ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.52 by dl, Sat Nov 13 01:27:13 2010 UTC vs.
Revision 1.62 by dl, Mon Nov 29 00:52:28 2010 UTC

# Line 18 | Line 18 | import java.util.concurrent.locks.LockSu
18   * but supporting more flexible usage.
19   *
20   * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 < * number of parties <em>registered</em> to synchronize on a phaser
21 > * number of parties <em>registered</em> to synchronize on a Phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
24   * constructors establishing initial numbers of parties), and
# Line 76 | Line 76 | import java.util.concurrent.locks.LockSu
76   *
77   * <p> <b>Termination.</b> A {@code Phaser} may enter a
78   * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
79 > * immediately return without updating Phaser state or waiting for
80   * advance, and indicating (via a negative phase value) that execution
81   * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
82 > * onAdvance} returns {@code true}. The default implementation returns
83 > * {@code true} if a deregistration has caused the number of
84 > * registered parties to become zero.  As illustrated below, when
85 > * Phasers control actions with a fixed number of iterations, it is
86   * often convenient to override this method to cause termination when
87   * the current phase number reaches a threshold. Method {@link
88   * #forceTermination} is also available to abruptly release waiting
89   * threads and allow them to terminate.
90   *
91 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
92 < * in tree structures) to reduce contention. Phasers with large
93 < * numbers of parties that would otherwise experience heavy
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94   * synchronization contention costs may instead be set up so that
95   * groups of sub-phasers share a common parent.  This may greatly
96   * increase throughput even though it incurs greater per-operation
97   * overhead.
98   *
99   * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 < * only by registered parties, the current state of a phaser may be
100 > * only by registered parties, the current state of a Phaser may be
101   * monitored by any caller.  At any given moment there are {@link
102   * #getRegisteredParties} parties in total, of which {@link
103   * #getArrivedParties} have arrived at the current phase ({@link
# Line 181 | Line 183 | import java.util.concurrent.locks.LockSu
183   * }}</pre>
184   *
185   *
186 < * <p>To create a set of tasks using a tree of phasers,
186 > * <p>To create a set of tasks using a tree of Phasers,
187   * you could use code of the following form, assuming a
188 < * Task class with a constructor accepting a phaser that
188 > * Task class with a constructor accepting a Phaser that
189   * it registers with upon construction:
190   *
191   *  <pre> {@code
# Line 210 | Line 212 | import java.util.concurrent.locks.LockSu
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214   * parties result in {@code IllegalStateException}. However, you can and
215 < * should create tiered phasers to accommodate arbitrarily large sets
215 > * should create tiered Phasers to accommodate arbitrarily large sets
216   * of participants.
217   *
218   * @since 1.7
# Line 240 | Line 242 | public class Phaser {
242       */
243      private volatile long state;
244  
245 <    private static final int  MAX_COUNT      = 0xffff;
246 <    private static final int  MAX_PHASE      = 0x7fffffff;
247 <    private static final int  PARTIES_SHIFT  = 16;
248 <    private static final int  PHASE_SHIFT    = 32;
249 <    private static final long UNARRIVED_MASK = 0xffffL;
250 <    private static final long PARTIES_MASK   = 0xffff0000L;
251 <    private static final long ONE_ARRIVAL    = 1L;
252 <    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
253 <    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
245 >    private static final int  MAX_PARTIES     = 0xffff;
246 >    private static final int  MAX_PHASE       = 0x7fffffff;
247 >    private static final int  PARTIES_SHIFT   = 16;
248 >    private static final int  PHASE_SHIFT     = 32;
249 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
250 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251 >    private static final long ONE_ARRIVAL     = 1L;
252 >    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
253 >    private static final long TERMINATION_BIT = 1L << 63;
254  
255      // The following unpacking methods are usually manually inlined
256  
257      private static int unarrivedOf(long s) {
258 <        return (int) (s & UNARRIVED_MASK);
258 >        return (int)s & UNARRIVED_MASK;
259      }
260  
261      private static int partiesOf(long s) {
262 <        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
262 >        return (int)s >>> PARTIES_SHIFT;
263      }
264  
265      private static int phaseOf(long s) {
# Line 293 | Line 295 | public class Phaser {
295      }
296  
297      /**
298 +     * Returns message string for bounds exceptions on arrival.
299 +     */
300 +    private String badArrive(long s) {
301 +        return "Attempted arrival of unregistered party for " +
302 +            stateToString(s);
303 +    }
304 +
305 +    /**
306 +     * Returns message string for bounds exceptions on registration.
307 +     */
308 +    private String badRegister(long s) {
309 +        return "Attempt to register more than " +
310 +            MAX_PARTIES + " parties for " + stateToString(s);
311 +    }
312 +
313 +    /**
314       * Main implementation for methods arrive and arriveAndDeregister.
315       * Manually tuned to speed up and minimize race windows for the
316       * common case of just decrementing unarrived field.
# Line 302 | Line 320 | public class Phaser {
320       * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321       */
322      private int doArrive(long adj) {
323 <        long s;
324 <        int phase, unarrived;
325 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
326 <            if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
327 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
328 <                    if (unarrived == 1) {
329 <                        Phaser par;
330 <                        long p = s & PARTIES_MASK; // unshifted parties field
331 <                        long lu = p >>> PARTIES_SHIFT;
332 <                        int u = (int)lu;
333 <                        int nextPhase = (phase + 1) & MAX_PHASE;
334 <                        long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
335 <                        if ((par = parent) == null) {
336 <                            UNSAFE.compareAndSwapLong
337 <                                (this, stateOffset, s, onAdvance(phase, u)?
338 <                                 next | TERMINATION_PHASE : next);
339 <                            releaseWaiters(phase);
340 <                        }
341 <                        else {
342 <                            par.doArrive(u == 0?
343 <                                         ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
344 <                            if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
345 <                                ((int)(state >>> PHASE_SHIFT) != nextPhase &&
346 <                                 !UNSAFE.compareAndSwapLong(this, stateOffset,
347 <                                                            s, next)))
348 <                                reconcileState();
349 <                        }
323 >        for (;;) {
324 >            long s = state;
325 >            int unarrived = (int)s & UNARRIVED_MASK;
326 >            int phase = (int)(s >>> PHASE_SHIFT);
327 >            if (phase < 0)
328 >                return phase;
329 >            else if (unarrived == 0) {
330 >                if (reconcileState() == s)     // recheck
331 >                    throw new IllegalStateException(badArrive(s));
332 >            }
333 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 >                if (unarrived == 1) {
335 >                    long p = s & PARTIES_MASK; // unshifted parties field
336 >                    long lu = p >>> PARTIES_SHIFT;
337 >                    int u = (int)lu;
338 >                    int nextPhase = (phase + 1) & MAX_PHASE;
339 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 >                    final Phaser parent = this.parent;
341 >                    if (parent == null) {
342 >                        if (onAdvance(phase, u))
343 >                            next |= TERMINATION_BIT;
344 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345 >                        releaseWaiters(phase);
346 >                    }
347 >                    else {
348 >                        parent.doArrive((u == 0) ?
349 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
351 >                            reconcileState();
352 >                        else if (state == s)
353 >                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
354 >                                                      next);
355                      }
333                    break;
356                  }
357 +                return phase;
358              }
336            else if (state == s && reconcileState() == s) // recheck
337                throw new IllegalStateException(badArrive());
359          }
339        return phase;
340    }
341
342    /**
343     * Returns message string for bounds exceptions on arrival.
344     * Declared out of-line from doArrive to reduce string op bulk.
345     */
346    private String badArrive() {
347        return ("Attempted arrival of unregistered party for " +
348                this.toString());
360      }
361  
362      /**
363       * Implementation of register, bulkRegister
364       *
365 <     * @param registrations number to add to both parties and unarrived fields
365 >     * @param registrations number to add to both parties and
366 >     * unarrived fields. Must be greater than zero.
367       */
368      private int doRegister(int registrations) {
369 <        long adj = (long)registrations; // adjustment to state
370 <        adj |= adj << PARTIES_SHIFT;
371 <        Phaser par = parent;
372 <        long s;
373 <        int phase;
374 <        while ((phase = (int)((s = (par == null? state : reconcileState()))
375 <                              >>> PHASE_SHIFT)) >= 0) {
376 <            int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
377 <            if (parties != 0 && (s & UNARRIVED_MASK) == 0)
378 <                internalAwaitAdvance(phase, null); // wait for onAdvance
379 <            else if (parties + registrations > MAX_COUNT)
380 <                throw new IllegalStateException(badRegister());
381 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
382 <                break;
369 >        // adjustment to state
370 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371 >        final Phaser parent = this.parent;
372 >        for (;;) {
373 >            long s = (parent == null) ? state : reconcileState();
374 >            int parties = (int)s >>> PARTIES_SHIFT;
375 >            int phase = (int)(s >>> PHASE_SHIFT);
376 >            if (phase < 0)
377 >                return phase;
378 >            else if (registrations > MAX_PARTIES - parties)
379 >                throw new IllegalStateException(badRegister(s));
380 >            else if ((parties == 0 && parent == null) || // first reg of root
381 >                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
382 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383 >                    return phase;
384 >            }
385 >            else if (parties != 0)               // wait for onAdvance
386 >                root.internalAwaitAdvance(phase, null);
387 >            else {                               // 1st registration of child
388 >                synchronized (this) {            // register parent first
389 >                    if (reconcileState() == s) { // recheck under lock
390 >                        parent.doRegister(1);    // OK if throws IllegalState
391 >                        for (;;) {               // simpler form of outer loop
392 >                            s = reconcileState();
393 >                            phase = (int)(s >>> PHASE_SHIFT);
394 >                            if (phase < 0 ||
395 >                                UNSAFE.compareAndSwapLong(this, stateOffset,
396 >                                                          s, s + adj))
397 >                                return phase;
398 >                        }
399 >                    }
400 >                }
401 >            }
402          }
372        return phase;
373    }
374
375    /**
376     * Returns message string for bounds exceptions on registration
377     */
378    private String badRegister() {
379        return ("Attempt to register more than " + MAX_COUNT + " parties for "+
380                this.toString());
403      }
404  
405      /**
406 <     * Recursively resolves lagged phase propagation from root if
385 <     * necessary.
406 >     * Recursively resolves lagged phase propagation from root if necessary.
407       */
408      private long reconcileState() {
409          Phaser par = parent;
410 <        if (par == null)
411 <            return state;
412 <        Phaser rt = root;
413 <        long s;
414 <        int phase, rPhase;
415 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
416 <               (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
417 <            if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
418 <                long ps = par.parent == null? par.state : par.reconcileState();
419 <                int pPhase = (int)(ps >>> PHASE_SHIFT);
420 <                if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
421 <                    if (state != s)
422 <                        continue;
402 <                    long p = s & PARTIES_MASK;
403 <                    long next = ((((long) pPhase) << PHASE_SHIFT) |
404 <                                 (p >>> PARTIES_SHIFT) | p);
405 <                    if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406 <                        return next;
410 >        long s = state;
411 >        if (par != null) {
412 >            Phaser rt = root;
413 >            int phase, rPhase;
414 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416 >                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
417 >                    par.reconcileState();
418 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
420 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421 >                                 (u >>> PARTIES_SHIFT));
422 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423                  }
424 +                s = state;
425              }
409            if (state == s)
410                releaseWaiters(phase); // help release others
426          }
427          return s;
428      }
429  
430      /**
431 <     * Creates a new phaser without any initially registered parties,
431 >     * Creates a new Phaser without any initially registered parties,
432       * initial phase number 0, and no parent. Any thread using this
433 <     * phaser will need to first register for it.
433 >     * Phaser will need to first register for it.
434       */
435      public Phaser() {
436          this(null, 0);
437      }
438  
439      /**
440 <     * Creates a new phaser with the given number of registered
440 >     * Creates a new Phaser with the given number of registered
441       * unarrived parties, initial phase number 0, and no parent.
442       *
443       * @param parties the number of parties required to trip barrier
# Line 434 | Line 449 | public class Phaser {
449      }
450  
451      /**
452 <     * Creates a new phaser with the given parent, without any
438 <     * initially registered parties. If parent is non-null this phaser
439 <     * is registered with the parent and its initial phase number is
440 <     * the same as that of parent phaser.
452 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
453       *
454 <     * @param parent the parent phaser
454 >     * @param parent the parent Phaser
455       */
456      public Phaser(Phaser parent) {
457          this(parent, 0);
458      }
459  
460      /**
461 <     * Creates a new phaser with the given parent and number of
462 <     * registered unarrived parties. If parent is non-null, this phaser
463 <     * is registered with the parent and its initial phase number is
464 <     * the same as that of parent phaser.
461 >     * Creates a new Phaser with the given parent and number of
462 >     * registered unarrived parties. Registration and deregistration
463 >     * of this child Phaser with its parent are managed automatically.
464 >     * If the given parent is non-null, whenever this child Phaser has
465 >     * any registered parties (as established in this constructor,
466 >     * {@link #register}, or {@link #bulkRegister}), this child Phaser
467 >     * is registered with its parent. Whenever the number of
468 >     * registered parties becomes zero as the result of an invocation
469 >     * of {@link #arriveAndDeregister}, this child Phaser is
470 >     * deregistered from its parent.
471       *
472 <     * @param parent the parent phaser
472 >     * @param parent the parent Phaser
473       * @param parties the number of parties required to trip barrier
474       * @throws IllegalArgumentException if parties less than zero
475       * or greater than the maximum number of parties supported
476       */
477      public Phaser(Phaser parent, int parties) {
478 <        if (parties < 0 || parties > MAX_COUNT)
478 >        if (parties >>> PARTIES_SHIFT != 0)
479              throw new IllegalArgumentException("Illegal number of parties");
480 <        int phase;
480 >        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
481          this.parent = parent;
482          if (parent != null) {
483              Phaser r = parent.root;
484              this.root = r;
485              this.evenQ = r.evenQ;
486              this.oddQ = r.oddQ;
487 <            phase = parent.register();
487 >            if (parties != 0)
488 >                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
489          }
490          else {
491              this.root = this;
492              this.evenQ = new AtomicReference<QNode>();
493              this.oddQ = new AtomicReference<QNode>();
475            phase = 0;
494          }
495 <        long p = (long)parties;
478 <        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
495 >        this.state = s;
496      }
497  
498      /**
499 <     * Adds a new unarrived party to this phaser.
500 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
501 <     * this method may wait until its completion before registering.
499 >     * Adds a new unarrived party to this Phaser.  If an ongoing
500 >     * invocation of {@link #onAdvance} is in progress, this method
501 >     * may await its completion before returning.  If this Phaser has
502 >     * a parent, and this Phaser previously had no registered parties,
503 >     * this Phaser is also registered with its parent.
504       *
505       * @return the arrival phase number to which this registration applied
506       * @throws IllegalStateException if attempting to register more
# Line 492 | Line 511 | public class Phaser {
511      }
512  
513      /**
514 <     * Adds the given number of new unarrived parties to this phaser.
514 >     * Adds the given number of new unarrived parties to this Phaser.
515       * If an ongoing invocation of {@link #onAdvance} is in progress,
516 <     * this method may wait until its completion before registering.
516 >     * this method may await its completion before returning.  If this
517 >     * Phaser has a parent, and the given number of parities is
518 >     * greater than zero, and this Phaser previously had no registered
519 >     * parties, this Phaser is also registered with its parent.
520       *
521       * @param parties the number of additional parties required to trip barrier
522       * @return the arrival phase number to which this registration applied
# Line 505 | Line 527 | public class Phaser {
527      public int bulkRegister(int parties) {
528          if (parties < 0)
529              throw new IllegalArgumentException();
508        if (parties > MAX_COUNT)
509            throw new IllegalStateException(badRegister());
530          if (parties == 0)
531              return getPhase();
532          return doRegister(parties);
533      }
534  
535      /**
536 <     * Arrives at the barrier, but does not wait for others.  (You can
537 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
538 <     * unenforced usage error for an unregistered party to invoke this
539 <     * method.
536 >     * Arrives at the barrier, without waiting for others to arrive.
537 >     *
538 >     * <p>It is a usage error for an unregistered party to invoke this
539 >     * method.  However, this error may result in an {@code
540 >     * IllegalStateException} only upon some subsequent operation on
541 >     * this Phaser, if ever.
542       *
543       * @return the arrival phase number, or a negative value if terminated
544       * @throws IllegalStateException if not terminated and the number
# Line 528 | Line 550 | public class Phaser {
550  
551      /**
552       * Arrives at the barrier and deregisters from it without waiting
553 <     * for others. Deregistration reduces the number of parties
554 <     * required to trip the barrier in future phases.  If this phaser
555 <     * has a parent, and deregistration causes this phaser to have
556 <     * zero parties, this phaser also arrives at and is deregistered
557 <     * from its parent.  It is an unenforced usage error for an
558 <     * unregistered party to invoke this method.
553 >     * for others to arrive. Deregistration reduces the number of
554 >     * parties required to trip the barrier in future phases.  If this
555 >     * Phaser has a parent, and deregistration causes this Phaser to
556 >     * have zero parties, this Phaser is also deregistered from its
557 >     * parent.
558 >     *
559 >     * <p>It is a usage error for an unregistered party to invoke this
560 >     * method.  However, this error may result in an {@code
561 >     * IllegalStateException} only upon some subsequent operation on
562 >     * this Phaser, if ever.
563       *
564       * @return the arrival phase number, or a negative value if terminated
565       * @throws IllegalStateException if not terminated and the number
# Line 549 | Line 575 | public class Phaser {
575       * interruption or timeout, you can arrange this with an analogous
576       * construction using one of the other forms of the {@code
577       * awaitAdvance} method.  If instead you need to deregister upon
578 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
579 <     * usage error for an unregistered party to invoke this method.
578 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
579 >     *
580 >     * <p>It is a usage error for an unregistered party to invoke this
581 >     * method.  However, this error may result in an {@code
582 >     * IllegalStateException} only upon some subsequent operation on
583 >     * this Phaser, if ever.
584       *
585       * @return the arrival phase number, or a negative number if terminated
586       * @throws IllegalStateException if not terminated and the number
587       * of unarrived parties would become negative
588       */
589      public int arriveAndAwaitAdvance() {
590 <        return awaitAdvance(arrive());
590 >        return awaitAdvance(doArrive(ONE_ARRIVAL));
591      }
592  
593      /**
# Line 573 | Line 603 | public class Phaser {
603       * if terminated or argument is negative
604       */
605      public int awaitAdvance(int phase) {
606 +        Phaser rt;
607 +        int p = (int)(state >>> PHASE_SHIFT);
608          if (phase < 0)
609              return phase;
610 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
611 <        if (p != phase)
612 <            return p;
613 <        return internalAwaitAdvance(phase, null);
610 >        if (p == phase &&
611 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 >            return rt.internalAwaitAdvance(phase, null);
613 >        return p;
614      }
615  
616      /**
# Line 597 | Line 629 | public class Phaser {
629       */
630      public int awaitAdvanceInterruptibly(int phase)
631          throws InterruptedException {
632 +        Phaser rt;
633 +        int p = (int)(state >>> PHASE_SHIFT);
634          if (phase < 0)
635              return phase;
636 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
637 <        if (p != phase)
638 <            return p;
639 <        QNode node = new QNode(this, phase, true, false, 0L);
640 <        p = internalAwaitAdvance(phase, node);
641 <        if (node.wasInterrupted)
642 <            throw new InterruptedException();
643 <        else
610 <            return p;
636 >        if (p == phase &&
637 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
638 >            QNode node = new QNode(this, phase, true, false, 0L);
639 >            p = rt.internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >        }
643 >        return p;
644      }
645  
646      /**
# Line 634 | Line 667 | public class Phaser {
667                                           long timeout, TimeUnit unit)
668          throws InterruptedException, TimeoutException {
669          long nanos = unit.toNanos(timeout);
670 +        Phaser rt;
671 +        int p = (int)(state >>> PHASE_SHIFT);
672          if (phase < 0)
673              return phase;
674 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
675 <        if (p != phase)
676 <            return p;
677 <        QNode node = new QNode(this, phase, true, true, nanos);
678 <        p = internalAwaitAdvance(phase, node);
679 <        if (node.wasInterrupted)
680 <            throw new InterruptedException();
681 <        else if (p == phase)
682 <            throw new TimeoutException();
683 <        else
649 <            return p;
674 >        if (p == phase &&
675 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
676 >            QNode node = new QNode(this, phase, true, true, nanos);
677 >            p = rt.internalAwaitAdvance(phase, node);
678 >            if (node.wasInterrupted)
679 >                throw new InterruptedException();
680 >            else if (p == phase)
681 >                throw new TimeoutException();
682 >        }
683 >        return p;
684      }
685  
686      /**
687 <     * Forces this barrier to enter termination state. Counts of
688 <     * arrived and registered parties are unaffected. If this phaser
689 <     * has a parent, it too is terminated. This method may be useful
690 <     * for coordinating recovery after one or more tasks encounter
691 <     * unexpected exceptions.
687 >     * Forces this barrier to enter termination state.  Counts of
688 >     * arrived and registered parties are unaffected.  If this Phaser
689 >     * is a member of a tiered set of Phasers, then all of the Phasers
690 >     * in the set are terminated.  If this Phaser is already
691 >     * terminated, this method has no effect.  This method may be
692 >     * useful for coordinating recovery after one or more tasks
693 >     * encounter unexpected exceptions.
694       */
695      public void forceTermination() {
696 <        Phaser r = root;    // force at root then reconcile
696 >        // Only need to change root state
697 >        final Phaser root = this.root;
698          long s;
699 <        while ((s = r.state) >= 0)
700 <            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
701 <        reconcileState();
702 <        releaseWaiters(0); // signal all threads
703 <        releaseWaiters(1);
699 >        while ((s = root.state) >= 0) {
700 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
701 >                                          s, s | TERMINATION_BIT)) {
702 >                releaseWaiters(0); // signal all threads
703 >                releaseWaiters(1);
704 >                return;
705 >            }
706 >        }
707      }
708  
709      /**
# Line 674 | Line 714 | public class Phaser {
714       * @return the phase number, or a negative value if terminated
715       */
716      public final int getPhase() {
717 <        return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
717 >        return (int)(root.state >>> PHASE_SHIFT);
718      }
719  
720      /**
# Line 683 | Line 723 | public class Phaser {
723       * @return the number of parties
724       */
725      public int getRegisteredParties() {
726 <        return partiesOf(parent == null? state : reconcileState());
726 >        return partiesOf(state);
727      }
728  
729      /**
# Line 693 | Line 733 | public class Phaser {
733       * @return the number of arrived parties
734       */
735      public int getArrivedParties() {
736 <        return arrivedOf(parent == null? state : reconcileState());
736 >        long s = state;
737 >        int u = unarrivedOf(s); // only reconcile if possibly needed
738 >        return (u != 0 || parent == null) ?
739 >            partiesOf(s) - u :
740 >            arrivedOf(reconcileState());
741      }
742  
743      /**
# Line 703 | Line 747 | public class Phaser {
747       * @return the number of unarrived parties
748       */
749      public int getUnarrivedParties() {
750 <        return unarrivedOf(parent == null? state : reconcileState());
750 >        int u = unarrivedOf(state);
751 >        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
752      }
753  
754      /**
755 <     * Returns the parent of this phaser, or {@code null} if none.
755 >     * Returns the parent of this Phaser, or {@code null} if none.
756       *
757 <     * @return the parent of this phaser, or {@code null} if none
757 >     * @return the parent of this Phaser, or {@code null} if none
758       */
759      public Phaser getParent() {
760          return parent;
761      }
762  
763      /**
764 <     * Returns the root ancestor of this phaser, which is the same as
765 <     * this phaser if it has no parent.
764 >     * Returns the root ancestor of this Phaser, which is the same as
765 >     * this Phaser if it has no parent.
766       *
767 <     * @return the root ancestor of this phaser
767 >     * @return the root ancestor of this Phaser
768       */
769      public Phaser getRoot() {
770          return root;
# Line 731 | Line 776 | public class Phaser {
776       * @return {@code true} if this barrier has been terminated
777       */
778      public boolean isTerminated() {
779 <        return (parent == null? state : reconcileState()) < 0;
779 >        return root.state < 0L;
780      }
781  
782      /**
# Line 746 | Line 791 | public class Phaser {
791       * propagated to the party attempting to trip the barrier, in
792       * which case no advance occurs.
793       *
794 <     * <p>The arguments to this method provide the state of the phaser
794 >     * <p>The arguments to this method provide the state of the Phaser
795       * prevailing for the current transition.  The effects of invoking
796       * arrival, registration, and waiting methods on this Phaser from
797       * within {@code onAdvance} are unspecified and should not be
# Line 756 | Line 801 | public class Phaser {
801       * {@code onAdvance} is invoked only for its root Phaser on each
802       * advance.
803       *
804 <     * <p>The default version returns {@code true} when the number of
805 <     * registered parties is zero. Normally, overrides that arrange
806 <     * termination for other reasons should also preserve this
807 <     * property.
804 >     * <p>To support the most common use cases, the default
805 >     * implementation of this method returns {@code true} when the
806 >     * number of registered parties has become zero as the result of a
807 >     * party invoking {@code arriveAndDeregister}.  You can disable
808 >     * this behavior, thus enabling continuation upon future
809 >     * registrations, by overriding this method to always return
810 >     * {@code false}:
811 >     *
812 >     * <pre> {@code
813 >     * Phaser phaser = new Phaser() {
814 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
815 >     * }}</pre>
816       *
817       * @param phase the phase number on entering the barrier
818       * @param registeredParties the current number of registered parties
819       * @return {@code true} if this barrier should terminate
820       */
821      protected boolean onAdvance(int phase, int registeredParties) {
822 <        return registeredParties <= 0;
822 >        return registeredParties == 0;
823      }
824  
825      /**
826 <     * Returns a string identifying this phaser, as well as its
826 >     * Returns a string identifying this Phaser, as well as its
827       * state.  The state, in brackets, includes the String {@code
828       * "phase = "} followed by the phase number, {@code "parties = "}
829       * followed by the number of registered parties, and {@code
# Line 779 | Line 832 | public class Phaser {
832       * @return a string identifying this barrier, as well as its state
833       */
834      public String toString() {
835 <        long s = reconcileState();
835 >        return stateToString(reconcileState());
836 >    }
837 >
838 >    /**
839 >     * Implementation of toString and string-based error messages
840 >     */
841 >    private String stateToString(long s) {
842          return super.toString() +
843              "[phase = " + phaseOf(s) +
844              " parties = " + partiesOf(s) +
845              " arrived = " + arrivedOf(s) + "]";
846      }
847  
848 +    // Waiting mechanics
849 +
850      /**
851 <     * Removes and signals threads from queue for phase
851 >     * Removes and signals threads from queue for phase.
852       */
853      private void releaseWaiters(int phase) {
854 <        AtomicReference<QNode> head = queueFor(phase);
854 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
855          QNode q;
856          int p;
857          while ((q = head.get()) != null &&
# Line 801 | Line 862 | public class Phaser {
862          }
863      }
864  
804    /**
805     * Tries to enqueue given node in the appropriate wait queue.
806     *
807     * @return true if successful
808     */
809    private boolean tryEnqueue(int phase, QNode node) {
810        releaseWaiters(phase-1); // ensure old queue clean
811        AtomicReference<QNode> head = queueFor(phase);
812        QNode q = head.get();
813        return ((q == null || q.phase == phase) &&
814                (int)(root.state >>> PHASE_SHIFT) == phase &&
815                head.compareAndSet(node.next = q, node));
816    }
817
865      /** The number of CPUs, for spin control */
866      private static final int NCPU = Runtime.getRuntime().availableProcessors();
867  
# Line 826 | Line 873 | public class Phaser {
873       * avoid it when threads regularly arrive: When a thread in
874       * internalAwaitAdvance notices another arrival before blocking,
875       * and there appear to be enough CPUs available, it spins
876 <     * SPINS_PER_ARRIVAL more times before continuing to try to
877 <     * block. The value trades off good-citizenship vs big unnecessary
831 <     * slowdowns.
876 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
877 >     * off good-citizenship vs big unnecessary slowdowns.
878       */
879 <    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
879 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
880  
881      /**
882       * Possibly blocks and waits for phase to advance unless aborted.
883 +     * Call only from root node.
884       *
885       * @param phase current phase
886 <     * @param node if nonnull, the wait node to track interrupt and timeout;
886 >     * @param node if non-null, the wait node to track interrupt and timeout;
887       * if null, denotes noninterruptible wait
888       * @return current phase
889       */
890      private int internalAwaitAdvance(int phase, QNode node) {
891 <        Phaser current = this;       // to eventually wait at root if tiered
845 <        Phaser par = parent;
846 <        boolean queued = false;
847 <        int spins = SPINS_PER_ARRIVAL;
891 >        boolean queued = false;      // true when node is enqueued
892          int lastUnarrived = -1;      // to increase spins upon change
893 +        int spins = SPINS_PER_ARRIVAL;
894          long s;
895          int p;
896 <        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
897 <            int unarrived = (int)(s & UNARRIVED_MASK);
898 <            if (unarrived != lastUnarrived) {
896 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
897 >            int unarrived = (int)s & UNARRIVED_MASK;
898 >            if (node != null && node.isReleasable()) {
899 >                p = (int)(state >>> PHASE_SHIFT);
900 >                break;               // done or aborted
901 >            }
902 >            else if (node == null && Thread.interrupted()) {
903 >                node = new QNode(this, phase, false, false, 0L);
904 >                node.wasInterrupted = true;
905 >            }
906 >            else if (unarrived != lastUnarrived) {
907 >                if (lastUnarrived == -1) // ensure old queue clean
908 >                    releaseWaiters(phase-1);
909                  if ((lastUnarrived = unarrived) < NCPU)
910                      spins += SPINS_PER_ARRIVAL;
911              }
857            else if (unarrived == 0 && par != null) {
858                current = par;       // if all arrived, use parent
859                par = par.parent;
860            }
912              else if (spins > 0)
913                  --spins;
914 <            else if (node == null)
914 >            else if (node == null)   // null if noninterruptible mode
915                  node = new QNode(this, phase, false, false, 0L);
916 <            else if (node.isReleasable())
917 <                break;
918 <            else if (!queued)
919 <                queued = tryEnqueue(phase, node);
916 >            else if (!queued) {      // push onto queue
917 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
918 >                QNode q = head.get();
919 >                if (q == null || q.phase == phase) {
920 >                    node.next = q;
921 >                    if ((p = (int)(state >>> PHASE_SHIFT)) != phase)
922 >                        break;       // recheck to avoid stale enqueue
923 >                    queued = head.compareAndSet(q, node);
924 >                }
925 >            }
926              else {
927                  try {
928                      ForkJoinPool.managedBlock(node);
# Line 874 | Line 931 | public class Phaser {
931                  }
932              }
933          }
934 +
935          if (node != null) {
936              if (node.thread != null)
937 <                node.thread = null;
938 <            if (!node.interruptible && node.wasInterrupted)
937 >                node.thread = null; // disable unpark() in node.signal
938 >            if (node.wasInterrupted && !node.interruptible)
939                  Thread.currentThread().interrupt();
940          }
883        if (p == phase)
884            p = (int)(reconcileState() >>> PHASE_SHIFT);
941          if (p != phase)
942              releaseWaiters(phase);
943          return p;
# Line 920 | Line 976 | public class Phaser {
976                  else {
977                      if (Thread.interrupted())
978                          wasInterrupted = true;
979 <                    if (interruptible && wasInterrupted)
979 >                    if (wasInterrupted && interruptible)
980                          t = null;
981                      else if (timed) {
982                          if (nanos > 0) {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines