ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.36 by dl, Sun Aug 23 20:12:24 2009 UTC vs.
Revision 1.57 by dl, Fri Nov 19 16:03:24 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties <em>registered</em> to synchronize on a
23 < * phaser may vary over time.  Tasks may be registered at any time
24 < * (using methods {@link #register}, {@link #bulkRegister}, or forms
25 < * of constructors establishing initial numbers of parties), and may
26 < * optionally be deregistered upon any arrival (using {@link
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26   * #arriveAndDeregister}).  As is the case with most basic
27   * synchronization constructs, registration and deregistration affect
28   * only internal counts; they do not establish any further internal
29 < * bookkeeping, so tasks cannot query whether they are
30 < * registered. (However, you can introduce such bookkeeping by
31 < * subclassing this class.)
32 < *
33 < * <li> Each generation has an associated phase number. The phase
34 < * number starts at zero, amd advances when all parties arrive at the
35 < * barrier, wrapping around to zero after reaching {@code
36 < * Integer.MAX_VALUE}.
37 < *
38 < * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
39 < * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
40 < * analogous to {@link java.util.concurrent.CyclicBarrier#await
41 < * CyclicBarrier.await}.  However, phasers separate two aspects of
42 < * coordination, which may also be invoked independently:
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} do not block, but return
49 < *       an associated <em>arrival phase number</em>;
50 < *       that is, the phase number of the barrier to which the
51 < *       arrival applied.
52 < *
53 < *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
54 < *       argument indicating an arrival phase number, and returns
55 < *       when the barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance, are arranged by overriding method {@link #onAdvance(int,
79 < * int)}, which also controls termination. Overriding this method is
80 < * similar to, but more flexible than, providing a barrier action to a
81 < * {@code CyclicBarrier}.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
65 < * actions immediately return without updating phaser state or waiting
66 < * for advance, and indicating (via a negative phase value) that
67 < * execution is complete.  Termination is triggered when an invocation
68 < * of {@code onAdvance} returns {@code true}.  When a phaser is
69 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84   * often convenient to override this method to cause termination when
85   * the current phase number reaches a threshold. Method {@link
86   * #forceTermination} is also available to abruptly release waiting
87   * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * {@code CyclicBarrier}, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
86 < * within handlers of those exceptions, often after invoking
87 < * {@code forceTermination}.
88 < *
89 < * <li>Phasers may be used to coordinate tasks executing in a {@link
90 < * ForkJoinPool}, which will ensure sufficient parallelism to execute
91 < * tasks when others are blocked waiting for a phase to advance.
92 < *
93 < * <li>The current state of a phaser may be monitored.  At any given
94 < * moment there are {@link #getRegisteredParties}, where {@link
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101   * #getArrivedParties} have arrived at the current phase ({@link
102 < * #getPhase}). When the remaining {@link #getUnarrivedParties})
103 < * arrive, the phase advances. Method {@link #toString} returns
104 < * snapshots of these state queries in a form convenient for
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107   * informal monitoring.
108   *
101 * </ul>
102 *
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117   * void runTasks(List<Runnable> tasks) {
# Line 131 | Line 137 | import java.util.concurrent.locks.LockSu
137   *  <pre> {@code
138   * void startTasks(List<Runnable> tasks, final int iterations) {
139   *   final Phaser phaser = new Phaser() {
140 < *     public boolean onAdvance(int phase, int registeredParties) {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141   *       return phase >= iterations || registeredParties == 0;
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable task : tasks) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150   *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157   * }}</pre>
158   *
159 + * If the main task must later await termination, it
160 + * may re-register and then execute a similar loop:
161 + *  <pre> {@code
162 + *   // ...
163 + *   phaser.register();
164 + *   while (!phaser.isTerminated())
165 + *     phaser.arriveAndAwaitAdvance();}</pre>
166 + *
167 + * <p>Related constructions may be used to await particular phase numbers
168 + * in contexts where you are sure that the phase will never wrap around
169 + * {@code Integer.MAX_VALUE}. For example:
170 + *
171 + *  <pre> {@code
172 + * void awaitPhase(Phaser phaser, int phase) {
173 + *   int p = phaser.register(); // assumes caller not already registered
174 + *   while (p < phase) {
175 + *     if (phaser.isTerminated())
176 + *       // ... deal with unexpected termination
177 + *     else
178 + *       p = phaser.arriveAndAwaitAdvance();
179 + *   }
180 + *   phaser.arriveAndDeregister();
181 + * }}</pre>
182 + *
183 + *
184   * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
163 < *       int r = Math.min(i + step, hi);
164 < *       build(actions, i, r, new Phaser(b));
165 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 178 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
181 * </pre>
182 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212   * parties result in {@code IllegalStateException}. However, you can and
# Line 200 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
213     *
214     * Note: there are some cheats in arrive() that rely on unarrived
215     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
239    private static long stateFor(int phase, int parties, int unarrived) {
240        return ((((long) phase) << 32) | (((long) parties) << 16) |
241                (long) unarrived);
242    }
243
244    private static long trippedStateFor(int phase, int parties) {
245        long lp = (long) parties;
246        return (((long) phase) << 32) | (lp << 16) | lp;
247    }
248
249    /**
250     * Returns message string for bad bounds exceptions.
251     */
252    private static String badBounds(int parties, int unarrived) {
253        return ("Attempt to set " + unarrived +
254                " unarrived of " + parties + " parties");
255    }
256
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 265 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
268    // Wait queues
269
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357       */
358 <    private long getReconciledState() {
359 <        return (parent == null) ? state : reconcileState();
358 >    private int doRegister(int registrations) {
359 >        // assert registrations > 0;
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int phase = (int)(s >>> PHASE_SHIFT);
366 >            if (phase < 0)
367 >                return phase;
368 >            int parties = (int)s >>> PARTIES_SHIFT;
369 >            if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376      }
377  
378      /**
379 <     * Recursively resolves state.
379 >     * Returns message string for out of bounds exceptions on registration.
380 >     */
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384 >    }
385 >
386 >    /**
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388       */
389      private long reconcileState() {
390 <        Phaser p = parent;
390 >        Phaser par = parent;
391          long s = state;
392 <        if (p != null) {
393 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
394 <                long parentState = p.getReconciledState();
395 <                int parentPhase = phaseOf(parentState);
396 <                int phase = phaseOf(s = state);
397 <                if (phase != parentPhase) {
398 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
399 <                    if (casState(s, next)) {
400 <                        releaseWaiters(phase);
401 <                        s = next;
402 <                    }
392 >        if (par != null) {
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406 >                        break;
407                  }
408 +                s = state;
409              }
410          }
411          return s;
# Line 316 | Line 417 | public class Phaser {
417       * phaser will need to first register for it.
418       */
419      public Phaser() {
420 <        this(null);
420 >        this(null, 0);
421      }
422  
423      /**
424 <     * Creates a new phaser with the given numbers of registered
424 >     * Creates a new phaser with the given number of registered
425       * unarrived parties, initial phase number 0, and no parent.
426       *
427       * @param parties the number of parties required to trip barrier
# Line 340 | Line 441 | public class Phaser {
441       * @param parent the parent phaser
442       */
443      public Phaser(Phaser parent) {
444 <        int phase = 0;
344 <        this.parent = parent;
345 <        if (parent != null) {
346 <            this.root = parent.root;
347 <            phase = parent.register();
348 <        }
349 <        else
350 <            this.root = this;
351 <        this.state = trippedStateFor(phase, 0);
444 >        this(parent, 0);
445      }
446  
447      /**
448 <     * Creates a new phaser with the given parent and numbers of
448 >     * Creates a new phaser with the given parent and number of
449       * registered unarrived parties. If parent is non-null, this phaser
450       * is registered with the parent and its initial phase number is
451       * the same as that of parent phaser.
# Line 363 | Line 456 | public class Phaser {
456       * or greater than the maximum number of parties supported
457       */
458      public Phaser(Phaser parent, int parties) {
459 <        if (parties < 0 || parties > ushortMask)
459 >        if (parties >>> PARTIES_SHIFT != 0)
460              throw new IllegalArgumentException("Illegal number of parties");
461 <        int phase = 0;
461 >        int phase;
462          this.parent = parent;
463          if (parent != null) {
464 <            this.root = parent.root;
464 >            Phaser r = parent.root;
465 >            this.root = r;
466 >            this.evenQ = r.evenQ;
467 >            this.oddQ = r.oddQ;
468              phase = parent.register();
469          }
470 <        else
470 >        else {
471              this.root = this;
472 <        this.state = trippedStateFor(phase, parties);
472 >            this.evenQ = new AtomicReference<QNode>();
473 >            this.oddQ = new AtomicReference<QNode>();
474 >            phase = 0;
475 >        }
476 >        long p = (long)parties;
477 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478      }
479  
480      /**
481       * Adds a new unarrived party to this phaser.
482 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
483 +     * this method may wait until its completion before registering.
484       *
485       * @return the arrival phase number to which this registration applied
486       * @throws IllegalStateException if attempting to register more
# Line 389 | Line 492 | public class Phaser {
492  
493      /**
494       * Adds the given number of new unarrived parties to this phaser.
495 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
496 +     * this method may wait until its completion before registering.
497       *
498 <     * @param parties the number of parties required to trip barrier
498 >     * @param parties the number of additional parties required to trip barrier
499       * @return the arrival phase number to which this registration applied
500       * @throws IllegalStateException if attempting to register more
501       * than the maximum supported number of parties
502 +     * @throws IllegalArgumentException if {@code parties < 0}
503       */
504      public int bulkRegister(int parties) {
505          if (parties < 0)
# Line 404 | Line 510 | public class Phaser {
510      }
511  
512      /**
407     * Shared code for register, bulkRegister
408     */
409    private int doRegister(int registrations) {
410        int phase;
411        for (;;) {
412            long s = getReconciledState();
413            phase = phaseOf(s);
414            int unarrived = unarrivedOf(s) + registrations;
415            int parties = partiesOf(s) + registrations;
416            if (phase < 0)
417                break;
418            if (parties > ushortMask || unarrived > ushortMask)
419                throw new IllegalStateException(badBounds(parties, unarrived));
420            if (phase == phaseOf(root.state) &&
421                casState(s, stateFor(phase, parties, unarrived)))
422                break;
423        }
424        return phase;
425    }
426
427    /**
513       * Arrives at the barrier, but does not wait for others.  (You can
514 <     * in turn wait for others via {@link #awaitAdvance}).
514 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
515 >     * unenforced usage error for an unregistered party to invoke this
516 >     * method.
517       *
518       * @return the arrival phase number, or a negative value if terminated
519       * @throws IllegalStateException if not terminated and the number
520       * of unarrived parties would become negative
521       */
522      public int arrive() {
523 <        int phase;
437 <        for (;;) {
438 <            long s = state;
439 <            phase = phaseOf(s);
440 <            if (phase < 0)
441 <                break;
442 <            int parties = partiesOf(s);
443 <            int unarrived = unarrivedOf(s) - 1;
444 <            if (unarrived > 0) {        // Not the last arrival
445 <                if (casState(s, s - 1)) // s-1 adds one arrival
446 <                    break;
447 <            }
448 <            else if (unarrived == 0) {  // the last arrival
449 <                Phaser par = parent;
450 <                if (par == null) {      // directly trip
451 <                    if (casState
452 <                        (s,
453 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
454 <                                         ((phase + 1) & phaseMask), parties))) {
455 <                        releaseWaiters(phase);
456 <                        break;
457 <                    }
458 <                }
459 <                else {                  // cascade to parent
460 <                    if (casState(s, s - 1)) { // zeroes unarrived
461 <                        par.arrive();
462 <                        reconcileState();
463 <                        break;
464 <                    }
465 <                }
466 <            }
467 <            else if (phase != phaseOf(root.state)) // or if unreconciled
468 <                reconcileState();
469 <            else
470 <                throw new IllegalStateException(badBounds(parties, unarrived));
471 <        }
472 <        return phase;
523 >        return doArrive(ONE_ARRIVAL);
524      }
525  
526      /**
# Line 478 | Line 529 | public class Phaser {
529       * required to trip the barrier in future phases.  If this phaser
530       * has a parent, and deregistration causes this phaser to have
531       * zero parties, this phaser also arrives at and is deregistered
532 <     * from its parent.
532 >     * from its parent.  It is an unenforced usage error for an
533 >     * unregistered party to invoke this method.
534       *
535       * @return the arrival phase number, or a negative value if terminated
536       * @throws IllegalStateException if not terminated and the number
537       * of registered or unarrived parties would become negative
538       */
539      public int arriveAndDeregister() {
540 <        // similar code to arrive, but too different to merge
489 <        Phaser par = parent;
490 <        int phase;
491 <        for (;;) {
492 <            long s = state;
493 <            phase = phaseOf(s);
494 <            if (phase < 0)
495 <                break;
496 <            int parties = partiesOf(s) - 1;
497 <            int unarrived = unarrivedOf(s) - 1;
498 <            if (parties >= 0) {
499 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
500 <                    if (casState
501 <                        (s,
502 <                         stateFor(phase, parties, unarrived))) {
503 <                        if (unarrived == 0) {
504 <                            par.arriveAndDeregister();
505 <                            reconcileState();
506 <                        }
507 <                        break;
508 <                    }
509 <                    continue;
510 <                }
511 <                if (unarrived == 0) {
512 <                    if (casState
513 <                        (s,
514 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
515 <                                         ((phase + 1) & phaseMask), parties))) {
516 <                        releaseWaiters(phase);
517 <                        break;
518 <                    }
519 <                    continue;
520 <                }
521 <                if (par != null && phase != phaseOf(root.state)) {
522 <                    reconcileState();
523 <                    continue;
524 <                }
525 <            }
526 <            throw new IllegalStateException(badBounds(parties, unarrived));
527 <        }
528 <        return phase;
540 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
541      }
542  
543      /**
544       * Arrives at the barrier and awaits others. Equivalent in effect
545       * to {@code awaitAdvance(arrive())}.  If you need to await with
546       * interruption or timeout, you can arrange this with an analogous
547 <     * construction using one of the other forms of the awaitAdvance
548 <     * method.  If instead you need to deregister upon arrival use
549 <     * {@code arriveAndDeregister}.
547 >     * construction using one of the other forms of the {@code
548 >     * awaitAdvance} method.  If instead you need to deregister upon
549 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
550 >     * usage error for an unregistered party to invoke this method.
551       *
552       * @return the arrival phase number, or a negative number if terminated
553       * @throws IllegalStateException if not terminated and the number
# Line 559 | Line 572 | public class Phaser {
572      public int awaitAdvance(int phase) {
573          if (phase < 0)
574              return phase;
575 <        long s = getReconciledState();
576 <        int p = phaseOf(s);
577 <        if (p != phase)
565 <            return p;
566 <        if (unarrivedOf(s) == 0 && parent != null)
567 <            parent.awaitAdvance(phase);
568 <        // Fall here even if parent waited, to reconcile and help release
569 <        return untimedWait(phase);
575 >        long s = (parent == null) ? state : reconcileState();
576 >        int p = (int)(s >>> PHASE_SHIFT);
577 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
578      }
579  
580      /**
581       * Awaits the phase of the barrier to advance from the given phase
582 <     * value, throwing {@code InterruptedException} if interrupted while
583 <     * waiting, or returning immediately if the current phase of the
584 <     * barrier is not equal to the given phase value or this barrier
585 <     * is terminated.
582 >     * value, throwing {@code InterruptedException} if interrupted
583 >     * while waiting, or returning immediately if the current phase of
584 >     * the barrier is not equal to the given phase value or this
585 >     * barrier is terminated.
586       *
587       * @param phase an arrival phase number, or negative value if
588       * terminated; this argument is normally the value returned by a
# Line 587 | Line 595 | public class Phaser {
595          throws InterruptedException {
596          if (phase < 0)
597              return phase;
598 <        long s = getReconciledState();
599 <        int p = phaseOf(s);
600 <        if (p != phase)
601 <            return p;
602 <        if (unarrivedOf(s) == 0 && parent != null)
603 <            parent.awaitAdvanceInterruptibly(phase);
604 <        return interruptibleWait(phase);
598 >        long s = (parent == null) ? state : reconcileState();
599 >        int p = (int)(s >>> PHASE_SHIFT);
600 >        if (p == phase) {
601 >            QNode node = new QNode(this, phase, true, false, 0L);
602 >            p = internalAwaitAdvance(phase, node);
603 >            if (node.wasInterrupted)
604 >                throw new InterruptedException();
605 >        }
606 >        return p;
607      }
608  
609      /**
610       * Awaits the phase of the barrier to advance from the given phase
611 <     * value or the given timeout to elapse, throwing
612 <     * {@code InterruptedException} if interrupted while waiting, or
613 <     * returning immediately if the current phase of the barrier is not
614 <     * equal to the given phase value or this barrier is terminated.
611 >     * value or the given timeout to elapse, throwing {@code
612 >     * InterruptedException} if interrupted while waiting, or
613 >     * returning immediately if the current phase of the barrier is
614 >     * not equal to the given phase value or this barrier is
615 >     * terminated.
616       *
617       * @param phase an arrival phase number, or negative value if
618       * terminated; this argument is normally the value returned by a
# Line 620 | Line 631 | public class Phaser {
631          throws InterruptedException, TimeoutException {
632          if (phase < 0)
633              return phase;
634 <        long s = getReconciledState();
635 <        int p = phaseOf(s);
636 <        if (p != phase)
637 <            return p;
638 <        if (unarrivedOf(s) == 0 && parent != null)
639 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
640 <        return timedWait(phase, unit.toNanos(timeout));
634 >        long s = (parent == null) ? state : reconcileState();
635 >        int p = (int)(s >>> PHASE_SHIFT);
636 >        if (p == phase) {
637 >            long nanos = unit.toNanos(timeout);
638 >            QNode node = new QNode(this, phase, true, true, nanos);
639 >            p = internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >            else if (p == phase)
643 >                throw new TimeoutException();
644 >        }
645 >        return p;
646      }
647  
648      /**
649 <     * Forces this barrier to enter termination state. Counts of
650 <     * arrived and registered parties are unaffected. If this phaser
651 <     * has a parent, it too is terminated. This method may be useful
652 <     * for coordinating recovery after one or more tasks encounter
653 <     * unexpected exceptions.
649 >     * Forces this barrier to enter termination state.  Counts of
650 >     * arrived and registered parties are unaffected.  If this phaser
651 >     * is a member of a tiered set of phasers, then all of the phasers
652 >     * in the set are terminated.  If this phaser is already
653 >     * terminated, this method has no effect.  This method may be
654 >     * useful for coordinating recovery after one or more tasks
655 >     * encounter unexpected exceptions.
656       */
657      public void forceTermination() {
658 <        for (;;) {
659 <            long s = getReconciledState();
660 <            int phase = phaseOf(s);
661 <            int parties = partiesOf(s);
662 <            int unarrived = unarrivedOf(s);
663 <            if (phase < 0 ||
664 <                casState(s, stateFor(-1, parties, unarrived))) {
647 <                releaseWaiters(0);
658 >        // Only need to change root state
659 >        final Phaser root = this.root;
660 >        long s;
661 >        while ((s = root.state) >= 0) {
662 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
663 >                                          s, s | TERMINATION_PHASE)) {
664 >                releaseWaiters(0); // signal all threads
665                  releaseWaiters(1);
649                if (parent != null)
650                    parent.forceTermination();
666                  return;
667              }
668          }
# Line 661 | Line 676 | public class Phaser {
676       * @return the phase number, or a negative value if terminated
677       */
678      public final int getPhase() {
679 <        return phaseOf(getReconciledState());
679 >        return (int)(root.state >>> PHASE_SHIFT);
680      }
681  
682      /**
# Line 680 | Line 695 | public class Phaser {
695       * @return the number of arrived parties
696       */
697      public int getArrivedParties() {
698 <        return arrivedOf(state);
698 >        return arrivedOf(parent==null? state : reconcileState());
699      }
700  
701      /**
# Line 690 | Line 705 | public class Phaser {
705       * @return the number of unarrived parties
706       */
707      public int getUnarrivedParties() {
708 <        return unarrivedOf(state);
708 >        return unarrivedOf(parent==null? state : reconcileState());
709      }
710  
711      /**
# Line 718 | Line 733 | public class Phaser {
733       * @return {@code true} if this barrier has been terminated
734       */
735      public boolean isTerminated() {
736 <        return getPhase() < 0;
736 >        return root.state < 0L;
737      }
738  
739      /**
740 <     * Overridable method to perform an action upon phase advance, and
741 <     * to control termination. This method is invoked whenever the
742 <     * barrier is tripped (and thus all other waiting parties are
743 <     * dormant). If it returns {@code true}, then, rather than advance
744 <     * the phase number, this barrier will be set to a final
745 <     * termination state, and subsequent calls to {@link #isTerminated}
746 <     * will return true.
740 >     * Overridable method to perform an action upon impending phase
741 >     * advance, and to control termination. This method is invoked
742 >     * upon arrival of the party tripping the barrier (when all other
743 >     * waiting parties are dormant).  If this method returns {@code
744 >     * true}, then, rather than advance the phase number, this barrier
745 >     * will be set to a final termination state, and subsequent calls
746 >     * to {@link #isTerminated} will return true. Any (unchecked)
747 >     * Exception or Error thrown by an invocation of this method is
748 >     * propagated to the party attempting to trip the barrier, in
749 >     * which case no advance occurs.
750 >     *
751 >     * <p>The arguments to this method provide the state of the phaser
752 >     * prevailing for the current transition.  The effects of invoking
753 >     * arrival, registration, and waiting methods on this Phaser from
754 >     * within {@code onAdvance} are unspecified and should not be
755 >     * relied on.
756 >     *
757 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
758 >     * {@code onAdvance} is invoked only for its root Phaser on each
759 >     * advance.
760       *
761       * <p>The default version returns {@code true} when the number of
762       * registered parties is zero. Normally, overrides that arrange
763       * termination for other reasons should also preserve this
764       * property.
765       *
738     * <p>You may override this method to perform an action with side
739     * effects visible to participating tasks, but it is in general
740     * only sensible to do so in designs where all parties register
741     * before any arrive, and all {@link #awaitAdvance} at each phase.
742     * Otherwise, you cannot ensure lack of interference from other
743     * parties during the invocation of this method.
744     *
766       * @param phase the phase number on entering the barrier
767       * @param registeredParties the current number of registered parties
768       * @return {@code true} if this barrier should terminate
# Line 760 | Line 781 | public class Phaser {
781       * @return a string identifying this barrier, as well as its state
782       */
783      public String toString() {
784 <        long s = getReconciledState();
784 >        return stateToString(reconcileState());
785 >    }
786 >
787 >    /**
788 >     * Implementation of toString and string-based error messages
789 >     */
790 >    private String stateToString(long s) {
791          return super.toString() +
792              "[phase = " + phaseOf(s) +
793              " parties = " + partiesOf(s) +
794              " arrived = " + arrivedOf(s) + "]";
795      }
796  
797 <    // methods for waiting
797 >    // Waiting mechanics
798 >
799 >    /**
800 >     * Removes and signals threads from queue for phase.
801 >     */
802 >    private void releaseWaiters(int phase) {
803 >        AtomicReference<QNode> head = queueFor(phase);
804 >        QNode q;
805 >        int p;
806 >        while ((q = head.get()) != null &&
807 >               ((p = q.phase) == phase ||
808 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
809 >            if (head.compareAndSet(q, q.next))
810 >                q.signal();
811 >        }
812 >    }
813 >
814 >    /** The number of CPUs, for spin control */
815 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
816 >
817 >    /**
818 >     * The number of times to spin before blocking while waiting for
819 >     * advance, per arrival while waiting. On multiprocessors, fully
820 >     * blocking and waking up a large number of threads all at once is
821 >     * usually a very slow process, so we use rechargeable spins to
822 >     * avoid it when threads regularly arrive: When a thread in
823 >     * internalAwaitAdvance notices another arrival before blocking,
824 >     * and there appear to be enough CPUs available, it spins
825 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
826 >     * uniprocessors, there is at least one intervening Thread.yield
827 >     * before blocking. The value trades off good-citizenship vs big
828 >     * unnecessary slowdowns.
829 >     */
830 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
831 >
832 >    /**
833 >     * Possibly blocks and waits for phase to advance unless aborted.
834 >     *
835 >     * @param phase current phase
836 >     * @param node if non-null, the wait node to track interrupt and timeout;
837 >     * if null, denotes noninterruptible wait
838 >     * @return current phase
839 >     */
840 >    private int internalAwaitAdvance(int phase, QNode node) {
841 >        Phaser current = this;       // to eventually wait at root if tiered
842 >        boolean queued = false;      // true when node is enqueued
843 >        int lastUnarrived = -1;      // to increase spins upon change
844 >        int spins = SPINS_PER_ARRIVAL;
845 >        long s;
846 >        int p;
847 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
848 >            Phaser par;
849 >            int unarrived = (int)s & UNARRIVED_MASK;
850 >            if (unarrived != lastUnarrived) {
851 >                if (lastUnarrived == -1) // ensure old queue clean
852 >                    releaseWaiters(phase-1);
853 >                if ((lastUnarrived = unarrived) < NCPU)
854 >                    spins += SPINS_PER_ARRIVAL;
855 >            }
856 >            else if (unarrived == 0 && (par = current.parent) != null) {
857 >                current = par;       // if all arrived, use parent
858 >                par = par.parent;
859 >                lastUnarrived = -1;
860 >            }
861 >            else if (spins > 0) {
862 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863 >                    Thread.yield();  // yield midway through spin
864 >            }
865 >            else if (node == null)   // must be noninterruptible
866 >                node = new QNode(this, phase, false, false, 0L);
867 >            else if (node.isReleasable()) {
868 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869 >                    break;
870 >                else
871 >                    return phase;    // aborted
872 >            }
873 >            else if (!queued) {      // push onto queue
874 >                AtomicReference<QNode> head = queueFor(phase);
875 >                QNode q = head.get();
876 >                if (q == null || q.phase == phase) {
877 >                    node.next = q;
878 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879 >                        break;       // recheck to avoid stale enqueue
880 >                    else
881 >                        queued = head.compareAndSet(q, node);
882 >                }
883 >            }
884 >            else {
885 >                try {
886 >                    ForkJoinPool.managedBlock(node);
887 >                } catch (InterruptedException ie) {
888 >                    node.wasInterrupted = true;
889 >                }
890 >            }
891 >        }
892 >        releaseWaiters(phase);
893 >        if (node != null)
894 >            node.onRelease();
895 >        return p;
896 >    }
897  
898      /**
899       * Wait nodes for Treiber stack representing wait queue
# Line 775 | Line 901 | public class Phaser {
901      static final class QNode implements ForkJoinPool.ManagedBlocker {
902          final Phaser phaser;
903          final int phase;
778        final long startTime;
779        final long nanos;
780        final boolean timed;
904          final boolean interruptible;
905 <        volatile boolean wasInterrupted = false;
905 >        final boolean timed;
906 >        boolean wasInterrupted;
907 >        long nanos;
908 >        long lastTime;
909          volatile Thread thread; // nulled to cancel wait
910          QNode next;
911 +
912          QNode(Phaser phaser, int phase, boolean interruptible,
913 <              boolean timed, long startTime, long nanos) {
913 >              boolean timed, long nanos) {
914              this.phaser = phaser;
915              this.phase = phase;
789            this.timed = timed;
916              this.interruptible = interruptible;
791            this.startTime = startTime;
917              this.nanos = nanos;
918 +            this.timed = timed;
919 +            this.lastTime = timed? System.nanoTime() : 0L;
920              thread = Thread.currentThread();
921          }
922 +
923          public boolean isReleasable() {
924 <            return (thread == null ||
925 <                    phaser.getPhase() != phase ||
926 <                    (interruptible && wasInterrupted) ||
927 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
924 >            Thread t = thread;
925 >            if (t != null) {
926 >                if (phaser.getPhase() != phase)
927 >                    t = null;
928 >                else {
929 >                    if (Thread.interrupted())
930 >                        wasInterrupted = true;
931 >                    if (interruptible && wasInterrupted)
932 >                        t = null;
933 >                    else if (timed) {
934 >                        if (nanos > 0) {
935 >                            long now = System.nanoTime();
936 >                            nanos -= now - lastTime;
937 >                            lastTime = now;
938 >                        }
939 >                        if (nanos <= 0)
940 >                            t = null;
941 >                    }
942 >                }
943 >                if (t != null)
944 >                    return false;
945 >                thread = null;
946 >            }
947 >            return true;
948          }
949 +
950          public boolean block() {
951 <            if (Thread.interrupted()) {
952 <                wasInterrupted = true;
953 <                if (interruptible)
805 <                    return true;
806 <            }
807 <            if (!timed)
951 >            if (isReleasable())
952 >                return true;
953 >            else if (!timed)
954                  LockSupport.park(this);
955 <            else {
956 <                long waitTime = nanos - (System.nanoTime() - startTime);
811 <                if (waitTime <= 0)
812 <                    return true;
813 <                LockSupport.parkNanos(this, waitTime);
814 <            }
955 >            else if (nanos > 0)
956 >                LockSupport.parkNanos(this, nanos);
957              return isReleasable();
958          }
959 +
960          void signal() {
961              Thread t = thread;
962              if (t != null) {
# Line 821 | Line 964 | public class Phaser {
964                  LockSupport.unpark(t);
965              }
966          }
824        boolean doWait() {
825            if (thread != null) {
826                try {
827                    ForkJoinPool.managedBlock(this, false);
828                } catch (InterruptedException ie) {
829                }
830            }
831            return wasInterrupted;
832        }
833
834    }
835
836    /**
837     * Removes and signals waiting threads from wait queue.
838     */
839    private void releaseWaiters(int phase) {
840        AtomicReference<QNode> head = queueFor(phase);
841        QNode q;
842        while ((q = head.get()) != null) {
843            if (head.compareAndSet(q, q.next))
844                q.signal();
845        }
846    }
847
848    /**
849     * Tries to enqueue given node in the appropriate wait queue.
850     *
851     * @return true if successful
852     */
853    private boolean tryEnqueue(QNode node) {
854        AtomicReference<QNode> head = queueFor(node.phase);
855        return head.compareAndSet(node.next = head.get(), node);
856    }
857
858    /**
859     * Enqueues node and waits unless aborted or signalled.
860     *
861     * @return current phase
862     */
863    private int untimedWait(int phase) {
864        QNode node = null;
865        boolean queued = false;
866        boolean interrupted = false;
867        int p;
868        while ((p = getPhase()) == phase) {
869            if (Thread.interrupted())
870                interrupted = true;
871            else if (node == null)
872                node = new QNode(this, phase, false, false, 0, 0);
873            else if (!queued)
874                queued = tryEnqueue(node);
875            else
876                interrupted = node.doWait();
877        }
878        if (node != null)
879            node.thread = null;
880        releaseWaiters(phase);
881        if (interrupted)
882            Thread.currentThread().interrupt();
883        return p;
884    }
967  
968 <    /**
969 <     * Interruptible version
970 <     * @return current phase
971 <     */
972 <    private int interruptibleWait(int phase) throws InterruptedException {
891 <        QNode node = null;
892 <        boolean queued = false;
893 <        boolean interrupted = false;
894 <        int p;
895 <        while ((p = getPhase()) == phase && !interrupted) {
896 <            if (Thread.interrupted())
897 <                interrupted = true;
898 <            else if (node == null)
899 <                node = new QNode(this, phase, true, false, 0, 0);
900 <            else if (!queued)
901 <                queued = tryEnqueue(node);
902 <            else
903 <                interrupted = node.doWait();
968 >        void onRelease() { // actions upon return from internalAwaitAdvance
969 >            if (!interruptible && wasInterrupted)
970 >                Thread.currentThread().interrupt();
971 >            if (thread != null)
972 >                thread = null;
973          }
905        if (node != null)
906            node.thread = null;
907        if (p != phase || (p = getPhase()) != phase)
908            releaseWaiters(phase);
909        if (interrupted)
910            throw new InterruptedException();
911        return p;
912    }
974  
914    /**
915     * Timeout version.
916     * @return current phase
917     */
918    private int timedWait(int phase, long nanos)
919        throws InterruptedException, TimeoutException {
920        long startTime = System.nanoTime();
921        QNode node = null;
922        boolean queued = false;
923        boolean interrupted = false;
924        int p;
925        while ((p = getPhase()) == phase && !interrupted) {
926            if (Thread.interrupted())
927                interrupted = true;
928            else if (nanos - (System.nanoTime() - startTime) <= 0)
929                break;
930            else if (node == null)
931                node = new QNode(this, phase, true, true, startTime, nanos);
932            else if (!queued)
933                queued = tryEnqueue(node);
934            else
935                interrupted = node.doWait();
936        }
937        if (node != null)
938            node.thread = null;
939        if (p != phase || (p = getPhase()) != phase)
940            releaseWaiters(phase);
941        if (interrupted)
942            throw new InterruptedException();
943        if (p == phase)
944            throw new TimeoutException();
945        return p;
975      }
976  
977      // Unsafe mechanics
# Line 951 | Line 980 | public class Phaser {
980      private static final long stateOffset =
981          objectFieldOffset("state", Phaser.class);
982  
954    private final boolean casState(long cmp, long val) {
955        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
956    }
957
983      private static long objectFieldOffset(String field, Class<?> klazz) {
984          try {
985              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines