ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.55 by dl, Mon Nov 15 12:51:54 2010 UTC vs.
Revision 1.73 by jsr166, Wed May 25 16:08:03 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82 > * Termination is triggered when an invocation of {@code onAdvance}
83 > * returns {@code true}. The default implementation returns {@code
84 > * true} if a deregistration has caused the number of registered
85 > * parties to become zero.  As illustrated below, when phasers control
86 > * actions with a fixed number of iterations, it is often convenient
87 > * to override this method to cause termination when the current phase
88 > * number reaches a threshold. Method {@link #forceTermination} is
89 > * also available to abruptly release waiting threads and allow them
90 > * to terminate.
91 > *
92 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 > * constructed in tree structures) to reduce contention. Phasers with
94 > * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
96   * groups of sub-phasers share a common parent.  This may greatly
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 117 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 181 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a phaser that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
202 < * // .. initially called, for n tasks via
203 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
# Line 224 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
228 <     * four values:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268 <    private static final int  MAX_PARTIES    = 0xffff;
269 <    private static final int  MAX_PHASE      = 0x7fffffff;
270 <    private static final int  PARTIES_SHIFT  = 16;
271 <    private static final int  PHASE_SHIFT    = 32;
272 <    private static final int  UNARRIVED_MASK = 0xffff;
273 <    private static final int  PARTIES_MASK   = 0xffff0000;
274 <    private static final long LPARTIES_MASK  = 0xffff0000L; // long version
275 <    private static final long ONE_ARRIVAL    = 1L;
276 <    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
277 <    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
268 >    private static final int  MAX_PARTIES     = 0xffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270 >    private static final int  PARTIES_SHIFT   = 16;
271 >    private static final int  PHASE_SHIFT     = 32;
272 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 >    private static final long TERMINATION_BIT = 1L << 63;
275 >
276 >    // some special values
277 >    private static final int  ONE_ARRIVAL     = 1;
278 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 >    private static final int  EMPTY           = 1;
280  
281      // The following unpacking methods are usually manually inlined
282  
283      private static int unarrivedOf(long s) {
284 <        return ((int) s) & UNARRIVED_MASK;
284 >        int counts = (int)s;
285 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286      }
287  
288      private static int partiesOf(long s) {
289 <        return (((int) s) & PARTIES_MASK) >>> PARTIES_SHIFT;
289 >        return (int)s >>> PARTIES_SHIFT;
290      }
291  
292      private static int phaseOf(long s) {
293 <        return (int) (s >>> PHASE_SHIFT);
293 >        return (int)(s >>> PHASE_SHIFT);
294      }
295  
296      private static int arrivedOf(long s) {
297 <        return partiesOf(s) - unarrivedOf(s);
297 >        int counts = (int)s;
298 >        return (counts == EMPTY) ? 0 :
299 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300      }
301  
302      /**
# Line 275 | Line 305 | public class Phaser {
305      private final Phaser parent;
306  
307      /**
308 <     * The root of phaser tree. Equals this if not in a tree.  Used to
279 <     * support faster state push-down.
308 >     * The root of phaser tree. Equals this if not in a tree.
309       */
310      private final Phaser root;
311  
# Line 294 | Line 323 | public class Phaser {
323      }
324  
325      /**
326 +     * Returns message string for bounds exceptions on arrival.
327 +     */
328 +    private String badArrive(long s) {
329 +        return "Attempted arrival of unregistered party for " +
330 +            stateToString(s);
331 +    }
332 +
333 +    /**
334 +     * Returns message string for bounds exceptions on registration.
335 +     */
336 +    private String badRegister(long s) {
337 +        return "Attempt to register more than " +
338 +            MAX_PARTIES + " parties for " + stateToString(s);
339 +    }
340 +
341 +    /**
342       * Main implementation for methods arrive and arriveAndDeregister.
343       * Manually tuned to speed up and minimize race windows for the
344       * common case of just decrementing unarrived field.
345       *
346 <     * @param adj - adjustment to apply to state -- either
302 <     * ONE_ARRIVAL (for arrive) or
303 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
346 >     * @param deregister false for arrive, true for arriveAndDeregister
347       */
348 <    private int doArrive(long adj) {
348 >    private int doArrive(boolean deregister) {
349 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 >        final Phaser root = this.root;
351          for (;;) {
352 <            long s;
353 <            int phase, unarrived;
354 <            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
352 >            long s = (root == this) ? state : reconcileState();
353 >            int phase = (int)(s >>> PHASE_SHIFT);
354 >            int counts = (int)s;
355 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
356 >            if (phase < 0)
357                  return phase;
358 <            else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0)
359 <                checkBadArrive(s);
358 >            else if (counts == EMPTY || unarrived < 0) {
359 >                if (root == this || reconcileState() == s)
360 >                    throw new IllegalStateException(badArrive(s));
361 >            }
362              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 <                if (unarrived == 1) {
364 <                    Phaser par;
365 <                    long p = s & LPARTIES_MASK; // unshifted parties field
366 <                    long lu = p >>> PARTIES_SHIFT;
367 <                    int u = (int)lu;
368 <                    int nextPhase = (phase + 1) & MAX_PHASE;
369 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
370 <                    if ((par = parent) == null) {
371 <                        if (onAdvance(phase, u))
372 <                            next |= TERMINATION_PHASE; // obliterate phase
373 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
374 <                        releaseWaiters(phase);
375 <                    }
376 <                    else {
328 <                        par.doArrive(u == 0?
329 <                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 <                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
331 <                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 <                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 <                                                        s, next)))
334 <                            reconcileState();
335 <                    }
363 >                if (unarrived == 0) {
364 >                    long n = s & PARTIES_MASK;  // base of next state
365 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 >                    if (root != this)
367 >                        return parent.doArrive(nextUnarrived == 0);
368 >                    if (onAdvance(phase, nextUnarrived))
369 >                        n |= TERMINATION_BIT;
370 >                    else if (nextUnarrived == 0)
371 >                        n |= EMPTY;
372 >                    else
373 >                        n |= nextUnarrived;
374 >                    n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
375 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376 >                    releaseWaiters(phase);
377                  }
378                  return phase;
379              }
# Line 340 | Line 381 | public class Phaser {
381      }
382  
383      /**
343     * Rechecks state and throws bounds exceptions on arrival -- called
344     * only if unarrived is apparently zero.
345     */
346    private void checkBadArrive(long s) {
347        if (reconcileState() == s)
348            throw new IllegalStateException
349                ("Attempted arrival of unregistered party for " +
350                 stateToString(s));
351    }
352
353    /**
384       * Implementation of register, bulkRegister
385       *
386 <     * @param registrations number to add to both parties and unarrived fields
386 >     * @param registrations number to add to both parties and
387 >     * unarrived fields. Must be greater than zero.
388       */
389      private int doRegister(int registrations) {
390 <        long adj = (long)registrations; // adjustment to state
391 <        adj |= adj << PARTIES_SHIFT;
392 <        Phaser par = parent;
390 >        // adjustment to state
391 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
392 >        final Phaser parent = this.parent;
393 >        int phase;
394          for (;;) {
395 <            int phase, parties;
396 <            long s = par == null? state : reconcileState();
397 <            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
398 <                return phase;
399 <            if ((parties = (((int)s) & PARTIES_MASK) >>> PARTIES_SHIFT) != 0 &&
368 <                (((int)s) & UNARRIVED_MASK) == 0)
369 <                internalAwaitAdvance(phase, null); // wait for onAdvance
370 <            else if (parties + registrations > MAX_PARTIES)
395 >            long s = state;
396 >            int counts = (int)s;
397 >            int parties = counts >>> PARTIES_SHIFT;
398 >            int unarrived = counts & UNARRIVED_MASK;
399 >            if (registrations > MAX_PARTIES - parties)
400                  throw new IllegalStateException(badRegister(s));
401 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
402 <                return phase;
401 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
402 >                break;
403 >            else if (counts != EMPTY) {             // not 1st registration
404 >                if (parent == null || reconcileState() == s) {
405 >                    if (unarrived == 0)             // wait out advance
406 >                        root.internalAwaitAdvance(phase, null);
407 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
408 >                                                       s, s + adj))
409 >                        break;
410 >                }
411 >            }
412 >            else if (parent == null) {              // 1st root registration
413 >                long next = ((long)phase << PHASE_SHIFT) | adj;
414 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
415 >                    break;
416 >            }
417 >            else {
418 >                synchronized (this) {               // 1st sub registration
419 >                    if (state == s) {               // recheck under lock
420 >                        parent.doRegister(1);
421 >                        do {                        // force current phase
422 >                            phase = (int)(root.state >>> PHASE_SHIFT);
423 >                            // assert phase < 0 || (int)state == EMPTY;
424 >                        } while (!UNSAFE.compareAndSwapLong
425 >                                 (this, stateOffset, state,
426 >                                  ((long)phase << PHASE_SHIFT) | adj));
427 >                        break;
428 >                    }
429 >                }
430 >            }
431          }
432 +        return phase;
433      }
434  
435      /**
436 <     * Returns message string for out of bounds exceptions on registration.
437 <     */
438 <    private String badRegister(long s) {
439 <        return "Attempt to register more than " +
440 <            MAX_PARTIES + " parties for " + stateToString(s);
441 <    }
442 <
443 <    /**
444 <     * Recursively resolves lagged phase propagation from root if necessary.
436 >     * Resolves lagged phase propagation from root if necessary.
437 >     * Reconciliation normally occurs when root has advanced but
438 >     * subphasers have not yet done so, in which case they must finish
439 >     * their own advance by setting unarrived to parties (or if
440 >     * parties is zero, resetting to unregistered EMPTY state).
441 >     * However, this method may also be called when "floating"
442 >     * subphasers with possibly some unarrived parties are merely
443 >     * catching up to current phase, in which case counts are
444 >     * unaffected.
445 >     *
446 >     * @return reconciled state
447       */
448      private long reconcileState() {
449 <        Phaser par = parent;
450 <        if (par == null)
451 <            return state;
452 <        Phaser rt = root;
453 <        for (;;) {
454 <            long s, u;
455 <            int phase, rPhase, pPhase;
456 <            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
457 <                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
458 <                return s;
459 <            long pState = par.parent == null? par.state : par.reconcileState();
460 <            if (state == s) {
461 <                if ((rPhase < 0 || (((int)s) & UNARRIVED_MASK) == 0) &&
462 <                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 <                     pPhase == ((phase + 1) & MAX_PHASE)))
404 <                    UNSAFE.compareAndSwapLong
405 <                        (this, stateOffset, s,
406 <                         (((long) pPhase) << PHASE_SHIFT) |
407 <                         (u = s & LPARTIES_MASK) |
408 <                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 <                else
410 <                    releaseWaiters(phase); // help release others
411 <            }
449 >        final Phaser root = this.root;
450 >        long s = state;
451 >        if (root != this) {
452 >            int phase, u, p;
453 >            // CAS root phase with current parties; possibly trip unarrived
454 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
455 >                   (int)(s >>> PHASE_SHIFT) &&
456 >                   !UNSAFE.compareAndSwapLong
457 >                   (this, stateOffset, s,
458 >                    s = (((long)phase << PHASE_SHIFT) |
459 >                         (s & PARTIES_MASK) |
460 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
461 >                          (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
462 >                s = state;
463          }
464 +        return s;
465      }
466  
467      /**
468 <     * Creates a new phaser without any initially registered parties,
469 <     * initial phase number 0, and no parent. Any thread using this
468 >     * Creates a new phaser with no initially registered parties, no
469 >     * parent, and initial phase number 0. Any thread using this
470       * phaser will need to first register for it.
471       */
472      public Phaser() {
# Line 423 | Line 475 | public class Phaser {
475  
476      /**
477       * Creates a new phaser with the given number of registered
478 <     * unarrived parties, initial phase number 0, and no parent.
478 >     * unarrived parties, no parent, and initial phase number 0.
479       *
480 <     * @param parties the number of parties required to trip barrier
480 >     * @param parties the number of parties required to advance to the
481 >     * next phase
482       * @throws IllegalArgumentException if parties less than zero
483       * or greater than the maximum number of parties supported
484       */
# Line 434 | Line 487 | public class Phaser {
487      }
488  
489      /**
490 <     * Creates a new phaser with the given parent, without any
438 <     * initially registered parties. If parent is non-null this phaser
439 <     * is registered with the parent and its initial phase number is
440 <     * the same as that of parent phaser.
490 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
491       *
492       * @param parent the parent phaser
493       */
# Line 447 | Line 497 | public class Phaser {
497  
498      /**
499       * Creates a new phaser with the given parent and number of
500 <     * registered unarrived parties. If parent is non-null, this phaser
501 <     * is registered with the parent and its initial phase number is
502 <     * the same as that of parent phaser.
500 >     * registered unarrived parties.  When the given parent is non-null
501 >     * and the given number of parties is greater than zero, this
502 >     * child phaser is registered with its parent.
503       *
504       * @param parent the parent phaser
505 <     * @param parties the number of parties required to trip barrier
505 >     * @param parties the number of parties required to advance to the
506 >     * next phase
507       * @throws IllegalArgumentException if parties less than zero
508       * or greater than the maximum number of parties supported
509       */
510      public Phaser(Phaser parent, int parties) {
511          if (parties >>> PARTIES_SHIFT != 0)
512              throw new IllegalArgumentException("Illegal number of parties");
513 <        int phase;
513 >        int phase = 0;
514          this.parent = parent;
515          if (parent != null) {
516 <            Phaser r = parent.root;
517 <            this.root = r;
518 <            this.evenQ = r.evenQ;
519 <            this.oddQ = r.oddQ;
520 <            phase = parent.register();
516 >            final Phaser root = parent.root;
517 >            this.root = root;
518 >            this.evenQ = root.evenQ;
519 >            this.oddQ = root.oddQ;
520 >            if (parties != 0)
521 >                phase = parent.doRegister(1);
522          }
523          else {
524              this.root = this;
525              this.evenQ = new AtomicReference<QNode>();
526              this.oddQ = new AtomicReference<QNode>();
475            phase = 0;
527          }
528 <        long p = (long)parties;
529 <        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
528 >        this.state = (parties == 0) ? (long)EMPTY :
529 >            ((long)phase << PHASE_SHIFT) |
530 >            ((long)parties << PARTIES_SHIFT) |
531 >            ((long)parties);
532      }
533  
534      /**
535 <     * Adds a new unarrived party to this phaser.
536 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
537 <     * this method may wait until its completion before registering.
538 <     *
539 <     * @return the arrival phase number to which this registration applied
535 >     * Adds a new unarrived party to this phaser.  If an ongoing
536 >     * invocation of {@link #onAdvance} is in progress, this method
537 >     * may await its completion before returning.  If this phaser has
538 >     * a parent, and this phaser previously had no registered parties,
539 >     * this child phaser is also registered with its parent. If
540 >     * this phaser is terminated, the attempt to register has
541 >     * no effect, and a negative value is returned.
542 >     *
543 >     * @return the arrival phase number to which this registration
544 >     * applied.  If this value is negative, then this phaser has
545 >     * terminated, in which case registration has no effect.
546       * @throws IllegalStateException if attempting to register more
547       * than the maximum supported number of parties
548       */
# Line 494 | Line 553 | public class Phaser {
553      /**
554       * Adds the given number of new unarrived parties to this phaser.
555       * If an ongoing invocation of {@link #onAdvance} is in progress,
556 <     * this method may wait until its completion before registering.
557 <     *
558 <     * @param parties the number of additional parties required to trip barrier
559 <     * @return the arrival phase number to which this registration applied
556 >     * this method may await its completion before returning.  If this
557 >     * phaser has a parent, and the given number of parties is greater
558 >     * than zero, and this phaser previously had no registered
559 >     * parties, this child phaser is also registered with its parent.
560 >     * If this phaser is terminated, the attempt to register has no
561 >     * effect, and a negative value is returned.
562 >     *
563 >     * @param parties the number of additional parties required to
564 >     * advance to the next phase
565 >     * @return the arrival phase number to which this registration
566 >     * applied.  If this value is negative, then this phaser has
567 >     * terminated, in which case registration has no effect.
568       * @throws IllegalStateException if attempting to register more
569       * than the maximum supported number of parties
570       * @throws IllegalArgumentException if {@code parties < 0}
# Line 505 | Line 572 | public class Phaser {
572      public int bulkRegister(int parties) {
573          if (parties < 0)
574              throw new IllegalArgumentException();
508        if (parties > MAX_PARTIES)
509            throw new IllegalStateException(badRegister(state));
575          if (parties == 0)
576              return getPhase();
577          return doRegister(parties);
578      }
579  
580      /**
581 <     * Arrives at the barrier, but does not wait for others.  (You can
582 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
583 <     * unenforced usage error for an unregistered party to invoke this
584 <     * method.
581 >     * Arrives at this phaser, without waiting for others to arrive.
582 >     *
583 >     * <p>It is a usage error for an unregistered party to invoke this
584 >     * method.  However, this error may result in an {@code
585 >     * IllegalStateException} only upon some subsequent operation on
586 >     * this phaser, if ever.
587       *
588       * @return the arrival phase number, or a negative value if terminated
589       * @throws IllegalStateException if not terminated and the number
590       * of unarrived parties would become negative
591       */
592      public int arrive() {
593 <        return doArrive(ONE_ARRIVAL);
593 >        return doArrive(false);
594      }
595  
596      /**
597 <     * Arrives at the barrier and deregisters from it without waiting
598 <     * for others. Deregistration reduces the number of parties
599 <     * required to trip the barrier in future phases.  If this phaser
597 >     * Arrives at this phaser and deregisters from it without waiting
598 >     * for others to arrive. Deregistration reduces the number of
599 >     * parties required to advance in future phases.  If this phaser
600       * has a parent, and deregistration causes this phaser to have
601 <     * zero parties, this phaser also arrives at and is deregistered
602 <     * from its parent.  It is an unenforced usage error for an
603 <     * unregistered party to invoke this method.
601 >     * zero parties, this phaser is also deregistered from its parent.
602 >     *
603 >     * <p>It is a usage error for an unregistered party to invoke this
604 >     * method.  However, this error may result in an {@code
605 >     * IllegalStateException} only upon some subsequent operation on
606 >     * this phaser, if ever.
607       *
608       * @return the arrival phase number, or a negative value if terminated
609       * @throws IllegalStateException if not terminated and the number
610       * of registered or unarrived parties would become negative
611       */
612      public int arriveAndDeregister() {
613 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
613 >        return doArrive(true);
614      }
615  
616      /**
617 <     * Arrives at the barrier and awaits others. Equivalent in effect
617 >     * Arrives at this phaser and awaits others. Equivalent in effect
618       * to {@code awaitAdvance(arrive())}.  If you need to await with
619       * interruption or timeout, you can arrange this with an analogous
620       * construction using one of the other forms of the {@code
621       * awaitAdvance} method.  If instead you need to deregister upon
622 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
623 <     * usage error for an unregistered party to invoke this method.
622 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
623 >     *
624 >     * <p>It is a usage error for an unregistered party to invoke this
625 >     * method.  However, this error may result in an {@code
626 >     * IllegalStateException} only upon some subsequent operation on
627 >     * this phaser, if ever.
628       *
629 <     * @return the arrival phase number, or a negative number if terminated
629 >     * @return the arrival phase number, or the (negative)
630 >     * {@linkplain #getPhase() current phase} if terminated
631       * @throws IllegalStateException if not terminated and the number
632       * of unarrived parties would become negative
633       */
634      public int arriveAndAwaitAdvance() {
635 <        return awaitAdvance(arrive());
635 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
636 >        final Phaser root = this.root;
637 >        for (;;) {
638 >            long s = (root == this) ? state : reconcileState();
639 >            int phase = (int)(s >>> PHASE_SHIFT);
640 >            int counts = (int)s;
641 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
642 >            if (phase < 0)
643 >                return phase;
644 >            else if (counts == EMPTY || unarrived < 0) {
645 >                if (reconcileState() == s)
646 >                    throw new IllegalStateException(badArrive(s));
647 >            }
648 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
649 >                                               s -= ONE_ARRIVAL)) {
650 >                if (unarrived != 0)
651 >                    return root.internalAwaitAdvance(phase, null);
652 >                if (root != this)
653 >                    return parent.arriveAndAwaitAdvance();
654 >                long n = s & PARTIES_MASK;  // base of next state
655 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
656 >                if (onAdvance(phase, nextUnarrived))
657 >                    n |= TERMINATION_BIT;
658 >                else if (nextUnarrived == 0)
659 >                    n |= EMPTY;
660 >                else
661 >                    n |= nextUnarrived;
662 >                int nextPhase = (phase + 1) & MAX_PHASE;
663 >                n |= (long)nextPhase << PHASE_SHIFT;
664 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
665 >                    return (int)(state >>> PHASE_SHIFT); // terminated
666 >                releaseWaiters(phase);
667 >                return nextPhase;
668 >            }
669 >        }
670      }
671  
672      /**
673 <     * Awaits the phase of the barrier to advance from the given phase
674 <     * value, returning immediately if the current phase of the
675 <     * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.
673 >     * Awaits the phase of this phaser to advance from the given phase
674 >     * value, returning immediately if the current phase is not equal
675 >     * to the given phase value or this phaser is terminated.
676       *
677       * @param phase an arrival phase number, or negative value if
678       * terminated; this argument is normally the value returned by a
679 <     * previous call to {@code arrive} or its variants
680 <     * @return the next arrival phase number, or a negative value
681 <     * if terminated or argument is negative
679 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
680 >     * @return the next arrival phase number, or the argument if it is
681 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
682 >     * if terminated
683       */
684      public int awaitAdvance(int phase) {
685 <        int p;
685 >        final Phaser root = this.root;
686 >        long s = (root == this) ? state : reconcileState();
687 >        int p = (int)(s >>> PHASE_SHIFT);
688          if (phase < 0)
689              return phase;
690 <        else if ((p = (int)((parent == null? state : reconcileState())
691 <                            >>> PHASE_SHIFT)) == phase)
692 <            return internalAwaitAdvance(phase, null);
582 <        else
583 <            return p;
690 >        if (p == phase)
691 >            return root.internalAwaitAdvance(phase, null);
692 >        return p;
693      }
694  
695      /**
696 <     * Awaits the phase of the barrier to advance from the given phase
696 >     * Awaits the phase of this phaser to advance from the given phase
697       * value, throwing {@code InterruptedException} if interrupted
698 <     * while waiting, or returning immediately if the current phase of
699 <     * the barrier is not equal to the given phase value or this
700 <     * barrier is terminated.
698 >     * while waiting, or returning immediately if the current phase is
699 >     * not equal to the given phase value or this phaser is
700 >     * terminated.
701       *
702       * @param phase an arrival phase number, or negative value if
703       * terminated; this argument is normally the value returned by a
704 <     * previous call to {@code arrive} or its variants
705 <     * @return the next arrival phase number, or a negative value
706 <     * if terminated or argument is negative
704 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
705 >     * @return the next arrival phase number, or the argument if it is
706 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
707 >     * if terminated
708       * @throws InterruptedException if thread interrupted while waiting
709       */
710      public int awaitAdvanceInterruptibly(int phase)
711          throws InterruptedException {
712 <        int p;
712 >        final Phaser root = this.root;
713 >        long s = (root == this) ? state : reconcileState();
714 >        int p = (int)(s >>> PHASE_SHIFT);
715          if (phase < 0)
716              return phase;
717 <        if ((p = (int)((parent == null? state : reconcileState())
606 <                       >>> PHASE_SHIFT)) == phase) {
717 >        if (p == phase) {
718              QNode node = new QNode(this, phase, true, false, 0L);
719 <            p = internalAwaitAdvance(phase, node);
719 >            p = root.internalAwaitAdvance(phase, node);
720              if (node.wasInterrupted)
721                  throw new InterruptedException();
722          }
# Line 613 | Line 724 | public class Phaser {
724      }
725  
726      /**
727 <     * Awaits the phase of the barrier to advance from the given phase
727 >     * Awaits the phase of this phaser to advance from the given phase
728       * value or the given timeout to elapse, throwing {@code
729       * InterruptedException} if interrupted while waiting, or
730 <     * returning immediately if the current phase of the barrier is
731 <     * not equal to the given phase value or this barrier is
621 <     * terminated.
730 >     * returning immediately if the current phase is not equal to the
731 >     * given phase value or this phaser is terminated.
732       *
733       * @param phase an arrival phase number, or negative value if
734       * terminated; this argument is normally the value returned by a
735 <     * previous call to {@code arrive} or its variants
735 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
736       * @param timeout how long to wait before giving up, in units of
737       *        {@code unit}
738       * @param unit a {@code TimeUnit} determining how to interpret the
739       *        {@code timeout} parameter
740 <     * @return the next arrival phase number, or a negative value
741 <     * if terminated or argument is negative
740 >     * @return the next arrival phase number, or the argument if it is
741 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
742 >     * if terminated
743       * @throws InterruptedException if thread interrupted while waiting
744       * @throws TimeoutException if timed out while waiting
745       */
# Line 636 | Line 747 | public class Phaser {
747                                           long timeout, TimeUnit unit)
748          throws InterruptedException, TimeoutException {
749          long nanos = unit.toNanos(timeout);
750 <        int p;
750 >        final Phaser root = this.root;
751 >        long s = (root == this) ? state : reconcileState();
752 >        int p = (int)(s >>> PHASE_SHIFT);
753          if (phase < 0)
754              return phase;
755 <        if ((p = (int)((parent == null? state : reconcileState())
643 <                       >>> PHASE_SHIFT)) == phase) {
755 >        if (p == phase) {
756              QNode node = new QNode(this, phase, true, true, nanos);
757 <            p = internalAwaitAdvance(phase, node);
757 >            p = root.internalAwaitAdvance(phase, node);
758              if (node.wasInterrupted)
759                  throw new InterruptedException();
760              else if (p == phase)
# Line 652 | Line 764 | public class Phaser {
764      }
765  
766      /**
767 <     * Forces this barrier to enter termination state.  Counts of
768 <     * arrived and registered parties are unaffected.  If this phaser
769 <     * is a member of a tiered set of phasers, then all of the phasers
770 <     * in the set are terminated.  If this phaser is already
771 <     * terminated, this method has no effect.  This method may be
772 <     * useful for coordinating recovery after one or more tasks
773 <     * encounter unexpected exceptions.
767 >     * Forces this phaser to enter termination state.  Counts of
768 >     * registered parties are unaffected.  If this phaser is a member
769 >     * of a tiered set of phasers, then all of the phasers in the set
770 >     * are terminated.  If this phaser is already terminated, this
771 >     * method has no effect.  This method may be useful for
772 >     * coordinating recovery after one or more tasks encounter
773 >     * unexpected exceptions.
774       */
775      public void forceTermination() {
776          // Only need to change root state
# Line 666 | Line 778 | public class Phaser {
778          long s;
779          while ((s = root.state) >= 0) {
780              if (UNSAFE.compareAndSwapLong(root, stateOffset,
781 <                                          s, s | TERMINATION_PHASE)) {
782 <                releaseWaiters(0); // signal all threads
781 >                                          s, s | TERMINATION_BIT)) {
782 >                // signal all threads
783 >                releaseWaiters(0);
784                  releaseWaiters(1);
785                  return;
786              }
# Line 677 | Line 790 | public class Phaser {
790      /**
791       * Returns the current phase number. The maximum phase number is
792       * {@code Integer.MAX_VALUE}, after which it restarts at
793 <     * zero. Upon termination, the phase number is negative.
793 >     * zero. Upon termination, the phase number is negative,
794 >     * in which case the prevailing phase prior to termination
795 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
796       *
797       * @return the phase number, or a negative value if terminated
798       */
799      public final int getPhase() {
800 <        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
800 >        return (int)(root.state >>> PHASE_SHIFT);
801      }
802  
803      /**
804 <     * Returns the number of parties registered at this barrier.
804 >     * Returns the number of parties registered at this phaser.
805       *
806       * @return the number of parties
807       */
808      public int getRegisteredParties() {
809 <        return partiesOf(parent==null? state : reconcileState());
809 >        return partiesOf(state);
810      }
811  
812      /**
813       * Returns the number of registered parties that have arrived at
814 <     * the current phase of this barrier.
814 >     * the current phase of this phaser. If this phaser has terminated,
815 >     * the returned value is meaningless and arbitrary.
816       *
817       * @return the number of arrived parties
818       */
819      public int getArrivedParties() {
820 <        return arrivedOf(parent==null? state : reconcileState());
820 >        return arrivedOf(reconcileState());
821      }
822  
823      /**
824       * Returns the number of registered parties that have not yet
825 <     * arrived at the current phase of this barrier.
825 >     * arrived at the current phase of this phaser. If this phaser has
826 >     * terminated, the returned value is meaningless and arbitrary.
827       *
828       * @return the number of unarrived parties
829       */
830      public int getUnarrivedParties() {
831 <        return unarrivedOf(parent==null? state : reconcileState());
831 >        return unarrivedOf(reconcileState());
832      }
833  
834      /**
# Line 734 | Line 851 | public class Phaser {
851      }
852  
853      /**
854 <     * Returns {@code true} if this barrier has been terminated.
854 >     * Returns {@code true} if this phaser has been terminated.
855       *
856 <     * @return {@code true} if this barrier has been terminated
856 >     * @return {@code true} if this phaser has been terminated
857       */
858      public boolean isTerminated() {
859 <        return (parent == null? state : reconcileState()) < 0;
859 >        return root.state < 0L;
860      }
861  
862      /**
863       * Overridable method to perform an action upon impending phase
864       * advance, and to control termination. This method is invoked
865 <     * upon arrival of the party tripping the barrier (when all other
865 >     * upon arrival of the party advancing this phaser (when all other
866       * waiting parties are dormant).  If this method returns {@code
867 <     * true}, then, rather than advance the phase number, this barrier
868 <     * will be set to a final termination state, and subsequent calls
869 <     * to {@link #isTerminated} will return true. Any (unchecked)
870 <     * Exception or Error thrown by an invocation of this method is
871 <     * propagated to the party attempting to trip the barrier, in
872 <     * which case no advance occurs.
867 >     * true}, this phaser will be set to a final termination state
868 >     * upon advance, and subsequent calls to {@link #isTerminated}
869 >     * will return true. Any (unchecked) Exception or Error thrown by
870 >     * an invocation of this method is propagated to the party
871 >     * attempting to advance this phaser, in which case no advance
872 >     * occurs.
873       *
874       * <p>The arguments to this method provide the state of the phaser
875       * prevailing for the current transition.  The effects of invoking
876 <     * arrival, registration, and waiting methods on this Phaser from
876 >     * arrival, registration, and waiting methods on this phaser from
877       * within {@code onAdvance} are unspecified and should not be
878       * relied on.
879       *
880 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
881 <     * {@code onAdvance} is invoked only for its root Phaser on each
880 >     * <p>If this phaser is a member of a tiered set of phasers, then
881 >     * {@code onAdvance} is invoked only for its root phaser on each
882       * advance.
883       *
884 <     * <p>The default version returns {@code true} when the number of
885 <     * registered parties is zero. Normally, overrides that arrange
886 <     * termination for other reasons should also preserve this
887 <     * property.
884 >     * <p>To support the most common use cases, the default
885 >     * implementation of this method returns {@code true} when the
886 >     * number of registered parties has become zero as the result of a
887 >     * party invoking {@code arriveAndDeregister}.  You can disable
888 >     * this behavior, thus enabling continuation upon future
889 >     * registrations, by overriding this method to always return
890 >     * {@code false}:
891 >     *
892 >     * <pre> {@code
893 >     * Phaser phaser = new Phaser() {
894 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
895 >     * }}</pre>
896       *
897 <     * @param phase the phase number on entering the barrier
897 >     * @param phase the current phase number on entry to this method,
898 >     * before this phaser is advanced
899       * @param registeredParties the current number of registered parties
900 <     * @return {@code true} if this barrier should terminate
900 >     * @return {@code true} if this phaser should terminate
901       */
902      protected boolean onAdvance(int phase, int registeredParties) {
903 <        return registeredParties <= 0;
903 >        return registeredParties == 0;
904      }
905  
906      /**
# Line 784 | Line 910 | public class Phaser {
910       * followed by the number of registered parties, and {@code
911       * "arrived = "} followed by the number of arrived parties.
912       *
913 <     * @return a string identifying this barrier, as well as its state
913 >     * @return a string identifying this phaser, as well as its state
914       */
915      public String toString() {
916          return stateToString(reconcileState());
# Line 803 | Line 929 | public class Phaser {
929      // Waiting mechanics
930  
931      /**
932 <     * Removes and signals threads from queue for phase
932 >     * Removes and signals threads from queue for phase.
933       */
934      private void releaseWaiters(int phase) {
935 <        AtomicReference<QNode> head = queueFor(phase);
936 <        QNode q;
937 <        int p;
935 >        QNode q;   // first element of queue
936 >        Thread t;  // its thread
937 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
938          while ((q = head.get()) != null &&
939 <               ((p = q.phase) == phase ||
940 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
941 <            if (head.compareAndSet(q, q.next))
942 <                q.signal();
939 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
940 >            if (head.compareAndSet(q, q.next) &&
941 >                (t = q.thread) != null) {
942 >                q.thread = null;
943 >                LockSupport.unpark(t);
944 >            }
945          }
946      }
947  
948      /**
949 <     * Tries to enqueue given node in the appropriate wait queue.
949 >     * Variant of releaseWaiters that additionally tries to remove any
950 >     * nodes no longer waiting for advance due to timeout or
951 >     * interrupt. Currently, nodes are removed only if they are at
952 >     * head of queue, which suffices to reduce memory footprint in
953 >     * most usages.
954       *
955 <     * @return true if successful
955 >     * @return current phase on exit
956       */
957 <    private boolean tryEnqueue(int phase, QNode node) {
958 <        releaseWaiters(phase-1); // ensure old queue clean
959 <        AtomicReference<QNode> head = queueFor(phase);
960 <        QNode q = head.get();
961 <        return ((q == null || q.phase == phase) &&
962 <                (int)(root.state >>> PHASE_SHIFT) == phase &&
963 <                head.compareAndSet(node.next = q, node));
957 >    private int abortWait(int phase) {
958 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
959 >        for (;;) {
960 >            Thread t;
961 >            QNode q = head.get();
962 >            int p = (int)(root.state >>> PHASE_SHIFT);
963 >            if (q == null || ((t = q.thread) != null && q.phase == p))
964 >                return p;
965 >            if (head.compareAndSet(q, q.next) && t != null) {
966 >                q.thread = null;
967 >                LockSupport.unpark(t);
968 >            }
969 >        }
970      }
971  
972      /** The number of CPUs, for spin control */
# Line 842 | Line 980 | public class Phaser {
980       * avoid it when threads regularly arrive: When a thread in
981       * internalAwaitAdvance notices another arrival before blocking,
982       * and there appear to be enough CPUs available, it spins
983 <     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
984 <     * uniprocessors, there is at least one intervening Thread.yield
847 <     * before blocking. The value trades off good-citizenship vs big
848 <     * unnecessary slowdowns.
983 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
984 >     * off good-citizenship vs big unnecessary slowdowns.
985       */
986      static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
987  
988      /**
989       * Possibly blocks and waits for phase to advance unless aborted.
990 +     * Call only from root node.
991       *
992       * @param phase current phase
993       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 858 | Line 995 | public class Phaser {
995       * @return current phase
996       */
997      private int internalAwaitAdvance(int phase, QNode node) {
998 <        Phaser current = this;       // to eventually wait at root if tiered
999 <        boolean queued = false;      // true when node is enqueued
1000 <        int lastUnarrived = -1;      // to increase spins upon change
998 >        releaseWaiters(phase-1);          // ensure old queue clean
999 >        boolean queued = false;           // true when node is enqueued
1000 >        int lastUnarrived = 0;            // to increase spins upon change
1001          int spins = SPINS_PER_ARRIVAL;
1002 <        for (;;) {
1003 <            int p, unarrived;
1004 <            Phaser par;
1005 <            long s = current.state;
1006 <            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
1007 <                if (node != null)
1008 <                    node.onRelease();
872 <                releaseWaiters(phase);
873 <                return p;
874 <            }
875 <            else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0 &&
876 <                     (par = current.parent) != null) {
877 <                current = par;       // if all arrived, use parent
878 <                par = par.parent;
879 <                lastUnarrived = -1;
880 <            }
881 <            else if (unarrived != lastUnarrived) {
882 <                if ((lastUnarrived = unarrived) < NCPU)
1002 >        long s;
1003 >        int p;
1004 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1005 >            if (node == null) {           // spinning in noninterruptible mode
1006 >                int unarrived = (int)s & UNARRIVED_MASK;
1007 >                if (unarrived != lastUnarrived &&
1008 >                    (lastUnarrived = unarrived) < NCPU)
1009                      spins += SPINS_PER_ARRIVAL;
1010 +                boolean interrupted = Thread.interrupted();
1011 +                if (interrupted || --spins < 0) { // need node to record intr
1012 +                    node = new QNode(this, phase, false, false, 0L);
1013 +                    node.wasInterrupted = interrupted;
1014 +                }
1015              }
1016 <            else if (spins > 0) {
1017 <                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
1018 <                    Thread.yield();  // yield midway through spin
1019 <            }
1020 <            else if (node == null)   // must be noninterruptible
1021 <                node = new QNode(this, phase, false, false, 0L);
1022 <            else if (node.isReleasable()) {
1023 <                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
893 <                    return phase;    // aborted
1016 >            else if (node.isReleasable()) // done or aborted
1017 >                break;
1018 >            else if (!queued) {           // push onto queue
1019 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1020 >                QNode q = node.next = head.get();
1021 >                if ((q == null || q.phase == phase) &&
1022 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1023 >                    queued = head.compareAndSet(q, node);
1024              }
895            else if (!queued)
896                queued = tryEnqueue(phase, node);
1025              else {
1026                  try {
1027                      ForkJoinPool.managedBlock(node);
# Line 902 | Line 1030 | public class Phaser {
1030                  }
1031              }
1032          }
1033 +
1034 +        if (node != null) {
1035 +            if (node.thread != null)
1036 +                node.thread = null;       // avoid need for unpark()
1037 +            if (node.wasInterrupted && !node.interruptible)
1038 +                Thread.currentThread().interrupt();
1039 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1040 +                return abortWait(phase); // possibly clean up on abort
1041 +        }
1042 +        releaseWaiters(phase);
1043 +        return p;
1044      }
1045  
1046      /**
# Line 925 | Line 1064 | public class Phaser {
1064              this.interruptible = interruptible;
1065              this.nanos = nanos;
1066              this.timed = timed;
1067 <            this.lastTime = timed? System.nanoTime() : 0L;
1067 >            this.lastTime = timed ? System.nanoTime() : 0L;
1068              thread = Thread.currentThread();
1069          }
1070  
1071          public boolean isReleasable() {
1072 <            Thread t = thread;
1073 <            if (t != null) {
1074 <                if (phaser.getPhase() != phase)
936 <                    t = null;
937 <                else {
938 <                    if (Thread.interrupted())
939 <                        wasInterrupted = true;
940 <                    if (interruptible && wasInterrupted)
941 <                        t = null;
942 <                    else if (timed) {
943 <                        if (nanos > 0) {
944 <                            long now = System.nanoTime();
945 <                            nanos -= now - lastTime;
946 <                            lastTime = now;
947 <                        }
948 <                        if (nanos <= 0)
949 <                            t = null;
950 <                    }
951 <                }
952 <                if (t != null)
953 <                    return false;
1072 >            if (thread == null)
1073 >                return true;
1074 >            if (phaser.getPhase() != phase) {
1075                  thread = null;
1076 +                return true;
1077              }
1078 <            return true;
1078 >            if (Thread.interrupted())
1079 >                wasInterrupted = true;
1080 >            if (wasInterrupted && interruptible) {
1081 >                thread = null;
1082 >                return true;
1083 >            }
1084 >            if (timed) {
1085 >                if (nanos > 0L) {
1086 >                    long now = System.nanoTime();
1087 >                    nanos -= now - lastTime;
1088 >                    lastTime = now;
1089 >                }
1090 >                if (nanos <= 0L) {
1091 >                    thread = null;
1092 >                    return true;
1093 >                }
1094 >            }
1095 >            return false;
1096          }
1097  
1098          public boolean block() {
# Line 965 | Line 1104 | public class Phaser {
1104                  LockSupport.parkNanos(this, nanos);
1105              return isReleasable();
1106          }
968
969        void signal() {
970            Thread t = thread;
971            if (t != null) {
972                thread = null;
973                LockSupport.unpark(t);
974            }
975        }
976
977        void onRelease() { // actions upon return from internalAwaitAdvance
978            if (!interruptible && wasInterrupted)
979                Thread.currentThread().interrupt();
980            if (thread != null)
981                thread = null;
982        }
983
1107      }
1108  
1109      // Unsafe mechanics
1110  
1111 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1112 <    private static final long stateOffset =
1113 <        objectFieldOffset("state", Phaser.class);
991 <
992 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1111 >    private static final sun.misc.Unsafe UNSAFE;
1112 >    private static final long stateOffset;
1113 >    static {
1114          try {
1115 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1116 <        } catch (NoSuchFieldException e) {
1117 <            // Convert Exception to corresponding Error
1118 <            NoSuchFieldError error = new NoSuchFieldError(field);
1119 <            error.initCause(e);
1120 <            throw error;
1115 >            UNSAFE = getUnsafe();
1116 >            Class k = Phaser.class;
1117 >            stateOffset = UNSAFE.objectFieldOffset
1118 >                (k.getDeclaredField("state"));
1119 >        } catch (Exception e) {
1120 >            throw new Error(e);
1121          }
1122      }
1123  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines