ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.28 by jsr166, Wed Aug 12 02:24:35 2009 UTC vs.
Revision 1.51 by dl, Sat Nov 13 00:55:51 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 < * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 < * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 < * CyclicBarrier.await}.  However, phasers separate two aspects of
39 < * coordination, which may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance, are arranged by overriding method {@link #onAdvance(int,
79 < * int)}, which also controls termination. Overriding this method is
80 < * similar to, but more flexible than, providing a barrier action to a
81 < * {@code CyclicBarrier}.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
60 < * actions immediately return without updating phaser state or waiting
61 < * for advance, and indicating (via a negative phase value) that
62 < * execution is complete.  Termination is triggered when an invocation
63 < * of {@code onAdvance} returns {@code true}.  When a phaser is
64 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84   * often convenient to override this method to cause termination when
85   * the current phase number reaches a threshold. Method {@link
86   * #forceTermination} is also available to abruptly release waiting
87   * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * {@code CyclicBarrier}, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * <li>Phasers may be used to coordinate tasks executing in a {@link
105 < * ForkJoinPool}, which will ensure sufficient parallelism to execute
106 < * tasks when others are blocked waiting for a phase to advance.
107 < *
88 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117 < * void runTasks(List<Runnable> list) {
117 > * void runTasks(List<Runnable> tasks) {
118   *   final Phaser phaser = new Phaser(1); // "1" to register self
119   *   // create and start threads
120 < *   for (Runnable r : list) {
120 > *   for (Runnable task : tasks) {
121   *     phaser.register();
122   *     new Thread() {
123   *       public void run() {
124   *         phaser.arriveAndAwaitAdvance(); // await all creation
125 < *         r.run();
125 > *         task.run();
126   *       }
127   *     }.start();
128   *   }
# Line 116 | Line 135 | import java.util.concurrent.locks.LockSu
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137   *  <pre> {@code
138 < * void startTasks(List<Runnable> list, final int iterations) {
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139   *   final Phaser phaser = new Phaser() {
140 < *     public boolean onAdvance(int phase, int registeredParties) {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141   *       return phase >= iterations || registeredParties == 0;
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable r : list) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150 < *           r.run();
150 > *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157   * }}</pre>
158   *
159 + * If the main task must later await termination, it
160 + * may re-register and then execute a similar loop:
161 + *  <pre> {@code
162 + *   // ...
163 + *   phaser.register();
164 + *   while (!phaser.isTerminated())
165 + *     phaser.arriveAndAwaitAdvance();}</pre>
166 + *
167 + * <p>Related constructions may be used to await particular phase numbers
168 + * in contexts where you are sure that the phase will never wrap around
169 + * {@code Integer.MAX_VALUE}. For example:
170 + *
171 + *  <pre> {@code
172 + * void awaitPhase(Phaser phaser, int phase) {
173 + *   int p = phaser.register(); // assumes caller not already registered
174 + *   while (p < phase) {
175 + *     if (phaser.isTerminated())
176 + *       // ... deal with unexpected termination
177 + *     else
178 + *       p = phaser.arriveAndAwaitAdvance();
179 + *   }
180 + *   phaser.arriveAndDeregister();
181 + * }}</pre>
182 + *
183 + *
184   * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
150 < *       int r = Math.min(i + step, hi);
151 < *       build(actions, i, r, new Phaser(b));
152 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 165 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
168 * </pre>
169 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212 < * parties result in IllegalStateExceptions. However, you can and
212 > * parties result in {@code IllegalStateException}. However, you can and
213   * should create tiered phasers to accommodate arbitrarily large sets
214   * of participants.
215   *
# Line 187 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
200     *
201     * Note: there are some cheats in arrive() that rely on unarrived
202     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_COUNT      = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final long UNARRIVED_MASK = 0xffffL;
248 >    private static final long PARTIES_MASK   = 0xffff0000L;
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int) (s & UNARRIVED_MASK);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
226    private static long stateFor(int phase, int parties, int unarrived) {
227        return ((((long) phase) << 32) | (((long) parties) << 16) |
228                (long) unarrived);
229    }
230
231    private static long trippedStateFor(int phase, int parties) {
232        long lp = (long) parties;
233        return (((long) phase) << 32) | (lp << 16) | lp;
234    }
235
236    /**
237     * Returns message string for bad bounds exceptions.
238     */
239    private static String badBounds(int parties, int unarrived) {
240        return ("Attempt to set " + unarrived +
241                " unarrived of " + parties + " parties");
242    }
243
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 252 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
255    // Wait queues
256
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        long s;
306 >        int phase, unarrived;
307 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
308 >            if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
309 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
310 >                    if (unarrived == 1) {
311 >                        Phaser par;
312 >                        long p = s & PARTIES_MASK; // unshifted parties field
313 >                        long lu = p >>> PARTIES_SHIFT;
314 >                        int u = (int)lu;
315 >                        int nextPhase = (phase + 1) & MAX_PHASE;
316 >                        long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
317 >                        if ((par = parent) == null) {
318 >                            UNSAFE.compareAndSwapLong
319 >                                (this, stateOffset, s, onAdvance(phase, u)?
320 >                                 next | TERMINATION_PHASE : next);
321 >                            releaseWaiters(phase);
322 >                        }
323 >                        else {
324 >                            par.doArrive(u == 0?
325 >                                         ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
326 >                            if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
327 >                                ((int)(state >>> PHASE_SHIFT) != nextPhase &&
328 >                                 !UNSAFE.compareAndSwapLong(this, stateOffset,
329 >                                                            s, next)))
330 >                                reconcileState();
331 >                        }
332 >                    }
333 >                    break;
334 >                }
335 >            }
336 >            else if (state == s && reconcileState() == s) // recheck
337 >                throw new IllegalStateException(badArrive());
338 >        }
339 >        return phase;
340 >    }
341 >
342 >    /**
343 >     * Returns message string for bounds exceptions on arrival.
344 >     * Declared out of-line from doArrive to reduce string op bulk.
345 >     */
346 >    private String badArrive() {
347 >        return ("Attempted arrival of unregistered party for " +
348 >                this.toString());
349 >    }
350 >
351 >    /**
352 >     * Implementation of register, bulkRegister
353 >     *
354 >     * @param registrations number to add to both parties and unarrived fields
355       */
356 <    private long getReconciledState() {
357 <        return (parent == null) ? state : reconcileState();
356 >    private int doRegister(int registrations) {
357 >        long adj = (long)registrations; // adjustment to state
358 >        adj |= adj << PARTIES_SHIFT;
359 >        Phaser par = parent;
360 >        long s;
361 >        int phase;
362 >        while ((phase = (int)((s = (par == null? state : reconcileState()))
363 >                              >>> PHASE_SHIFT)) >= 0) {
364 >            int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
365 >            if (parties != 0 && (s & UNARRIVED_MASK) == 0)
366 >                internalAwaitAdvance(phase, null); // wait for onAdvance
367 >            else if (parties + registrations > MAX_COUNT)
368 >                throw new IllegalStateException(badRegister());
369 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
370 >                break;
371 >        }
372 >        return phase;
373      }
374  
375      /**
376 <     * Recursively resolves state.
376 >     * Returns message string for bounds exceptions on registration
377 >     */
378 >    private String badRegister() {
379 >        return ("Attempt to register more than " + MAX_COUNT + " parties for "+
380 >                this.toString());
381 >    }
382 >
383 >    /**
384 >     * Recursively resolves lagged phase propagation from root if
385 >     * necessary.
386       */
387      private long reconcileState() {
388 <        Phaser p = parent;
389 <        long s = state;
390 <        if (p != null) {
391 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
392 <                long parentState = p.getReconciledState();
393 <                int parentPhase = phaseOf(parentState);
394 <                int phase = phaseOf(s = state);
395 <                if (phase != parentPhase) {
396 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
397 <                    if (casState(s, next)) {
398 <                        releaseWaiters(phase);
399 <                        s = next;
400 <                    }
388 >        Phaser par = parent;
389 >        if (par == null)
390 >            return state;
391 >        Phaser rt = root;
392 >        long s;
393 >        int phase, rPhase;
394 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
395 >               (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
396 >            if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
397 >                long ps = par.parent == null? par.state : par.reconcileState();
398 >                int pPhase = (int)(ps >>> PHASE_SHIFT);
399 >                if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
400 >                    if (state != s)
401 >                        continue;
402 >                    long p = s & PARTIES_MASK;
403 >                    long next = ((((long) pPhase) << PHASE_SHIFT) |
404 >                                 (p >>> PARTIES_SHIFT) | p);
405 >                    if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406 >                        return next;
407                  }
408              }
409 +            if (state == s)
410 +                releaseWaiters(phase); // help release others
411          }
412          return s;
413      }
# Line 303 | Line 418 | public class Phaser {
418       * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
425 <     * Creates a new phaser with the given numbers of registered
425 >     * Creates a new phaser with the given number of registered
426       * unarrived parties, initial phase number 0, and no parent.
427       *
428       * @param parties the number of parties required to trip barrier
# Line 327 | Line 442 | public class Phaser {
442       * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
331 <        this.parent = parent;
332 <        if (parent != null) {
333 <            this.root = parent.root;
334 <            phase = parent.register();
335 <        }
336 <        else
337 <            this.root = this;
338 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
449 <     * Creates a new phaser with the given parent and numbers of
449 >     * Creates a new phaser with the given parent and number of
450       * registered unarrived parties. If parent is non-null, this phaser
451       * is registered with the parent and its initial phase number is
452       * the same as that of parent phaser.
# Line 350 | Line 457 | public class Phaser {
457       * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties < 0 || parties > MAX_COUNT)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
484 +     * this method may wait until its completion before registering.
485       *
486 <     * @return the current barrier phase number upon registration
486 >     * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
488       * than the maximum supported number of parties
489       */
# Line 376 | Line 493 | public class Phaser {
493  
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
497 +     * this method may wait until its completion before registering.
498       *
499 <     * @param parties the number of parties required to trip barrier
500 <     * @return the current barrier phase number upon registration
499 >     * @param parties the number of additional parties required to trip barrier
500 >     * @return the arrival phase number to which this registration applied
501       * @throws IllegalStateException if attempting to register more
502       * than the maximum supported number of parties
503 +     * @throws IllegalArgumentException if {@code parties < 0}
504       */
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_COUNT)
509 +            throw new IllegalStateException(badRegister());
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
394     * Shared code for register, bulkRegister
395     */
396    private int doRegister(int registrations) {
397        int phase;
398        for (;;) {
399            long s = getReconciledState();
400            phase = phaseOf(s);
401            int unarrived = unarrivedOf(s) + registrations;
402            int parties = partiesOf(s) + registrations;
403            if (phase < 0)
404                break;
405            if (parties > ushortMask || unarrived > ushortMask)
406                throw new IllegalStateException(badBounds(parties, unarrived));
407            if (phase == phaseOf(root.state) &&
408                casState(s, stateFor(phase, parties, unarrived)))
409                break;
410        }
411        return phase;
412    }
413
414    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517 <     * in turn wait for others via {@link #awaitAdvance}).
517 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
518 >     * unenforced usage error for an unregistered party to invoke this
519 >     * method.
520       *
521 <     * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated
521 >     * @return the arrival phase number, or a negative value if terminated
522       * @throws IllegalStateException if not terminated and the number
523       * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        int phase;
425 <        for (;;) {
426 <            long s = state;
427 <            phase = phaseOf(s);
428 <            if (phase < 0)
429 <                break;
430 <            int parties = partiesOf(s);
431 <            int unarrived = unarrivedOf(s) - 1;
432 <            if (unarrived > 0) {        // Not the last arrival
433 <                if (casState(s, s - 1)) // s-1 adds one arrival
434 <                    break;
435 <            }
436 <            else if (unarrived == 0) {  // the last arrival
437 <                Phaser par = parent;
438 <                if (par == null) {      // directly trip
439 <                    if (casState
440 <                        (s,
441 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442 <                                         ((phase + 1) & phaseMask), parties))) {
443 <                        releaseWaiters(phase);
444 <                        break;
445 <                    }
446 <                }
447 <                else {                  // cascade to parent
448 <                    if (casState(s, s - 1)) { // zeroes unarrived
449 <                        par.arrive();
450 <                        reconcileState();
451 <                        break;
452 <                    }
453 <                }
454 <            }
455 <            else if (phase != phaseOf(root.state)) // or if unreconciled
456 <                reconcileState();
457 <            else
458 <                throw new IllegalStateException(badBounds(parties, unarrived));
459 <        }
460 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
# Line 466 | Line 532 | public class Phaser {
532       * required to trip the barrier in future phases.  If this phaser
533       * has a parent, and deregistration causes this phaser to have
534       * zero parties, this phaser also arrives at and is deregistered
535 <     * from its parent.
535 >     * from its parent.  It is an unenforced usage error for an
536 >     * unregistered party to invoke this method.
537       *
538 <     * @return the current barrier phase number upon entry to
472 <     * this method, or a negative value if terminated
538 >     * @return the arrival phase number, or a negative value if terminated
539       * @throws IllegalStateException if not terminated and the number
540       * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar code to arrive, but too different to merge
478 <        Phaser par = parent;
479 <        int phase;
480 <        for (;;) {
481 <            long s = state;
482 <            phase = phaseOf(s);
483 <            if (phase < 0)
484 <                break;
485 <            int parties = partiesOf(s) - 1;
486 <            int unarrived = unarrivedOf(s) - 1;
487 <            if (parties >= 0) {
488 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 <                    if (casState
490 <                        (s,
491 <                         stateFor(phase, parties, unarrived))) {
492 <                        if (unarrived == 0) {
493 <                            par.arriveAndDeregister();
494 <                            reconcileState();
495 <                        }
496 <                        break;
497 <                    }
498 <                    continue;
499 <                }
500 <                if (unarrived == 0) {
501 <                    if (casState
502 <                        (s,
503 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504 <                                         ((phase + 1) & phaseMask), parties))) {
505 <                        releaseWaiters(phase);
506 <                        break;
507 <                    }
508 <                    continue;
509 <                }
510 <                if (par != null && phase != phaseOf(root.state)) {
511 <                    reconcileState();
512 <                    continue;
513 <                }
514 <            }
515 <            throw new IllegalStateException(badBounds(parties, unarrived));
516 <        }
517 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
547       * Arrives at the barrier and awaits others. Equivalent in effect
548       * to {@code awaitAdvance(arrive())}.  If you need to await with
549       * interruption or timeout, you can arrange this with an analogous
550 <     * construction using one of the other forms of the awaitAdvance
551 <     * method.  If instead you need to deregister upon arrival use
552 <     * {@code arriveAndDeregister}.
550 >     * construction using one of the other forms of the {@code
551 >     * awaitAdvance} method.  If instead you need to deregister upon
552 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 >     * usage error for an unregistered party to invoke this method.
554       *
555 <     * @return the phase on entry to this method
555 >     * @return the arrival phase number, or a negative number if terminated
556       * @throws IllegalStateException if not terminated and the number
557       * of unarrived parties would become negative
558       */
# Line 535 | Line 562 | public class Phaser {
562  
563      /**
564       * Awaits the phase of the barrier to advance from the given phase
565 <     * value, or returns immediately if the current phase of the barrier
566 <     * is not equal to the given phase value or this barrier is
567 <     * terminated.
568 <     *
569 <     * @param phase the phase on entry to this method
570 <     * @return the phase on exit from this method
565 >     * value, returning immediately if the current phase of the
566 >     * barrier is not equal to the given phase value or this barrier
567 >     * is terminated.
568 >     *
569 >     * @param phase an arrival phase number, or negative value if
570 >     * terminated; this argument is normally the value returned by a
571 >     * previous call to {@code arrive} or its variants
572 >     * @return the next arrival phase number, or a negative value
573 >     * if terminated or argument is negative
574       */
575      public int awaitAdvance(int phase) {
576          if (phase < 0)
577              return phase;
578 <        long s = getReconciledState();
549 <        int p = phaseOf(s);
578 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579          if (p != phase)
580              return p;
581 <        if (unarrivedOf(s) == 0 && parent != null)
553 <            parent.awaitAdvance(phase);
554 <        // Fall here even if parent waited, to reconcile and help release
555 <        return untimedWait(phase);
581 >        return internalAwaitAdvance(phase, null);
582      }
583  
584      /**
585 <     * Awaits the phase of the barrier to advance from the given
586 <     * value, or returns immediately if argument is negative or this
587 <     * barrier is terminated, or throws InterruptedException if
588 <     * interrupted while waiting.
589 <     *
590 <     * @param phase the phase on entry to this method
591 <     * @return the phase on exit from this method
585 >     * Awaits the phase of the barrier to advance from the given phase
586 >     * value, throwing {@code InterruptedException} if interrupted
587 >     * while waiting, or returning immediately if the current phase of
588 >     * the barrier is not equal to the given phase value or this
589 >     * barrier is terminated.
590 >     *
591 >     * @param phase an arrival phase number, or negative value if
592 >     * terminated; this argument is normally the value returned by a
593 >     * previous call to {@code arrive} or its variants
594 >     * @return the next arrival phase number, or a negative value
595 >     * if terminated or argument is negative
596       * @throws InterruptedException if thread interrupted while waiting
597       */
598      public int awaitAdvanceInterruptibly(int phase)
599          throws InterruptedException {
600          if (phase < 0)
601              return phase;
602 <        long s = getReconciledState();
573 <        int p = phaseOf(s);
602 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603          if (p != phase)
604              return p;
605 <        if (unarrivedOf(s) == 0 && parent != null)
606 <            parent.awaitAdvanceInterruptibly(phase);
607 <        return interruptibleWait(phase);
605 >        QNode node = new QNode(this, phase, true, false, 0L);
606 >        p = internalAwaitAdvance(phase, node);
607 >        if (node.wasInterrupted)
608 >            throw new InterruptedException();
609 >        else
610 >            return p;
611      }
612  
613      /**
614 <     * Awaits the phase of the barrier to advance from the given value
615 <     * or the given timeout elapses, or returns immediately if
616 <     * argument is negative or this barrier is terminated.
614 >     * Awaits the phase of the barrier to advance from the given phase
615 >     * value or the given timeout to elapse, throwing {@code
616 >     * InterruptedException} if interrupted while waiting, or
617 >     * returning immediately if the current phase of the barrier is
618 >     * not equal to the given phase value or this barrier is
619 >     * terminated.
620       *
621 <     * @param phase the phase on entry to this method
622 <     * @return the phase on exit from this method
621 >     * @param phase an arrival phase number, or negative value if
622 >     * terminated; this argument is normally the value returned by a
623 >     * previous call to {@code arrive} or its variants
624 >     * @param timeout how long to wait before giving up, in units of
625 >     *        {@code unit}
626 >     * @param unit a {@code TimeUnit} determining how to interpret the
627 >     *        {@code timeout} parameter
628 >     * @return the next arrival phase number, or a negative value
629 >     * if terminated or argument is negative
630       * @throws InterruptedException if thread interrupted while waiting
631       * @throws TimeoutException if timed out while waiting
632       */
633      public int awaitAdvanceInterruptibly(int phase,
634                                           long timeout, TimeUnit unit)
635          throws InterruptedException, TimeoutException {
636 +        long nanos = unit.toNanos(timeout);
637          if (phase < 0)
638              return phase;
639 <        long s = getReconciledState();
597 <        int p = phaseOf(s);
639 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640          if (p != phase)
641              return p;
642 <        if (unarrivedOf(s) == 0 && parent != null)
643 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
644 <        return timedWait(phase, unit.toNanos(timeout));
642 >        QNode node = new QNode(this, phase, true, true, nanos);
643 >        p = internalAwaitAdvance(phase, node);
644 >        if (node.wasInterrupted)
645 >            throw new InterruptedException();
646 >        else if (p == phase)
647 >            throw new TimeoutException();
648 >        else
649 >            return p;
650      }
651  
652      /**
# Line 610 | Line 657 | public class Phaser {
657       * unexpected exceptions.
658       */
659      public void forceTermination() {
660 <        for (;;) {
661 <            long s = getReconciledState();
662 <            int phase = phaseOf(s);
663 <            int parties = partiesOf(s);
664 <            int unarrived = unarrivedOf(s);
665 <            if (phase < 0 ||
666 <                casState(s, stateFor(-1, parties, unarrived))) {
620 <                releaseWaiters(0);
621 <                releaseWaiters(1);
622 <                if (parent != null)
623 <                    parent.forceTermination();
624 <                return;
625 <            }
626 <        }
660 >        Phaser r = root;    // force at root then reconcile
661 >        long s;
662 >        while ((s = r.state) >= 0)
663 >            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 >        reconcileState();
665 >        releaseWaiters(0); // signal all threads
666 >        releaseWaiters(1);
667      }
668  
669      /**
# Line 634 | Line 674 | public class Phaser {
674       * @return the phase number, or a negative value if terminated
675       */
676      public final int getPhase() {
677 <        return phaseOf(getReconciledState());
677 >        return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
678      }
679  
680      /**
# Line 643 | Line 683 | public class Phaser {
683       * @return the number of parties
684       */
685      public int getRegisteredParties() {
686 <        return partiesOf(state);
686 >        return partiesOf(parent == null? state : reconcileState());
687      }
688  
689      /**
690 <     * Returns the number of parties that have arrived at the current
691 <     * phase of this barrier.
690 >     * Returns the number of registered parties that have arrived at
691 >     * the current phase of this barrier.
692       *
693       * @return the number of arrived parties
694       */
695      public int getArrivedParties() {
696 <        return arrivedOf(state);
696 >        return arrivedOf(parent == null? state : reconcileState());
697      }
698  
699      /**
# Line 663 | Line 703 | public class Phaser {
703       * @return the number of unarrived parties
704       */
705      public int getUnarrivedParties() {
706 <        return unarrivedOf(state);
706 >        return unarrivedOf(parent == null? state : reconcileState());
707      }
708  
709      /**
# Line 691 | Line 731 | public class Phaser {
731       * @return {@code true} if this barrier has been terminated
732       */
733      public boolean isTerminated() {
734 <        return getPhase() < 0;
734 >        return (parent == null? state : reconcileState()) < 0;
735      }
736  
737      /**
738 <     * Overridable method to perform an action upon phase advance, and
739 <     * to control termination. This method is invoked whenever the
740 <     * barrier is tripped (and thus all other waiting parties are
741 <     * dormant). If it returns {@code true}, then, rather than advance
742 <     * the phase number, this barrier will be set to a final
743 <     * termination state, and subsequent calls to {@link #isTerminated}
744 <     * will return true.
738 >     * Overridable method to perform an action upon impending phase
739 >     * advance, and to control termination. This method is invoked
740 >     * upon arrival of the party tripping the barrier (when all other
741 >     * waiting parties are dormant).  If this method returns {@code
742 >     * true}, then, rather than advance the phase number, this barrier
743 >     * will be set to a final termination state, and subsequent calls
744 >     * to {@link #isTerminated} will return true. Any (unchecked)
745 >     * Exception or Error thrown by an invocation of this method is
746 >     * propagated to the party attempting to trip the barrier, in
747 >     * which case no advance occurs.
748 >     *
749 >     * <p>The arguments to this method provide the state of the phaser
750 >     * prevailing for the current transition.  The effects of invoking
751 >     * arrival, registration, and waiting methods on this Phaser from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on.
754 >     *
755 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
756 >     * {@code onAdvance} is invoked only for its root Phaser on each
757 >     * advance.
758       *
759       * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
761       * termination for other reasons should also preserve this
762       * property.
763       *
711     * <p>You may override this method to perform an action with side
712     * effects visible to participating tasks, but it is in general
713     * only sensible to do so in designs where all parties register
714     * before any arrive, and all {@link #awaitAdvance} at each phase.
715     * Otherwise, you cannot ensure lack of interference from other
716     * parties during the the invocation of this method.
717     *
764       * @param phase the phase number on entering the barrier
765       * @param registeredParties the current number of registered parties
766       * @return {@code true} if this barrier should terminate
# Line 733 | Line 779 | public class Phaser {
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782 <        long s = getReconciledState();
782 >        long s = reconcileState();
783          return super.toString() +
784              "[phase = " + phaseOf(s) +
785              " parties = " + partiesOf(s) +
786              " arrived = " + arrivedOf(s) + "]";
787      }
788  
743    // methods for waiting
744
745    /**
746     * Wait nodes for Treiber stack representing wait queue
747     */
748    static final class QNode implements ForkJoinPool.ManagedBlocker {
749        final Phaser phaser;
750        final int phase;
751        final long startTime;
752        final long nanos;
753        final boolean timed;
754        final boolean interruptible;
755        volatile boolean wasInterrupted = false;
756        volatile Thread thread; // nulled to cancel wait
757        QNode next;
758        QNode(Phaser phaser, int phase, boolean interruptible,
759              boolean timed, long startTime, long nanos) {
760            this.phaser = phaser;
761            this.phase = phase;
762            this.timed = timed;
763            this.interruptible = interruptible;
764            this.startTime = startTime;
765            this.nanos = nanos;
766            thread = Thread.currentThread();
767        }
768        public boolean isReleasable() {
769            return (thread == null ||
770                    phaser.getPhase() != phase ||
771                    (interruptible && wasInterrupted) ||
772                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
773        }
774        public boolean block() {
775            if (Thread.interrupted()) {
776                wasInterrupted = true;
777                if (interruptible)
778                    return true;
779            }
780            if (!timed)
781                LockSupport.park(this);
782            else {
783                long waitTime = nanos - (System.nanoTime() - startTime);
784                if (waitTime <= 0)
785                    return true;
786                LockSupport.parkNanos(this, waitTime);
787            }
788            return isReleasable();
789        }
790        void signal() {
791            Thread t = thread;
792            if (t != null) {
793                thread = null;
794                LockSupport.unpark(t);
795            }
796        }
797        boolean doWait() {
798            if (thread != null) {
799                try {
800                    ForkJoinPool.managedBlock(this, false);
801                } catch (InterruptedException ie) {
802                }
803            }
804            return wasInterrupted;
805        }
806
807    }
808
789      /**
790 <     * Removes and signals waiting threads from wait queue.
790 >     * Removes and signals threads from queue for phase
791       */
792      private void releaseWaiters(int phase) {
793          AtomicReference<QNode> head = queueFor(phase);
794          QNode q;
795 <        while ((q = head.get()) != null) {
795 >        int p;
796 >        while ((q = head.get()) != null &&
797 >               ((p = q.phase) == phase ||
798 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
799              if (head.compareAndSet(q, q.next))
800                  q.signal();
801          }
# Line 823 | Line 806 | public class Phaser {
806       *
807       * @return true if successful
808       */
809 <    private boolean tryEnqueue(QNode node) {
810 <        AtomicReference<QNode> head = queueFor(node.phase);
811 <        return head.compareAndSet(node.next = head.get(), node);
809 >    private boolean tryEnqueue(int phase, QNode node) {
810 >        releaseWaiters(phase-1); // ensure old queue clean
811 >        AtomicReference<QNode> head = queueFor(phase);
812 >        QNode q = head.get();
813 >        return ((q == null || q.phase == phase) &&
814 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
815 >                head.compareAndSet(node.next = q, node));
816      }
817  
818 +    /** The number of CPUs, for spin control */
819 +    private static final int NCPU = Runtime.getRuntime().availableProcessors();
820 +
821      /**
822 <     * Enqueues node and waits unless aborted or signalled.
823 <     *
824 <     * @return current phase
822 >     * The number of times to spin before blocking while waiting for
823 >     * advance, per arrival while waiting. On multiprocessors, fully
824 >     * blocking and waking up a large number of threads all at once is
825 >     * usually a very slow process, so we use rechargeable spins to
826 >     * avoid it when threads regularly arrive: When a thread in
827 >     * internalAwaitAdvance notices another arrival before blocking,
828 >     * and there appear to be enough CPUs available, it spins
829 >     * SPINS_PER_ARRIVAL more times before continuing to try to
830 >     * block. The value trades off good-citizenship vs big unnecessary
831 >     * slowdowns.
832       */
833 <    private int untimedWait(int phase) {
837 <        QNode node = null;
838 <        boolean queued = false;
839 <        boolean interrupted = false;
840 <        int p;
841 <        while ((p = getPhase()) == phase) {
842 <            if (Thread.interrupted())
843 <                interrupted = true;
844 <            else if (node == null)
845 <                node = new QNode(this, phase, false, false, 0, 0);
846 <            else if (!queued)
847 <                queued = tryEnqueue(node);
848 <            else
849 <                interrupted = node.doWait();
850 <        }
851 <        if (node != null)
852 <            node.thread = null;
853 <        releaseWaiters(phase);
854 <        if (interrupted)
855 <            Thread.currentThread().interrupt();
856 <        return p;
857 <    }
833 >    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
834  
835      /**
836 <     * Interruptible version
836 >     * Possibly blocks and waits for phase to advance unless aborted.
837 >     *
838 >     * @param phase current phase
839 >     * @param node if nonnull, the wait node to track interrupt and timeout;
840 >     * if null, denotes noninterruptible wait
841       * @return current phase
842       */
843 <    private int interruptibleWait(int phase) throws InterruptedException {
844 <        QNode node = null;
843 >    private int internalAwaitAdvance(int phase, QNode node) {
844 >        Phaser current = this;       // to eventually wait at root if tiered
845 >        Phaser par = parent;
846          boolean queued = false;
847 <        boolean interrupted = false;
847 >        int spins = SPINS_PER_ARRIVAL;
848 >        int lastUnarrived = -1;      // to increase spins upon change
849 >        long s;
850          int p;
851 <        while ((p = getPhase()) == phase && !interrupted) {
852 <            if (Thread.interrupted())
853 <                interrupted = true;
851 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
852 >            int unarrived = (int)(s & UNARRIVED_MASK);
853 >            if (unarrived != lastUnarrived) {
854 >                if ((lastUnarrived = unarrived) < NCPU)
855 >                    spins += SPINS_PER_ARRIVAL;
856 >            }
857 >            else if (unarrived == 0 && par != null) {
858 >                current = par;       // if all arrived, use parent
859 >                par = par.parent;
860 >            }
861 >            else if (spins > 0)
862 >                --spins;
863              else if (node == null)
864 <                node = new QNode(this, phase, true, false, 0, 0);
864 >                node = new QNode(this, phase, false, false, 0L);
865 >            else if (node.isReleasable())
866 >                break;
867              else if (!queued)
868 <                queued = tryEnqueue(node);
869 <            else
870 <                interrupted = node.doWait();
871 <        }
872 <        if (node != null)
873 <            node.thread = null;
874 <        if (p != phase || (p = getPhase()) != phase)
868 >                queued = tryEnqueue(phase, node);
869 >            else {
870 >                try {
871 >                    ForkJoinPool.managedBlock(node);
872 >                } catch (InterruptedException ie) {
873 >                    node.wasInterrupted = true;
874 >                }
875 >            }
876 >        }
877 >        if (node != null) {
878 >            if (node.thread != null)
879 >                node.thread = null;
880 >            if (!node.interruptible && node.wasInterrupted)
881 >                Thread.currentThread().interrupt();
882 >        }
883 >        if (p == phase && parent != null)
884 >            p = (int)(reconcileState() >>> PHASE_SHIFT);
885 >        if (p != phase)
886              releaseWaiters(phase);
882        if (interrupted)
883            throw new InterruptedException();
887          return p;
888      }
889  
890      /**
891 <     * Timeout version.
889 <     * @return current phase
891 >     * Wait nodes for Treiber stack representing wait queue
892       */
893 <    private int timedWait(int phase, long nanos)
894 <        throws InterruptedException, TimeoutException {
895 <        long startTime = System.nanoTime();
896 <        QNode node = null;
897 <        boolean queued = false;
898 <        boolean interrupted = false;
899 <        int p;
900 <        while ((p = getPhase()) == phase && !interrupted) {
901 <            if (Thread.interrupted())
902 <                interrupted = true;
903 <            else if (nanos - (System.nanoTime() - startTime) <= 0)
904 <                break;
905 <            else if (node == null)
906 <                node = new QNode(this, phase, true, true, startTime, nanos);
907 <            else if (!queued)
908 <                queued = tryEnqueue(node);
909 <            else
910 <                interrupted = node.doWait();
911 <        }
912 <        if (node != null)
913 <            node.thread = null;
914 <        if (p != phase || (p = getPhase()) != phase)
915 <            releaseWaiters(phase);
916 <        if (interrupted)
917 <            throw new InterruptedException();
918 <        if (p == phase)
919 <            throw new TimeoutException();
920 <        return p;
893 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
894 >        final Phaser phaser;
895 >        final int phase;
896 >        final boolean interruptible;
897 >        final boolean timed;
898 >        boolean wasInterrupted;
899 >        long nanos;
900 >        long lastTime;
901 >        volatile Thread thread; // nulled to cancel wait
902 >        QNode next;
903 >
904 >        QNode(Phaser phaser, int phase, boolean interruptible,
905 >              boolean timed, long nanos) {
906 >            this.phaser = phaser;
907 >            this.phase = phase;
908 >            this.interruptible = interruptible;
909 >            this.nanos = nanos;
910 >            this.timed = timed;
911 >            this.lastTime = timed? System.nanoTime() : 0L;
912 >            thread = Thread.currentThread();
913 >        }
914 >
915 >        public boolean isReleasable() {
916 >            Thread t = thread;
917 >            if (t != null) {
918 >                if (phaser.getPhase() != phase)
919 >                    t = null;
920 >                else {
921 >                    if (Thread.interrupted())
922 >                        wasInterrupted = true;
923 >                    if (interruptible && wasInterrupted)
924 >                        t = null;
925 >                    else if (timed) {
926 >                        if (nanos > 0) {
927 >                            long now = System.nanoTime();
928 >                            nanos -= now - lastTime;
929 >                            lastTime = now;
930 >                        }
931 >                        if (nanos <= 0)
932 >                            t = null;
933 >                    }
934 >                }
935 >                if (t != null)
936 >                    return false;
937 >                thread = null;
938 >            }
939 >            return true;
940 >        }
941 >
942 >        public boolean block() {
943 >            if (isReleasable())
944 >                return true;
945 >            else if (!timed)
946 >                LockSupport.park(this);
947 >            else if (nanos > 0)
948 >                LockSupport.parkNanos(this, nanos);
949 >            return isReleasable();
950 >        }
951 >
952 >        void signal() {
953 >            Thread t = thread;
954 >            if (t != null) {
955 >                thread = null;
956 >                LockSupport.unpark(t);
957 >            }
958 >        }
959      }
960  
961      // Unsafe mechanics
# Line 924 | Line 964 | public class Phaser {
964      private static final long stateOffset =
965          objectFieldOffset("state", Phaser.class);
966  
927    private final boolean casState(long cmp, long val) {
928        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
929    }
930
967      private static long objectFieldOffset(String field, Class<?> klazz) {
968          try {
969              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines