || phase == phaseOf(root.state)) {
456                if (parties > ushortMask || unarrived > ushortMask)
457                    throw new IllegalStateException(badBounds(parties,
458                                                              unarrived));
459                else if (p != 0 && u == 0)       // back off if advancing
460                    Thread.yield();              // not worth actually blocking
461                else if (casState(s, stateFor(phase, parties, unarrived)))
462                    break;
463            }
464        }
465        return phase;
466    }
467
468    /**
513       * Arrives at the barrier, but does not wait for others.  (You can
514       * in turn wait for others via {@link #awaitAdvance}).  It is an
515       * unenforced usage error for an unregistered party to invoke this
# Line 476 | Line 520 | public class Phaser {
520       * of unarrived parties would become negative
521       */
522      public int arrive() {
523 <        Phaser par = parent;
480 <        long s;
481 <        int phase;
482 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
483 <            int parties = partiesOf(s);
484 <            int unarrived = unarrivedOf(s) - 1;
485 <            if (parties == 0 || unarrived < 0)
486 <                throw new IllegalStateException(badBounds(parties,
487 <                                                          unarrived));
488 <            else if (unarrived > 0) {           // Not the last arrival
489 <                if (casState(s, s - 1))         // s-1 adds one arrival
490 <                    break;
491 <            }
492 <            else if (par == null) {             // directly trip
493 <                if (casState(s, trippedStateFor(onAdvance(phase, parties) ? -1 :
494 <                                                ((phase + 1) & phaseMask),
495 <                                                parties))) {
496 <                    releaseWaiters(phase);
497 <                    break;
498 <                }
499 <            }
500 <            else if (phaseOf(root.state) == phase && casState(s, s - 1)) {
501 <                par.arrive();                   // cascade to parent
502 <                reconcileState();
503 <                break;
504 <            }
505 <        }
506 <        return phase;
523 >        return doArrive(ONE_ARRIVAL);
524      }
525  
526      /**
# Line 520 | Line 537 | public class Phaser {
537       * of registered or unarrived parties would become negative
538       */
539      public int arriveAndDeregister() {
540 <        // similar to arrive, but too different to merge
524 <        Phaser par = parent;
525 <        long s;
526 <        int phase;
527 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
528 <            int parties = partiesOf(s) - 1;
529 <            int unarrived = unarrivedOf(s) - 1;
530 <            if (parties < 0 || unarrived < 0)
531 <                throw new IllegalStateException(badBounds(parties,
532 <                                                          unarrived));
533 <            else if (unarrived > 0) {
534 <                if (casState(s, stateFor(phase, parties, unarrived)))
535 <                    break;
536 <            }
537 <            else if (par == null) {
538 <                if (casState(s, trippedStateFor(onAdvance(phase, parties)? -1:
539 <                                                (phase + 1) & phaseMask,
540 <                                                parties))) {
541 <                    releaseWaiters(phase);
542 <                    break;
543 <                }
544 <            }
545 <            else if (phaseOf(root.state) == phase &&
546 <                     casState(s, stateFor(phase, parties, 0))) {
547 <                if (parties == 0)
548 <                    par.arriveAndDeregister();
549 <                else
550 <                    par.arrive();
551 <                reconcileState();
552 <                break;
553 <            }
554 <        }
555 <        return phase;
540 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
541      }
542  
543      /**
# Line 576 | Line 561 | public class Phaser {
561       * Awaits the phase of the barrier to advance from the given phase
562       * value, returning immediately if the current phase of the
563       * barrier is not equal to the given phase value or this barrier
564 <     * is terminated.  It is an unenforced usage error for an
580 <     * unregistered party to invoke this method.
564 >     * is terminated.
565       *
566       * @param phase an arrival phase number, or negative value if
567       * terminated; this argument is normally the value returned by a
# Line 588 | Line 572 | public class Phaser {
572      public int awaitAdvance(int phase) {
573          if (phase < 0)
574              return phase;
575 <        int p = getPhase();
576 <        if (p != phase)
577 <            return p;
594 <        return untimedWait(phase);
575 >        long s = (parent == null) ? state : reconcileState();
576 >        int p = (int)(s >>> PHASE_SHIFT);
577 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
578      }
579  
580      /**
# Line 599 | Line 582 | public class Phaser {
582       * value, throwing {@code InterruptedException} if interrupted
583       * while waiting, or returning immediately if the current phase of
584       * the barrier is not equal to the given phase value or this
585 <     * barrier is terminated. It is an unenforced usage error for an
603 <     * unregistered party to invoke this method.
585 >     * barrier is terminated.
586       *
587       * @param phase an arrival phase number, or negative value if
588       * terminated; this argument is normally the value returned by a
# Line 613 | Line 595 | public class Phaser {
595          throws InterruptedException {
596          if (phase < 0)
597              return phase;
598 <        int p = getPhase();
599 <        if (p != phase)
600 <            return p;
601 <        return interruptibleWait(phase);
598 >        long s = (parent == null) ? state : reconcileState();
599 >        int p = (int)(s >>> PHASE_SHIFT);
600 >        if (p == phase) {
601 >            QNode node = new QNode(this, phase, true, false, 0L);
602 >            p = internalAwaitAdvance(phase, node);
603 >            if (node.wasInterrupted)
604 >                throw new InterruptedException();
605 >        }
606 >        return p;
607      }
608  
609      /**
# Line 625 | Line 612 | public class Phaser {
612       * InterruptedException} if interrupted while waiting, or
613       * returning immediately if the current phase of the barrier is
614       * not equal to the given phase value or this barrier is
615 <     * terminated.  It is an unenforced usage error for an
629 <     * unregistered party to invoke this method.
615 >     * terminated.
616       *
617       * @param phase an arrival phase number, or negative value if
618       * terminated; this argument is normally the value returned by a
# Line 643 | Line 629 | public class Phaser {
629      public int awaitAdvanceInterruptibly(int phase,
630                                           long timeout, TimeUnit unit)
631          throws InterruptedException, TimeoutException {
646        long nanos = unit.toNanos(timeout);
632          if (phase < 0)
633              return phase;
634 <        int p = getPhase();
635 <        if (p != phase)
636 <            return p;
637 <        return timedWait(phase, nanos);
634 >        long s = (parent == null) ? state : reconcileState();
635 >        int p = (int)(s >>> PHASE_SHIFT);
636 >        if (p == phase) {
637 >            long nanos = unit.toNanos(timeout);
638 >            QNode node = new QNode(this, phase, true, true, nanos);
639 >            p = internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >            else if (p == phase)
643 >                throw new TimeoutException();
644 >        }
645 >        return p;
646      }
647  
648      /**
649 <     * Forces this barrier to enter termination state. Counts of
650 <     * arrived and registered parties are unaffected. If this phaser
651 <     * has a parent, it too is terminated. This method may be useful
652 <     * for coordinating recovery after one or more tasks encounter
653 <     * unexpected exceptions.
649 >     * Forces this barrier to enter termination state.  Counts of
650 >     * arrived and registered parties are unaffected.  If this phaser
651 >     * is a member of a tiered set of phasers, then all of the phasers
652 >     * in the set are terminated.  If this phaser is already
653 >     * terminated, this method has no effect.  This method may be
654 >     * useful for coordinating recovery after one or more tasks
655 >     * encounter unexpected exceptions.
656       */
657      public void forceTermination() {
658 <        Phaser r = root;    // force at root then reconcile
658 >        // Only need to change root state
659 >        final Phaser root = this.root;
660          long s;
661 <        while (phaseOf(s = r.state) >= 0)
662 <            r.casState(s, stateFor(-1, partiesOf(s), unarrivedOf(s)));
663 <        reconcileState();
664 <        releaseWaiters(0);  // ensure wakeups on both queues
665 <        releaseWaiters(1);
661 >        while ((s = root.state) >= 0) {
662 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
663 >                                          s, s | TERMINATION_PHASE)) {
664 >                releaseWaiters(0); // signal all threads
665 >                releaseWaiters(1);
666 >                return;
667 >            }
668 >        }
669      }
670  
671      /**
# Line 677 | Line 676 | public class Phaser {
676       * @return the phase number, or a negative value if terminated
677       */
678      public final int getPhase() {
679 <        return phaseOf(getReconciledState());
679 >        return (int)(root.state >>> PHASE_SHIFT);
680      }
681  
682      /**
# Line 686 | Line 685 | public class Phaser {
685       * @return the number of parties
686       */
687      public int getRegisteredParties() {
688 <        return partiesOf(getReconciledState());
688 >        return partiesOf(state);
689      }
690  
691      /**
# Line 696 | Line 695 | public class Phaser {
695       * @return the number of arrived parties
696       */
697      public int getArrivedParties() {
698 <        return arrivedOf(getReconciledState());
698 >        return arrivedOf(parent==null? state : reconcileState());
699      }
700  
701      /**
# Line 706 | Line 705 | public class Phaser {
705       * @return the number of unarrived parties
706       */
707      public int getUnarrivedParties() {
708 <        return unarrivedOf(getReconciledState());
708 >        return unarrivedOf(parent==null? state : reconcileState());
709      }
710  
711      /**
# Line 734 | Line 733 | public class Phaser {
733       * @return {@code true} if this barrier has been terminated
734       */
735      public boolean isTerminated() {
736 <        return getPhase() < 0;
736 >        return root.state < 0L;
737      }
738  
739      /**
# Line 750 | Line 749 | public class Phaser {
749       * which case no advance occurs.
750       *
751       * <p>The arguments to this method provide the state of the phaser
752 <     * prevailing for the current transition. (When called from within
753 <     * an implementation of {@code onAdvance} the values returned by
754 <     * methods such as {@code getPhase} may or may not reliably
755 <     * indicate the state to which this transition applies.)
752 >     * prevailing for the current transition.  The effects of invoking
753 >     * arrival, registration, and waiting methods on this Phaser from
754 >     * within {@code onAdvance} are unspecified and should not be
755 >     * relied on.
756 >     *
757 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
758 >     * {@code onAdvance} is invoked only for its root Phaser on each
759 >     * advance.
760       *
761       * <p>The default version returns {@code true} when the number of
762       * registered parties is zero. Normally, overrides that arrange
# Line 778 | Line 781 | public class Phaser {
781       * @return a string identifying this barrier, as well as its state
782       */
783      public String toString() {
784 <        long s = getReconciledState();
784 >        return stateToString(reconcileState());
785 >    }
786 >
787 >    /**
788 >     * Implementation of toString and string-based error messages
789 >     */
790 >    private String stateToString(long s) {
791          return super.toString() +
792              "[phase = " + phaseOf(s) +
793              " parties = " + partiesOf(s) +
794              " arrived = " + arrivedOf(s) + "]";
795      }
796  
797 <    // methods for waiting
797 >    // Waiting mechanics
798 >
799 >    /**
800 >     * Removes and signals threads from queue for phase.
801 >     */
802 >    private void releaseWaiters(int phase) {
803 >        AtomicReference<QNode> head = queueFor(phase);
804 >        QNode q;
805 >        int p;
806 >        while ((q = head.get()) != null &&
807 >               ((p = q.phase) == phase ||
808 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
809 >            if (head.compareAndSet(q, q.next))
810 >                q.signal();
811 >        }
812 >    }
813 >
814 >    /** The number of CPUs, for spin control */
815 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
816 >
817 >    /**
818 >     * The number of times to spin before blocking while waiting for
819 >     * advance, per arrival while waiting. On multiprocessors, fully
820 >     * blocking and waking up a large number of threads all at once is
821 >     * usually a very slow process, so we use rechargeable spins to
822 >     * avoid it when threads regularly arrive: When a thread in
823 >     * internalAwaitAdvance notices another arrival before blocking,
824 >     * and there appear to be enough CPUs available, it spins
825 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
826 >     * uniprocessors, there is at least one intervening Thread.yield
827 >     * before blocking. The value trades off good-citizenship vs big
828 >     * unnecessary slowdowns.
829 >     */
830 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
831 >
832 >    /**
833 >     * Possibly blocks and waits for phase to advance unless aborted.
834 >     *
835 >     * @param phase current phase
836 >     * @param node if non-null, the wait node to track interrupt and timeout;
837 >     * if null, denotes noninterruptible wait
838 >     * @return current phase
839 >     */
840 >    private int internalAwaitAdvance(int phase, QNode node) {
841 >        Phaser current = this;       // to eventually wait at root if tiered
842 >        boolean queued = false;      // true when node is enqueued
843 >        int lastUnarrived = -1;      // to increase spins upon change
844 >        int spins = SPINS_PER_ARRIVAL;
845 >        long s;
846 >        int p;
847 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
848 >            Phaser par;
849 >            int unarrived = (int)s & UNARRIVED_MASK;
850 >            if (unarrived != lastUnarrived) {
851 >                if (lastUnarrived == -1) // ensure old queue clean
852 >                    releaseWaiters(phase-1);
853 >                if ((lastUnarrived = unarrived) < NCPU)
854 >                    spins += SPINS_PER_ARRIVAL;
855 >            }
856 >            else if (unarrived == 0 && (par = current.parent) != null) {
857 >                current = par;       // if all arrived, use parent
858 >                par = par.parent;
859 >                lastUnarrived = -1;
860 >            }
861 >            else if (spins > 0) {
862 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863 >                    Thread.yield();  // yield midway through spin
864 >            }
865 >            else if (node == null)   // must be noninterruptible
866 >                node = new QNode(this, phase, false, false, 0L);
867 >            else if (node.isReleasable()) {
868 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869 >                    break;
870 >                else
871 >                    return phase;    // aborted
872 >            }
873 >            else if (!queued) {      // push onto queue
874 >                AtomicReference<QNode> head = queueFor(phase);
875 >                QNode q = head.get();
876 >                if (q == null || q.phase == phase) {
877 >                    node.next = q;
878 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879 >                        break;       // recheck to avoid stale enqueue
880 >                    else
881 >                        queued = head.compareAndSet(q, node);
882 >                }
883 >            }
884 >            else {
885 >                try {
886 >                    ForkJoinPool.managedBlock(node);
887 >                } catch (InterruptedException ie) {
888 >                    node.wasInterrupted = true;
889 >                }
890 >            }
891 >        }
892 >        releaseWaiters(phase);
893 >        if (node != null)
894 >            node.onRelease();
895 >        return p;
896 >    }
897  
898      /**
899       * Wait nodes for Treiber stack representing wait queue
# Line 793 | Line 901 | public class Phaser {
901      static final class QNode implements ForkJoinPool.ManagedBlocker {
902          final Phaser phaser;
903          final int phase;
796        final long startTime;
797        final long nanos;
798        final boolean timed;
904          final boolean interruptible;
905 <        volatile boolean wasInterrupted = false;
905 >        final boolean timed;
906 >        boolean wasInterrupted;
907 >        long nanos;
908 >        long lastTime;
909          volatile Thread thread; // nulled to cancel wait
910          QNode next;
911  
912          QNode(Phaser phaser, int phase, boolean interruptible,
913 <              boolean timed, long startTime, long nanos) {
913 >              boolean timed, long nanos) {
914              this.phaser = phaser;
915              this.phase = phase;
808            this.timed = timed;
916              this.interruptible = interruptible;
810            this.startTime = startTime;
917              this.nanos = nanos;
918 +            this.timed = timed;
919 +            this.lastTime = timed? System.nanoTime() : 0L;
920              thread = Thread.currentThread();
921          }
922  
923          public boolean isReleasable() {
924 <            return (thread == null ||
925 <                    phaser.getPhase() != phase ||
926 <                    (interruptible && wasInterrupted) ||
927 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
924 >            Thread t = thread;
925 >            if (t != null) {
926 >                if (phaser.getPhase() != phase)
927 >                    t = null;
928 >                else {
929 >                    if (Thread.interrupted())
930 >                        wasInterrupted = true;
931 >                    if (interruptible && wasInterrupted)
932 >                        t = null;
933 >                    else if (timed) {
934 >                        if (nanos > 0) {
935 >                            long now = System.nanoTime();
936 >                            nanos -= now - lastTime;
937 >                            lastTime = now;
938 >                        }
939 >                        if (nanos <= 0)
940 >                            t = null;
941 >                    }
942 >                }
943 >                if (t != null)
944 >                    return false;
945 >                thread = null;
946 >            }
947 >            return true;
948          }
949  
950          public boolean block() {
951 <            if (Thread.interrupted()) {
952 <                wasInterrupted = true;
953 <                if (interruptible)
826 <                    return true;
827 <            }
828 <            if (!timed)
951 >            if (isReleasable())
952 >                return true;
953 >            else if (!timed)
954                  LockSupport.park(this);
955 <            else {
956 <                long waitTime = nanos - (System.nanoTime() - startTime);
832 <                if (waitTime <= 0)
833 <                    return true;
834 <                LockSupport.parkNanos(this, waitTime);
835 <            }
955 >            else if (nanos > 0)
956 >                LockSupport.parkNanos(this, nanos);
957              return isReleasable();
958          }
959  
# Line 844 | Line 965 | public class Phaser {
965              }
966          }
967  
968 <        boolean doWait() {
969 <            if (thread != null) {
970 <                try {
971 <                    ForkJoinPool.managedBlock(this);
972 <                } catch (InterruptedException ie) {
852 <                    wasInterrupted = true; // can't currently happen
853 <                }
854 <            }
855 <            return wasInterrupted;
856 <        }
857 <    }
858 <
859 <    /**
860 <     * Removes and signals waiting threads from wait queue.
861 <     */
862 <    private void releaseWaiters(int phase) {
863 <        AtomicReference<QNode> head = queueFor(phase);
864 <        QNode q;
865 <        while ((q = head.get()) != null) {
866 <            if (head.compareAndSet(q, q.next))
867 <                q.signal();
868 <        }
869 <    }
870 <
871 <    /**
872 <     * Tries to enqueue given node in the appropriate wait queue.
873 <     *
874 <     * @return true if successful
875 <     */
876 <    private boolean tryEnqueue(QNode node) {
877 <        AtomicReference<QNode> head = queueFor(node.phase);
878 <        return head.compareAndSet(node.next = head.get(), node);
879 <    }
880 <
881 <    /**
882 <     * Enqueues node and waits unless aborted or signalled.
883 <     *
884 <     * @return current phase
885 <     */
886 <    private int untimedWait(int phase) {
887 <        QNode node = null;
888 <        boolean queued = false;
889 <        boolean interrupted = false;
890 <        int p;
891 <        while ((p = getPhase()) == phase) {
892 <            if (Thread.interrupted())
893 <                interrupted = true;
894 <            else if (node == null)
895 <                node = new QNode(this, phase, false, false, 0, 0);
896 <            else if (!queued)
897 <                queued = tryEnqueue(node);
898 <            else if (node.doWait())
899 <                interrupted = true;
900 <        }
901 <        if (node != null)
902 <            node.thread = null;
903 <        releaseWaiters(phase);
904 <        if (interrupted)
905 <            Thread.currentThread().interrupt();
906 <        return p;
907 <    }
908 <
909 <    /**
910 <     * Interruptible version
911 <     * @return current phase
912 <     */
913 <    private int interruptibleWait(int phase) throws InterruptedException {
914 <        QNode node = null;
915 <        boolean queued = false;
916 <        boolean interrupted = false;
917 <        int p;
918 <        while ((p = getPhase()) == phase && !interrupted) {
919 <            if (Thread.interrupted())
920 <                interrupted = true;
921 <            else if (node == null)
922 <                node = new QNode(this, phase, true, false, 0, 0);
923 <            else if (!queued)
924 <                queued = tryEnqueue(node);
925 <            else if (node.doWait())
926 <                interrupted = true;
968 >        void onRelease() { // actions upon return from internalAwaitAdvance
969 >            if (!interruptible && wasInterrupted)
970 >                Thread.currentThread().interrupt();
971 >            if (thread != null)
972 >                thread = null;
973          }
928        if (node != null)
929            node.thread = null;
930        if (p != phase || (p = getPhase()) != phase)
931            releaseWaiters(phase);
932        if (interrupted)
933            throw new InterruptedException();
934        return p;
935    }
974  
937    /**
938     * Timeout version.
939     * @return current phase
940     */
941    private int timedWait(int phase, long nanos)
942        throws InterruptedException, TimeoutException {
943        long startTime = System.nanoTime();
944        QNode node = null;
945        boolean queued = false;
946        boolean interrupted = false;
947        int p;
948        while ((p = getPhase()) == phase && !interrupted) {
949            if (Thread.interrupted())
950                interrupted = true;
951            else if (nanos - (System.nanoTime() - startTime) <= 0)
952                break;
953            else if (node == null)
954                node = new QNode(this, phase, true, true, startTime, nanos);
955            else if (!queued)
956                queued = tryEnqueue(node);
957            else if (node.doWait())
958                interrupted = true;
959        }
960        if (node != null)
961            node.thread = null;
962        if (p != phase || (p = getPhase()) != phase)
963            releaseWaiters(phase);
964        if (interrupted)
965            throw new InterruptedException();
966        if (p == phase)
967            throw new TimeoutException();
968        return p;
975      }
976  
977      // Unsafe mechanics
# Line 974 | Line 980 | public class Phaser {
980      private static final long stateOffset =
981          objectFieldOffset("state", Phaser.class);
982  
977    private final boolean casState(long cmp, long val) {
978        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
979    }
980
983      private static long objectFieldOffset(String field, Class<?> klazz) {
984          try {
985              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines