ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.54 by dl, Sat Nov 13 13:10:04 2010 UTC vs.
Revision 1.76 by jsr166, Sat Oct 15 21:46:25 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82 > * Termination is triggered when an invocation of {@code onAdvance}
83 > * returns {@code true}. The default implementation returns {@code
84 > * true} if a deregistration has caused the number of registered
85 > * parties to become zero.  As illustrated below, when phasers control
86 > * actions with a fixed number of iterations, it is often convenient
87 > * to override this method to cause termination when the current phase
88 > * number reaches a threshold. Method {@link #forceTermination} is
89 > * also available to abruptly release waiting threads and allow them
90 > * to terminate.
91 > *
92 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 > * constructed in tree structures) to reduce contention. Phasers with
94 > * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
96   * groups of sub-phasers share a common parent.  This may greatly
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 117 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 181 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a phaser that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
202 < * // .. initially called, for n tasks via
203 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
# Line 224 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
228 <     * four values:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268 <    private static final int  MAX_COUNT      = 0xffff;
269 <    private static final int  MAX_PHASE      = 0x7fffffff;
270 <    private static final int  PARTIES_SHIFT  = 16;
271 <    private static final int  PHASE_SHIFT    = 32;
272 <    private static final long UNARRIVED_MASK = 0xffffL;
273 <    private static final long PARTIES_MASK   = 0xffff0000L;
274 <    private static final long ONE_ARRIVAL    = 1L;
275 <    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
276 <    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
268 >    private static final int  MAX_PARTIES     = 0xffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270 >    private static final int  PARTIES_SHIFT   = 16;
271 >    private static final int  PHASE_SHIFT     = 32;
272 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 >    private static final long TERMINATION_BIT = 1L << 63;
275 >
276 >    // some special values
277 >    private static final int  ONE_ARRIVAL     = 1;
278 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 >    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
280 >    private static final int  EMPTY           = 1;
281  
282      // The following unpacking methods are usually manually inlined
283  
284      private static int unarrivedOf(long s) {
285 <        return (int) (s & UNARRIVED_MASK);
285 >        int counts = (int)s;
286 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287      }
288  
289      private static int partiesOf(long s) {
290 <        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
290 >        return (int)s >>> PARTIES_SHIFT;
291      }
292  
293      private static int phaseOf(long s) {
294 <        return (int) (s >>> PHASE_SHIFT);
294 >        return (int)(s >>> PHASE_SHIFT);
295      }
296  
297      private static int arrivedOf(long s) {
298 <        return partiesOf(s) - unarrivedOf(s);
298 >        int counts = (int)s;
299 >        return (counts == EMPTY) ? 0 :
300 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301      }
302  
303      /**
# Line 274 | Line 306 | public class Phaser {
306      private final Phaser parent;
307  
308      /**
309 <     * The root of phaser tree. Equals this if not in a tree.  Used to
278 <     * support faster state push-down.
309 >     * The root of phaser tree. Equals this if not in a tree.
310       */
311      private final Phaser root;
312  
# Line 293 | Line 324 | public class Phaser {
324      }
325  
326      /**
327 +     * Returns message string for bounds exceptions on arrival.
328 +     */
329 +    private String badArrive(long s) {
330 +        return "Attempted arrival of unregistered party for " +
331 +            stateToString(s);
332 +    }
333 +
334 +    /**
335 +     * Returns message string for bounds exceptions on registration.
336 +     */
337 +    private String badRegister(long s) {
338 +        return "Attempt to register more than " +
339 +            MAX_PARTIES + " parties for " + stateToString(s);
340 +    }
341 +
342 +    /**
343       * Main implementation for methods arrive and arriveAndDeregister.
344       * Manually tuned to speed up and minimize race windows for the
345       * common case of just decrementing unarrived field.
346       *
347 <     * @param adj - adjustment to apply to state -- either
348 <     * ONE_ARRIVAL (for arrive) or
349 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
347 >     * @param adjust value to subtract from state;
348 >     *               ONE_ARRIVAL for arrive,
349 >     *               ONE_DEREGISTER for arriveAndDeregister
350       */
351 <    private int doArrive(long adj) {
351 >    private int doArrive(int adjust) {
352 >        final Phaser root = this.root;
353          for (;;) {
354 <            long s;
355 <            int phase, unarrived;
356 <            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
354 >            long s = (root == this) ? state : reconcileState();
355 >            int phase = (int)(s >>> PHASE_SHIFT);
356 >            if (phase < 0)
357                  return phase;
358 <            else if ((unarrived = (int)(s & UNARRIVED_MASK)) == 0)
359 <                checkBadArrive(s);
360 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)){
358 >            int counts = (int)s;
359 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360 >            if (unarrived <= 0)
361 >                throw new IllegalStateException(badArrive(s));
362 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363                  if (unarrived == 1) {
364 <                    Phaser par;
365 <                    long p = s & PARTIES_MASK; // unshifted parties field
366 <                    long lu = p >>> PARTIES_SHIFT;
367 <                    int u = (int)lu;
368 <                    int nextPhase = (phase + 1) & MAX_PHASE;
369 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
370 <                    if ((par = parent) == null) {
371 <                        UNSAFE.compareAndSwapLong
372 <                            (this, stateOffset, s, onAdvance(phase, u)?
373 <                             next | TERMINATION_PHASE : next);
364 >                    long n = s & PARTIES_MASK;  // base of next state
365 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368 >                            n |= TERMINATION_BIT;
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371 >                        else
372 >                            n |= nextUnarrived;
373 >                        int nextPhase = (phase + 1) & MAX_PHASE;
374 >                        n |= (long)nextPhase << PHASE_SHIFT;
375 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376                          releaseWaiters(phase);
377                      }
378 <                    else {
379 <                        par.doArrive(u == 0?
380 <                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
381 <                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
330 <                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
331 <                             !UNSAFE.compareAndSwapLong(this, stateOffset,
332 <                                                        s, next)))
333 <                            reconcileState();
378 >                    else if (nextUnarrived == 0) { // propagate deregistration
379 >                        phase = parent.doArrive(ONE_DEREGISTER);
380 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
381 >                                                  s, s | EMPTY);
382                      }
383 +                    else
384 +                        phase = parent.doArrive(ONE_ARRIVAL);
385                  }
386                  return phase;
387              }
# Line 339 | Line 389 | public class Phaser {
389      }
390  
391      /**
342     * Rechecks state and throws bounds exceptions on arrival -- called
343     * only if unarrived is apparently zero.
344     */
345    private void checkBadArrive(long s) {
346        if (reconcileState() == s)
347            throw new IllegalStateException
348                ("Attempted arrival of unregistered party for " +
349                 stateToString(s));
350    }
351
352    /**
392       * Implementation of register, bulkRegister
393       *
394 <     * @param registrations number to add to both parties and unarrived fields
394 >     * @param registrations number to add to both parties and
395 >     * unarrived fields. Must be greater than zero.
396       */
397      private int doRegister(int registrations) {
398 <        long adj = (long)registrations; // adjustment to state
399 <        adj |= adj << PARTIES_SHIFT;
400 <        Phaser par = parent;
398 >        // adjustment to state
399 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400 >        final Phaser parent = this.parent;
401 >        int phase;
402          for (;;) {
403 <            int phase, parties;
404 <            long s = par == null? state : reconcileState();
405 <            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
406 <                return phase;
407 <            if ((parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT) != 0 &&
367 <                (s & UNARRIVED_MASK) == 0)
368 <                internalAwaitAdvance(phase, null); // wait for onAdvance
369 <            else if (parties + registrations > MAX_COUNT)
403 >            long s = (parent == null) ? state : reconcileState();
404 >            int counts = (int)s;
405 >            int parties = counts >>> PARTIES_SHIFT;
406 >            int unarrived = counts & UNARRIVED_MASK;
407 >            if (registrations > MAX_PARTIES - parties)
408                  throw new IllegalStateException(badRegister(s));
409 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
410 <                return phase;
409 >            phase = (int)(s >>> PHASE_SHIFT);
410 >            if (phase < 0)
411 >                break;
412 >            if (counts != EMPTY) {                  // not 1st registration
413 >                if (parent == null || reconcileState() == s) {
414 >                    if (unarrived == 0)             // wait out advance
415 >                        root.internalAwaitAdvance(phase, null);
416 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 >                                                       s, s + adjust))
418 >                        break;
419 >                }
420 >            }
421 >            else if (parent == null) {              // 1st root registration
422 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
423 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424 >                    break;
425 >            }
426 >            else {
427 >                synchronized (this) {               // 1st sub registration
428 >                    if (state == s) {               // recheck under lock
429 >                        phase = parent.doRegister(1);
430 >                        if (phase < 0)
431 >                            break;
432 >                        // finish registration whenever parent registration
433 >                        // succeeded, even when racing with termination,
434 >                        // since these are part of the same "transaction".
435 >                        while (!UNSAFE.compareAndSwapLong
436 >                               (this, stateOffset, s,
437 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
438 >                            s = state;
439 >                            phase = (int)(root.state >>> PHASE_SHIFT);
440 >                            // assert (int)s == EMPTY;
441 >                        }
442 >                        break;
443 >                    }
444 >                }
445 >            }
446          }
447 +        return phase;
448      }
449  
450      /**
451 <     * Returns message string for bounds exceptions on registration
452 <     */
453 <    private String badRegister(long s) {
454 <        return "Attempt to register more than " +
455 <            MAX_COUNT + " parties for " + stateToString(s);
456 <    }
457 <
458 <    /**
459 <     * Recursively resolves lagged phase propagation from root if
460 <     * necessary.
451 >     * Resolves lagged phase propagation from root if necessary.
452 >     * Reconciliation normally occurs when root has advanced but
453 >     * subphasers have not yet done so, in which case they must finish
454 >     * their own advance by setting unarrived to parties (or if
455 >     * parties is zero, resetting to unregistered EMPTY state).
456 >     * However, this method may also be called when "floating"
457 >     * subphasers with possibly some unarrived parties are merely
458 >     * catching up to current phase, in which case counts are
459 >     * unaffected.
460 >     *
461 >     * @return reconciled state
462       */
463      private long reconcileState() {
464 <        Phaser par = parent;
465 <        if (par == null)
466 <            return state;
467 <        Phaser rt = root;
468 <        for (;;) {
469 <            long s, u;
470 <            int phase, rPhase, pPhase;
471 <            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
472 <                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
473 <                return s;
474 <            long pState = par.parent == null? par.state : par.reconcileState();
475 <            if (state == s) {
476 <                if ((rPhase < 0 || (s & UNARRIVED_MASK) == 0) &&
477 <                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
478 <                     pPhase == ((phase + 1) & MAX_PHASE)))
404 <                    UNSAFE.compareAndSwapLong
405 <                        (this, stateOffset, s,
406 <                         (((long) pPhase) << PHASE_SHIFT) |
407 <                         (u = s & PARTIES_MASK) |
408 <                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 <                else
410 <                    releaseWaiters(phase); // help release others
411 <            }
464 >        final Phaser root = this.root;
465 >        long s = state;
466 >        if (root != this) {
467 >            int phase, u, p;
468 >            // CAS root phase with current parties; possibly trip unarrived
469 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
470 >                   (int)(s >>> PHASE_SHIFT) &&
471 >                   !UNSAFE.compareAndSwapLong
472 >                   (this, stateOffset, s,
473 >                    s = (((long)phase << PHASE_SHIFT) |
474 >                         (s & PARTIES_MASK) |
475 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
476 >                          ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
477 >                          p : u))))
478 >                s = state;
479          }
480 +        return s;
481      }
482  
483      /**
484 <     * Creates a new phaser without any initially registered parties,
485 <     * initial phase number 0, and no parent. Any thread using this
484 >     * Creates a new phaser with no initially registered parties, no
485 >     * parent, and initial phase number 0. Any thread using this
486       * phaser will need to first register for it.
487       */
488      public Phaser() {
# Line 423 | Line 491 | public class Phaser {
491  
492      /**
493       * Creates a new phaser with the given number of registered
494 <     * unarrived parties, initial phase number 0, and no parent.
494 >     * unarrived parties, no parent, and initial phase number 0.
495       *
496 <     * @param parties the number of parties required to trip barrier
496 >     * @param parties the number of parties required to advance to the
497 >     * next phase
498       * @throws IllegalArgumentException if parties less than zero
499       * or greater than the maximum number of parties supported
500       */
# Line 434 | Line 503 | public class Phaser {
503      }
504  
505      /**
506 <     * Creates a new phaser with the given parent, without any
438 <     * initially registered parties. If parent is non-null this phaser
439 <     * is registered with the parent and its initial phase number is
440 <     * the same as that of parent phaser.
506 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
507       *
508       * @param parent the parent phaser
509       */
# Line 447 | Line 513 | public class Phaser {
513  
514      /**
515       * Creates a new phaser with the given parent and number of
516 <     * registered unarrived parties. If parent is non-null, this phaser
517 <     * is registered with the parent and its initial phase number is
518 <     * the same as that of parent phaser.
516 >     * registered unarrived parties.  When the given parent is non-null
517 >     * and the given number of parties is greater than zero, this
518 >     * child phaser is registered with its parent.
519       *
520       * @param parent the parent phaser
521 <     * @param parties the number of parties required to trip barrier
521 >     * @param parties the number of parties required to advance to the
522 >     * next phase
523       * @throws IllegalArgumentException if parties less than zero
524       * or greater than the maximum number of parties supported
525       */
526      public Phaser(Phaser parent, int parties) {
527 <        if (parties < 0 || parties > MAX_COUNT)
527 >        if (parties >>> PARTIES_SHIFT != 0)
528              throw new IllegalArgumentException("Illegal number of parties");
529 <        int phase;
529 >        int phase = 0;
530          this.parent = parent;
531          if (parent != null) {
532 <            Phaser r = parent.root;
533 <            this.root = r;
534 <            this.evenQ = r.evenQ;
535 <            this.oddQ = r.oddQ;
536 <            phase = parent.register();
532 >            final Phaser root = parent.root;
533 >            this.root = root;
534 >            this.evenQ = root.evenQ;
535 >            this.oddQ = root.oddQ;
536 >            if (parties != 0)
537 >                phase = parent.doRegister(1);
538          }
539          else {
540              this.root = this;
541              this.evenQ = new AtomicReference<QNode>();
542              this.oddQ = new AtomicReference<QNode>();
475            phase = 0;
543          }
544 <        long p = (long)parties;
545 <        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
544 >        this.state = (parties == 0) ? (long)EMPTY :
545 >            ((long)phase << PHASE_SHIFT) |
546 >            ((long)parties << PARTIES_SHIFT) |
547 >            ((long)parties);
548      }
549  
550      /**
551 <     * Adds a new unarrived party to this phaser.
552 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
553 <     * this method may wait until its completion before registering.
554 <     *
555 <     * @return the arrival phase number to which this registration applied
551 >     * Adds a new unarrived party to this phaser.  If an ongoing
552 >     * invocation of {@link #onAdvance} is in progress, this method
553 >     * may await its completion before returning.  If this phaser has
554 >     * a parent, and this phaser previously had no registered parties,
555 >     * this child phaser is also registered with its parent. If
556 >     * this phaser is terminated, the attempt to register has
557 >     * no effect, and a negative value is returned.
558 >     *
559 >     * @return the arrival phase number to which this registration
560 >     * applied.  If this value is negative, then this phaser has
561 >     * terminated, in which case registration has no effect.
562       * @throws IllegalStateException if attempting to register more
563       * than the maximum supported number of parties
564       */
# Line 494 | Line 569 | public class Phaser {
569      /**
570       * Adds the given number of new unarrived parties to this phaser.
571       * If an ongoing invocation of {@link #onAdvance} is in progress,
572 <     * this method may wait until its completion before registering.
573 <     *
574 <     * @param parties the number of additional parties required to trip barrier
575 <     * @return the arrival phase number to which this registration applied
572 >     * this method may await its completion before returning.  If this
573 >     * phaser has a parent, and the given number of parties is greater
574 >     * than zero, and this phaser previously had no registered
575 >     * parties, this child phaser is also registered with its parent.
576 >     * If this phaser is terminated, the attempt to register has no
577 >     * effect, and a negative value is returned.
578 >     *
579 >     * @param parties the number of additional parties required to
580 >     * advance to the next phase
581 >     * @return the arrival phase number to which this registration
582 >     * applied.  If this value is negative, then this phaser has
583 >     * terminated, in which case registration has no effect.
584       * @throws IllegalStateException if attempting to register more
585       * than the maximum supported number of parties
586       * @throws IllegalArgumentException if {@code parties < 0}
# Line 505 | Line 588 | public class Phaser {
588      public int bulkRegister(int parties) {
589          if (parties < 0)
590              throw new IllegalArgumentException();
508        if (parties > MAX_COUNT)
509            throw new IllegalStateException(badRegister(state));
591          if (parties == 0)
592              return getPhase();
593          return doRegister(parties);
594      }
595  
596      /**
597 <     * Arrives at the barrier, but does not wait for others.  (You can
598 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
599 <     * unenforced usage error for an unregistered party to invoke this
600 <     * method.
597 >     * Arrives at this phaser, without waiting for others to arrive.
598 >     *
599 >     * <p>It is a usage error for an unregistered party to invoke this
600 >     * method.  However, this error may result in an {@code
601 >     * IllegalStateException} only upon some subsequent operation on
602 >     * this phaser, if ever.
603       *
604       * @return the arrival phase number, or a negative value if terminated
605       * @throws IllegalStateException if not terminated and the number
# Line 527 | Line 610 | public class Phaser {
610      }
611  
612      /**
613 <     * Arrives at the barrier and deregisters from it without waiting
614 <     * for others. Deregistration reduces the number of parties
615 <     * required to trip the barrier in future phases.  If this phaser
613 >     * Arrives at this phaser and deregisters from it without waiting
614 >     * for others to arrive. Deregistration reduces the number of
615 >     * parties required to advance in future phases.  If this phaser
616       * has a parent, and deregistration causes this phaser to have
617 <     * zero parties, this phaser also arrives at and is deregistered
618 <     * from its parent.  It is an unenforced usage error for an
619 <     * unregistered party to invoke this method.
617 >     * zero parties, this phaser is also deregistered from its parent.
618 >     *
619 >     * <p>It is a usage error for an unregistered party to invoke this
620 >     * method.  However, this error may result in an {@code
621 >     * IllegalStateException} only upon some subsequent operation on
622 >     * this phaser, if ever.
623       *
624       * @return the arrival phase number, or a negative value if terminated
625       * @throws IllegalStateException if not terminated and the number
626       * of registered or unarrived parties would become negative
627       */
628      public int arriveAndDeregister() {
629 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
629 >        return doArrive(ONE_DEREGISTER);
630      }
631  
632      /**
633 <     * Arrives at the barrier and awaits others. Equivalent in effect
633 >     * Arrives at this phaser and awaits others. Equivalent in effect
634       * to {@code awaitAdvance(arrive())}.  If you need to await with
635       * interruption or timeout, you can arrange this with an analogous
636       * construction using one of the other forms of the {@code
637       * awaitAdvance} method.  If instead you need to deregister upon
638 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
639 <     * usage error for an unregistered party to invoke this method.
638 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
639 >     *
640 >     * <p>It is a usage error for an unregistered party to invoke this
641 >     * method.  However, this error may result in an {@code
642 >     * IllegalStateException} only upon some subsequent operation on
643 >     * this phaser, if ever.
644       *
645 <     * @return the arrival phase number, or a negative number if terminated
645 >     * @return the arrival phase number, or the (negative)
646 >     * {@linkplain #getPhase() current phase} if terminated
647       * @throws IllegalStateException if not terminated and the number
648       * of unarrived parties would become negative
649       */
650      public int arriveAndAwaitAdvance() {
651 <        return awaitAdvance(arrive());
651 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
652 >        final Phaser root = this.root;
653 >        for (;;) {
654 >            long s = (root == this) ? state : reconcileState();
655 >            int phase = (int)(s >>> PHASE_SHIFT);
656 >            if (phase < 0)
657 >                return phase;
658 >            int counts = (int)s;
659 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
660 >            if (unarrived <= 0)
661 >                throw new IllegalStateException(badArrive(s));
662 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
663 >                                          s -= ONE_ARRIVAL)) {
664 >                if (unarrived > 1)
665 >                    return root.internalAwaitAdvance(phase, null);
666 >                if (root != this)
667 >                    return parent.arriveAndAwaitAdvance();
668 >                long n = s & PARTIES_MASK;  // base of next state
669 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
670 >                if (onAdvance(phase, nextUnarrived))
671 >                    n |= TERMINATION_BIT;
672 >                else if (nextUnarrived == 0)
673 >                    n |= EMPTY;
674 >                else
675 >                    n |= nextUnarrived;
676 >                int nextPhase = (phase + 1) & MAX_PHASE;
677 >                n |= (long)nextPhase << PHASE_SHIFT;
678 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
679 >                    return (int)(state >>> PHASE_SHIFT); // terminated
680 >                releaseWaiters(phase);
681 >                return nextPhase;
682 >            }
683 >        }
684      }
685  
686      /**
687 <     * Awaits the phase of the barrier to advance from the given phase
688 <     * value, returning immediately if the current phase of the
689 <     * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.
687 >     * Awaits the phase of this phaser to advance from the given phase
688 >     * value, returning immediately if the current phase is not equal
689 >     * to the given phase value or this phaser is terminated.
690       *
691       * @param phase an arrival phase number, or negative value if
692       * terminated; this argument is normally the value returned by a
693 <     * previous call to {@code arrive} or its variants
694 <     * @return the next arrival phase number, or a negative value
695 <     * if terminated or argument is negative
693 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
694 >     * @return the next arrival phase number, or the argument if it is
695 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
696 >     * if terminated
697       */
698      public int awaitAdvance(int phase) {
699 +        final Phaser root = this.root;
700 +        long s = (root == this) ? state : reconcileState();
701 +        int p = (int)(s >>> PHASE_SHIFT);
702          if (phase < 0)
703              return phase;
704 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
705 <        if (p != phase)
706 <            return p;
581 <        return internalAwaitAdvance(phase, null);
704 >        if (p == phase)
705 >            return root.internalAwaitAdvance(phase, null);
706 >        return p;
707      }
708  
709      /**
710 <     * Awaits the phase of the barrier to advance from the given phase
710 >     * Awaits the phase of this phaser to advance from the given phase
711       * value, throwing {@code InterruptedException} if interrupted
712 <     * while waiting, or returning immediately if the current phase of
713 <     * the barrier is not equal to the given phase value or this
714 <     * barrier is terminated.
712 >     * while waiting, or returning immediately if the current phase is
713 >     * not equal to the given phase value or this phaser is
714 >     * terminated.
715       *
716       * @param phase an arrival phase number, or negative value if
717       * terminated; this argument is normally the value returned by a
718 <     * previous call to {@code arrive} or its variants
719 <     * @return the next arrival phase number, or a negative value
720 <     * if terminated or argument is negative
718 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
719 >     * @return the next arrival phase number, or the argument if it is
720 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
721 >     * if terminated
722       * @throws InterruptedException if thread interrupted while waiting
723       */
724      public int awaitAdvanceInterruptibly(int phase)
725          throws InterruptedException {
726 +        final Phaser root = this.root;
727 +        long s = (root == this) ? state : reconcileState();
728 +        int p = (int)(s >>> PHASE_SHIFT);
729          if (phase < 0)
730              return phase;
731 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
732 <        if (p != phase)
733 <            return p;
734 <        QNode node = new QNode(this, phase, true, false, 0L);
735 <        p = internalAwaitAdvance(phase, node);
736 <        if (node.wasInterrupted)
737 <            throw new InterruptedException();
609 <        else
610 <            return p;
731 >        if (p == phase) {
732 >            QNode node = new QNode(this, phase, true, false, 0L);
733 >            p = root.internalAwaitAdvance(phase, node);
734 >            if (node.wasInterrupted)
735 >                throw new InterruptedException();
736 >        }
737 >        return p;
738      }
739  
740      /**
741 <     * Awaits the phase of the barrier to advance from the given phase
741 >     * Awaits the phase of this phaser to advance from the given phase
742       * value or the given timeout to elapse, throwing {@code
743       * InterruptedException} if interrupted while waiting, or
744 <     * returning immediately if the current phase of the barrier is
745 <     * not equal to the given phase value or this barrier is
619 <     * terminated.
744 >     * returning immediately if the current phase is not equal to the
745 >     * given phase value or this phaser is terminated.
746       *
747       * @param phase an arrival phase number, or negative value if
748       * terminated; this argument is normally the value returned by a
749 <     * previous call to {@code arrive} or its variants
749 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
750       * @param timeout how long to wait before giving up, in units of
751       *        {@code unit}
752       * @param unit a {@code TimeUnit} determining how to interpret the
753       *        {@code timeout} parameter
754 <     * @return the next arrival phase number, or a negative value
755 <     * if terminated or argument is negative
754 >     * @return the next arrival phase number, or the argument if it is
755 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
756 >     * if terminated
757       * @throws InterruptedException if thread interrupted while waiting
758       * @throws TimeoutException if timed out while waiting
759       */
# Line 634 | Line 761 | public class Phaser {
761                                           long timeout, TimeUnit unit)
762          throws InterruptedException, TimeoutException {
763          long nanos = unit.toNanos(timeout);
764 +        final Phaser root = this.root;
765 +        long s = (root == this) ? state : reconcileState();
766 +        int p = (int)(s >>> PHASE_SHIFT);
767          if (phase < 0)
768              return phase;
769 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
770 <        if (p != phase)
771 <            return p;
772 <        QNode node = new QNode(this, phase, true, true, nanos);
773 <        p = internalAwaitAdvance(phase, node);
774 <        if (node.wasInterrupted)
775 <            throw new InterruptedException();
776 <        else if (p == phase)
777 <            throw new TimeoutException();
648 <        else
649 <            return p;
769 >        if (p == phase) {
770 >            QNode node = new QNode(this, phase, true, true, nanos);
771 >            p = root.internalAwaitAdvance(phase, node);
772 >            if (node.wasInterrupted)
773 >                throw new InterruptedException();
774 >            else if (p == phase)
775 >                throw new TimeoutException();
776 >        }
777 >        return p;
778      }
779  
780      /**
781 <     * Forces this barrier to enter termination state. Counts of
782 <     * arrived and registered parties are unaffected. If this phaser
783 <     * has a parent, it too is terminated. This method may be useful
784 <     * for coordinating recovery after one or more tasks encounter
781 >     * Forces this phaser to enter termination state.  Counts of
782 >     * registered parties are unaffected.  If this phaser is a member
783 >     * of a tiered set of phasers, then all of the phasers in the set
784 >     * are terminated.  If this phaser is already terminated, this
785 >     * method has no effect.  This method may be useful for
786 >     * coordinating recovery after one or more tasks encounter
787       * unexpected exceptions.
788       */
789      public void forceTermination() {
790 <        Phaser r = root;    // force at root then reconcile
790 >        // Only need to change root state
791 >        final Phaser root = this.root;
792          long s;
793 <        while ((s = r.state) >= 0)
794 <            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
795 <        reconcileState();
796 <        releaseWaiters(0); // signal all threads
797 <        releaseWaiters(1);
793 >        while ((s = root.state) >= 0) {
794 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
795 >                                          s, s | TERMINATION_BIT)) {
796 >                // signal all threads
797 >                releaseWaiters(0); // Waiters on evenQ
798 >                releaseWaiters(1); // Waiters on oddQ
799 >                return;
800 >            }
801 >        }
802      }
803  
804      /**
805       * Returns the current phase number. The maximum phase number is
806       * {@code Integer.MAX_VALUE}, after which it restarts at
807 <     * zero. Upon termination, the phase number is negative.
807 >     * zero. Upon termination, the phase number is negative,
808 >     * in which case the prevailing phase prior to termination
809 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
810       *
811       * @return the phase number, or a negative value if terminated
812       */
813      public final int getPhase() {
814 <        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
814 >        return (int)(root.state >>> PHASE_SHIFT);
815      }
816  
817      /**
818 <     * Returns the number of parties registered at this barrier.
818 >     * Returns the number of parties registered at this phaser.
819       *
820       * @return the number of parties
821       */
822      public int getRegisteredParties() {
823 <        return partiesOf(parent==null? state : reconcileState());
823 >        return partiesOf(state);
824      }
825  
826      /**
827       * Returns the number of registered parties that have arrived at
828 <     * the current phase of this barrier.
828 >     * the current phase of this phaser. If this phaser has terminated,
829 >     * the returned value is meaningless and arbitrary.
830       *
831       * @return the number of arrived parties
832       */
833      public int getArrivedParties() {
834 <        return arrivedOf(parent==null? state : reconcileState());
834 >        return arrivedOf(reconcileState());
835      }
836  
837      /**
838       * Returns the number of registered parties that have not yet
839 <     * arrived at the current phase of this barrier.
839 >     * arrived at the current phase of this phaser. If this phaser has
840 >     * terminated, the returned value is meaningless and arbitrary.
841       *
842       * @return the number of unarrived parties
843       */
844      public int getUnarrivedParties() {
845 <        return unarrivedOf(parent==null? state : reconcileState());
845 >        return unarrivedOf(reconcileState());
846      }
847  
848      /**
# Line 726 | Line 865 | public class Phaser {
865      }
866  
867      /**
868 <     * Returns {@code true} if this barrier has been terminated.
868 >     * Returns {@code true} if this phaser has been terminated.
869       *
870 <     * @return {@code true} if this barrier has been terminated
870 >     * @return {@code true} if this phaser has been terminated
871       */
872      public boolean isTerminated() {
873 <        return (parent == null? state : reconcileState()) < 0;
873 >        return root.state < 0L;
874      }
875  
876      /**
877       * Overridable method to perform an action upon impending phase
878       * advance, and to control termination. This method is invoked
879 <     * upon arrival of the party tripping the barrier (when all other
879 >     * upon arrival of the party advancing this phaser (when all other
880       * waiting parties are dormant).  If this method returns {@code
881 <     * true}, then, rather than advance the phase number, this barrier
882 <     * will be set to a final termination state, and subsequent calls
883 <     * to {@link #isTerminated} will return true. Any (unchecked)
884 <     * Exception or Error thrown by an invocation of this method is
885 <     * propagated to the party attempting to trip the barrier, in
886 <     * which case no advance occurs.
881 >     * true}, this phaser will be set to a final termination state
882 >     * upon advance, and subsequent calls to {@link #isTerminated}
883 >     * will return true. Any (unchecked) Exception or Error thrown by
884 >     * an invocation of this method is propagated to the party
885 >     * attempting to advance this phaser, in which case no advance
886 >     * occurs.
887       *
888       * <p>The arguments to this method provide the state of the phaser
889       * prevailing for the current transition.  The effects of invoking
890 <     * arrival, registration, and waiting methods on this Phaser from
890 >     * arrival, registration, and waiting methods on this phaser from
891       * within {@code onAdvance} are unspecified and should not be
892       * relied on.
893       *
894 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
895 <     * {@code onAdvance} is invoked only for its root Phaser on each
894 >     * <p>If this phaser is a member of a tiered set of phasers, then
895 >     * {@code onAdvance} is invoked only for its root phaser on each
896       * advance.
897       *
898 <     * <p>The default version returns {@code true} when the number of
899 <     * registered parties is zero. Normally, overrides that arrange
900 <     * termination for other reasons should also preserve this
901 <     * property.
898 >     * <p>To support the most common use cases, the default
899 >     * implementation of this method returns {@code true} when the
900 >     * number of registered parties has become zero as the result of a
901 >     * party invoking {@code arriveAndDeregister}.  You can disable
902 >     * this behavior, thus enabling continuation upon future
903 >     * registrations, by overriding this method to always return
904 >     * {@code false}:
905 >     *
906 >     * <pre> {@code
907 >     * Phaser phaser = new Phaser() {
908 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
909 >     * }}</pre>
910       *
911 <     * @param phase the phase number on entering the barrier
911 >     * @param phase the current phase number on entry to this method,
912 >     * before this phaser is advanced
913       * @param registeredParties the current number of registered parties
914 <     * @return {@code true} if this barrier should terminate
914 >     * @return {@code true} if this phaser should terminate
915       */
916      protected boolean onAdvance(int phase, int registeredParties) {
917 <        return registeredParties <= 0;
917 >        return registeredParties == 0;
918      }
919  
920      /**
# Line 776 | Line 924 | public class Phaser {
924       * followed by the number of registered parties, and {@code
925       * "arrived = "} followed by the number of arrived parties.
926       *
927 <     * @return a string identifying this barrier, as well as its state
927 >     * @return a string identifying this phaser, as well as its state
928       */
929      public String toString() {
930          return stateToString(reconcileState());
# Line 795 | Line 943 | public class Phaser {
943      // Waiting mechanics
944  
945      /**
946 <     * Removes and signals threads from queue for phase
946 >     * Removes and signals threads from queue for phase.
947       */
948      private void releaseWaiters(int phase) {
949 <        AtomicReference<QNode> head = queueFor(phase);
950 <        QNode q;
951 <        int p;
949 >        QNode q;   // first element of queue
950 >        Thread t;  // its thread
951 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
952          while ((q = head.get()) != null &&
953 <               ((p = q.phase) == phase ||
954 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
955 <            if (head.compareAndSet(q, q.next))
956 <                q.signal();
953 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
954 >            if (head.compareAndSet(q, q.next) &&
955 >                (t = q.thread) != null) {
956 >                q.thread = null;
957 >                LockSupport.unpark(t);
958 >            }
959          }
960      }
961  
962      /**
963 <     * Tries to enqueue given node in the appropriate wait queue.
963 >     * Variant of releaseWaiters that additionally tries to remove any
964 >     * nodes no longer waiting for advance due to timeout or
965 >     * interrupt. Currently, nodes are removed only if they are at
966 >     * head of queue, which suffices to reduce memory footprint in
967 >     * most usages.
968       *
969 <     * @return true if successful
969 >     * @return current phase on exit
970       */
971 <    private boolean tryEnqueue(int phase, QNode node) {
972 <        releaseWaiters(phase-1); // ensure old queue clean
973 <        AtomicReference<QNode> head = queueFor(phase);
974 <        QNode q = head.get();
975 <        return ((q == null || q.phase == phase) &&
976 <                (int)(root.state >>> PHASE_SHIFT) == phase &&
977 <                head.compareAndSet(node.next = q, node));
971 >    private int abortWait(int phase) {
972 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
973 >        for (;;) {
974 >            Thread t;
975 >            QNode q = head.get();
976 >            int p = (int)(root.state >>> PHASE_SHIFT);
977 >            if (q == null || ((t = q.thread) != null && q.phase == p))
978 >                return p;
979 >            if (head.compareAndSet(q, q.next) && t != null) {
980 >                q.thread = null;
981 >                LockSupport.unpark(t);
982 >            }
983 >        }
984      }
985  
986      /** The number of CPUs, for spin control */
# Line 834 | Line 994 | public class Phaser {
994       * avoid it when threads regularly arrive: When a thread in
995       * internalAwaitAdvance notices another arrival before blocking,
996       * and there appear to be enough CPUs available, it spins
997 <     * SPINS_PER_ARRIVAL more times before continuing to try to
998 <     * block. The value trades off good-citizenship vs big unnecessary
839 <     * slowdowns.
997 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
998 >     * off good-citizenship vs big unnecessary slowdowns.
999       */
1000 <    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
1000 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
1001  
1002      /**
1003       * Possibly blocks and waits for phase to advance unless aborted.
1004 +     * Call only on root phaser.
1005       *
1006       * @param phase current phase
1007       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 849 | Line 1009 | public class Phaser {
1009       * @return current phase
1010       */
1011      private int internalAwaitAdvance(int phase, QNode node) {
1012 <        Phaser current = this;       // to eventually wait at root if tiered
1013 <        boolean queued = false;      // true when node is enqueued
1014 <        int lastUnarrived = -1;      // to increase spins upon change
1012 >        // assert root == this;
1013 >        releaseWaiters(phase-1);          // ensure old queue clean
1014 >        boolean queued = false;           // true when node is enqueued
1015 >        int lastUnarrived = 0;            // to increase spins upon change
1016          int spins = SPINS_PER_ARRIVAL;
1017 <        for (;;) {
1018 <            int p, unarrived;
1019 <            Phaser par;
1020 <            long s = current.state;
1021 <            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
1022 <                if (node != null)
1023 <                    node.onRelease();
863 <                releaseWaiters(phase);
864 <                return p;
865 <            }
866 <            else if ((unarrived = (int)(s & UNARRIVED_MASK)) != lastUnarrived) {
867 <                if ((lastUnarrived = unarrived) < NCPU)
1017 >        long s;
1018 >        int p;
1019 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1020 >            if (node == null) {           // spinning in noninterruptible mode
1021 >                int unarrived = (int)s & UNARRIVED_MASK;
1022 >                if (unarrived != lastUnarrived &&
1023 >                    (lastUnarrived = unarrived) < NCPU)
1024                      spins += SPINS_PER_ARRIVAL;
1025 +                boolean interrupted = Thread.interrupted();
1026 +                if (interrupted || --spins < 0) { // need node to record intr
1027 +                    node = new QNode(this, phase, false, false, 0L);
1028 +                    node.wasInterrupted = interrupted;
1029 +                }
1030              }
1031 <            else if (unarrived == 0 && (par = current.parent) != null) {
1032 <                current = par;       // if all arrived, use parent
1033 <                par = par.parent;
1034 <                lastUnarrived = -1;
1035 <            }
1036 <            else if (spins > 0)
1037 <                --spins;
1038 <            else if (node == null)   // must be noninterruptible
878 <                node = new QNode(this, phase, false, false, 0L);
879 <            else if (node.isReleasable()) {
880 <                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
881 <                    return phase;    // aborted
1031 >            else if (node.isReleasable()) // done or aborted
1032 >                break;
1033 >            else if (!queued) {           // push onto queue
1034 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1035 >                QNode q = node.next = head.get();
1036 >                if ((q == null || q.phase == phase) &&
1037 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1038 >                    queued = head.compareAndSet(q, node);
1039              }
883            else if (!queued)
884                queued = tryEnqueue(phase, node);
1040              else {
1041                  try {
1042                      ForkJoinPool.managedBlock(node);
# Line 890 | Line 1045 | public class Phaser {
1045                  }
1046              }
1047          }
1048 +
1049 +        if (node != null) {
1050 +            if (node.thread != null)
1051 +                node.thread = null;       // avoid need for unpark()
1052 +            if (node.wasInterrupted && !node.interruptible)
1053 +                Thread.currentThread().interrupt();
1054 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1055 +                return abortWait(phase); // possibly clean up on abort
1056 +        }
1057 +        releaseWaiters(phase);
1058 +        return p;
1059      }
1060  
1061      /**
# Line 913 | Line 1079 | public class Phaser {
1079              this.interruptible = interruptible;
1080              this.nanos = nanos;
1081              this.timed = timed;
1082 <            this.lastTime = timed? System.nanoTime() : 0L;
1082 >            this.lastTime = timed ? System.nanoTime() : 0L;
1083              thread = Thread.currentThread();
1084          }
1085  
1086          public boolean isReleasable() {
1087 <            Thread t = thread;
1088 <            if (t != null) {
1089 <                if (phaser.getPhase() != phase)
924 <                    t = null;
925 <                else {
926 <                    if (Thread.interrupted())
927 <                        wasInterrupted = true;
928 <                    if (interruptible && wasInterrupted)
929 <                        t = null;
930 <                    else if (timed) {
931 <                        if (nanos > 0) {
932 <                            long now = System.nanoTime();
933 <                            nanos -= now - lastTime;
934 <                            lastTime = now;
935 <                        }
936 <                        if (nanos <= 0)
937 <                            t = null;
938 <                    }
939 <                }
940 <                if (t != null)
941 <                    return false;
1087 >            if (thread == null)
1088 >                return true;
1089 >            if (phaser.getPhase() != phase) {
1090                  thread = null;
1091 +                return true;
1092 +            }
1093 +            if (Thread.interrupted())
1094 +                wasInterrupted = true;
1095 +            if (wasInterrupted && interruptible) {
1096 +                thread = null;
1097 +                return true;
1098 +            }
1099 +            if (timed) {
1100 +                if (nanos > 0L) {
1101 +                    long now = System.nanoTime();
1102 +                    nanos -= now - lastTime;
1103 +                    lastTime = now;
1104 +                }
1105 +                if (nanos <= 0L) {
1106 +                    thread = null;
1107 +                    return true;
1108 +                }
1109              }
1110 <            return true;
1110 >            return false;
1111          }
1112  
1113          public boolean block() {
# Line 953 | Line 1119 | public class Phaser {
1119                  LockSupport.parkNanos(this, nanos);
1120              return isReleasable();
1121          }
956
957        void signal() {
958            Thread t = thread;
959            if (t != null) {
960                thread = null;
961                LockSupport.unpark(t);
962            }
963        }
964
965        void onRelease() { // actions upon return from internalAwaitAdvance
966            if (!interruptible && wasInterrupted)
967                Thread.currentThread().interrupt();
968            if (thread != null)
969                thread = null;
970        }
971
1122      }
1123  
1124      // Unsafe mechanics
1125  
1126 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1127 <    private static final long stateOffset =
1128 <        objectFieldOffset("state", Phaser.class);
979 <
980 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1126 >    private static final sun.misc.Unsafe UNSAFE;
1127 >    private static final long stateOffset;
1128 >    static {
1129          try {
1130 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1131 <        } catch (NoSuchFieldException e) {
1132 <            // Convert Exception to corresponding Error
1133 <            NoSuchFieldError error = new NoSuchFieldError(field);
1134 <            error.initCause(e);
1135 <            throw error;
1130 >            UNSAFE = getUnsafe();
1131 >            Class<?> k = Phaser.class;
1132 >            stateOffset = UNSAFE.objectFieldOffset
1133 >                (k.getDeclaredField("state"));
1134 >        } catch (Exception e) {
1135 >            throw new Error(e);
1136          }
1137      }
1138  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines