ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.28 by jsr166, Wed Aug 12 02:24:35 2009 UTC vs.
Revision 1.59 by dl, Sat Nov 27 16:46:53 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 < * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 < * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 < * CyclicBarrier.await}.  However, phasers separate two aspects of
39 < * coordination, which may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance, are arranged by overriding method {@link #onAdvance(int,
79 < * int)}, which also controls termination. Overriding this method is
80 < * similar to, but more flexible than, providing a barrier action to a
81 < * {@code CyclicBarrier}.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
84 < * actions immediately return without updating phaser state or waiting
85 < * for advance, and indicating (via a negative phase value) that
62 < * execution is complete.  Termination is triggered when an invocation
63 < * of {@code onAdvance} returns {@code true}.  When a phaser is
64 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}. The default implementation returns
83 > * {@code true} if a deregistration has caused the number of
84 > * registered parties to become zero.  As illustrated below, when
85 > * phasers control actions with a fixed number of iterations, it is
86   * often convenient to override this method to cause termination when
87   * the current phase number reaches a threshold. Method {@link
88   * #forceTermination} is also available to abruptly release waiting
89   * threads and allow them to terminate.
90   *
91 < * <li> Phasers may be tiered to reduce contention. Phasers with large
92 < * numbers of parties that would otherwise experience heavy
93 < * synchronization contention costs may instead be arranged in trees.
94 < * This will typically greatly increase throughput even though it
95 < * incurs somewhat greater per-operation overhead.
96 < *
97 < * <li> By default, {@code awaitAdvance} continues to wait even if
98 < * the waiting thread is interrupted. And unlike the case in
99 < * {@code CyclicBarrier}, exceptions encountered while tasks wait
100 < * interruptibly or with timeout do not change the state of the
101 < * barrier. If necessary, you can perform any associated recovery
102 < * within handlers of those exceptions, often after invoking
103 < * {@code forceTermination}.
104 < *
105 < * <li>Phasers may be used to coordinate tasks executing in a {@link
106 < * ForkJoinPool}, which will ensure sufficient parallelism to execute
107 < * tasks when others are blocked waiting for a phase to advance.
108 < *
109 < * </ul>
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94 > * synchronization contention costs may instead be set up so that
95 > * groups of sub-phasers share a common parent.  This may greatly
96 > * increase throughput even though it incurs greater per-operation
97 > * overhead.
98 > *
99 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 > * only by registered parties, the current state of a phaser may be
101 > * monitored by any caller.  At any given moment there are {@link
102 > * #getRegisteredParties} parties in total, of which {@link
103 > * #getArrivedParties} have arrived at the current phase ({@link
104 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
105 > * parties arrive, the phase advances.  The values returned by these
106 > * methods may reflect transient states and so are not in general
107 > * useful for synchronization control.  Method {@link #toString}
108 > * returns snapshots of these state queries in a form convenient for
109 > * informal monitoring.
110   *
111   * <p><b>Sample usages:</b>
112   *
113   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 < * to control a one-shot action serving a variable number of
115 < * parties. The typical idiom is for the method setting this up to
116 < * first register, then start the actions, then deregister, as in:
114 > * to control a one-shot action serving a variable number of parties.
115 > * The typical idiom is for the method setting this up to first
116 > * register, then start the actions, then deregister, as in:
117   *
118   *  <pre> {@code
119 < * void runTasks(List<Runnable> list) {
119 > * void runTasks(List<Runnable> tasks) {
120   *   final Phaser phaser = new Phaser(1); // "1" to register self
121   *   // create and start threads
122 < *   for (Runnable r : list) {
122 > *   for (Runnable task : tasks) {
123   *     phaser.register();
124   *     new Thread() {
125   *       public void run() {
126   *         phaser.arriveAndAwaitAdvance(); // await all creation
127 < *         r.run();
127 > *         task.run();
128   *       }
129   *     }.start();
130   *   }
# Line 116 | Line 137 | import java.util.concurrent.locks.LockSu
137   * for a given number of iterations is to override {@code onAdvance}:
138   *
139   *  <pre> {@code
140 < * void startTasks(List<Runnable> list, final int iterations) {
140 > * void startTasks(List<Runnable> tasks, final int iterations) {
141   *   final Phaser phaser = new Phaser() {
142 < *     public boolean onAdvance(int phase, int registeredParties) {
142 > *     protected boolean onAdvance(int phase, int registeredParties) {
143   *       return phase >= iterations || registeredParties == 0;
144   *     }
145   *   };
146   *   phaser.register();
147 < *   for (Runnable r : list) {
147 > *   for (final Runnable task : tasks) {
148   *     phaser.register();
149   *     new Thread() {
150   *       public void run() {
151   *         do {
152 < *           r.run();
152 > *           task.run();
153   *           phaser.arriveAndAwaitAdvance();
154 < *         } while(!phaser.isTerminated();
154 > *         } while (!phaser.isTerminated());
155   *       }
156   *     }.start();
157   *   }
158   *   phaser.arriveAndDeregister(); // deregister self, don't wait
159   * }}</pre>
160   *
161 + * If the main task must later await termination, it
162 + * may re-register and then execute a similar loop:
163 + *  <pre> {@code
164 + *   // ...
165 + *   phaser.register();
166 + *   while (!phaser.isTerminated())
167 + *     phaser.arriveAndAwaitAdvance();}</pre>
168 + *
169 + * <p>Related constructions may be used to await particular phase numbers
170 + * in contexts where you are sure that the phase will never wrap around
171 + * {@code Integer.MAX_VALUE}. For example:
172 + *
173 + *  <pre> {@code
174 + * void awaitPhase(Phaser phaser, int phase) {
175 + *   int p = phaser.register(); // assumes caller not already registered
176 + *   while (p < phase) {
177 + *     if (phaser.isTerminated())
178 + *       // ... deal with unexpected termination
179 + *     else
180 + *       p = phaser.arriveAndAwaitAdvance();
181 + *   }
182 + *   phaser.arriveAndDeregister();
183 + * }}</pre>
184 + *
185 + *
186   * <p>To create a set of tasks using a tree of phasers,
187   * you could use code of the following form, assuming a
188   * Task class with a constructor accepting a phaser that
189 < * it registers for upon construction:
189 > * it registers with upon construction:
190 > *
191   *  <pre> {@code
192 < * void build(Task[] actions, int lo, int hi, Phaser b) {
193 < *   int step = (hi - lo) / TASKS_PER_PHASER;
194 < *   if (step > 1) {
195 < *     int i = lo;
196 < *     while (i < hi) {
150 < *       int r = Math.min(i + step, hi);
151 < *       build(actions, i, r, new Phaser(b));
152 < *       i = r;
192 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
193 > *   if (hi - lo > TASKS_PER_PHASER) {
194 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
195 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
196 > *       build(actions, i, j, new Phaser(ph));
197   *     }
198   *   } else {
199   *     for (int i = lo; i < hi; ++i)
200 < *       actions[i] = new Task(b);
201 < *       // assumes new Task(b) performs b.register()
200 > *       actions[i] = new Task(ph);
201 > *       // assumes new Task(ph) performs ph.register()
202   *   }
203   * }
204   * // .. initially called, for n tasks via
# Line 165 | Line 209 | import java.util.concurrent.locks.LockSu
209   * be appropriate for extremely small per-barrier task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
168 * </pre>
169 *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214 < * parties result in IllegalStateExceptions. However, you can and
214 > * parties result in {@code IllegalStateException}. However, you can and
215   * should create tiered phasers to accommodate arbitrarily large sets
216   * of participants.
217   *
# Line 187 | Line 229 | public class Phaser {
229       * Barrier state representation. Conceptually, a barrier contains
230       * four values:
231       *
232 <     * * parties -- the number of parties to wait (16 bits)
233 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
234 <     * * phase -- the generation of the barrier (31 bits)
235 <     * * terminated -- set if barrier is terminated (1 bit)
232 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
233 >     * * parties -- the number of parties to wait              (bits 16-31)
234 >     * * phase -- the generation of the barrier                (bits 32-62)
235 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
236       *
237       * However, to efficiently maintain atomicity, these values are
238       * packed into a single (atomic) long. Termination uses the sign
239       * bit of 32 bit representation of phase, so phase is set to -1 on
240       * termination. Good performance relies on keeping state decoding
241       * and encoding simple, and keeping race windows short.
200     *
201     * Note: there are some cheats in arrive() that rely on unarrived
202     * count being lowest 16 bits.
242       */
243      private volatile long state;
244  
245 <    private static final int ushortBits = 16;
246 <    private static final int ushortMask = 0xffff;
247 <    private static final int phaseMask  = 0x7fffffff;
245 >    private static final int  MAX_PARTIES     = 0xffff;
246 >    private static final int  MAX_PHASE       = 0x7fffffff;
247 >    private static final int  PARTIES_SHIFT   = 16;
248 >    private static final int  PHASE_SHIFT     = 32;
249 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
250 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251 >    private static final long ONE_ARRIVAL     = 1L;
252 >    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
253 >    private static final long TERMINATION_BIT = 1L << 63;
254 >
255 >    // The following unpacking methods are usually manually inlined
256  
257      private static int unarrivedOf(long s) {
258 <        return (int) (s & ushortMask);
258 >        return (int)s & UNARRIVED_MASK;
259      }
260  
261      private static int partiesOf(long s) {
262 <        return ((int) s) >>> 16;
262 >        return (int)s >>> PARTIES_SHIFT;
263      }
264  
265      private static int phaseOf(long s) {
266 <        return (int) (s >>> 32);
266 >        return (int) (s >>> PHASE_SHIFT);
267      }
268  
269      private static int arrivedOf(long s) {
270          return partiesOf(s) - unarrivedOf(s);
271      }
272  
226    private static long stateFor(int phase, int parties, int unarrived) {
227        return ((((long) phase) << 32) | (((long) parties) << 16) |
228                (long) unarrived);
229    }
230
231    private static long trippedStateFor(int phase, int parties) {
232        long lp = (long) parties;
233        return (((long) phase) << 32) | (lp << 16) | lp;
234    }
235
236    /**
237     * Returns message string for bad bounds exceptions.
238     */
239    private static String badBounds(int parties, int unarrived) {
240        return ("Attempt to set " + unarrived +
241                " unarrived of " + parties + " parties");
242    }
243
273      /**
274       * The parent of this phaser, or null if none
275       */
# Line 252 | Line 281 | public class Phaser {
281       */
282      private final Phaser root;
283  
255    // Wait queues
256
284      /**
285       * Heads of Treiber stacks for waiting threads. To eliminate
286 <     * contention while releasing some threads while adding others, we
286 >     * contention when releasing some threads while adding others, we
287       * use two of them, alternating across even and odd phases.
288 +     * Subphasers share queues with root to speed up releases.
289       */
290 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
291 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
290 >    private final AtomicReference<QNode> evenQ;
291 >    private final AtomicReference<QNode> oddQ;
292  
293      private AtomicReference<QNode> queueFor(int phase) {
294          return ((phase & 1) == 0) ? evenQ : oddQ;
295      }
296  
297      /**
298 <     * Returns current state, first resolving lagged propagation from
271 <     * root if necessary.
298 >     * Returns message string for bounds exceptions on arrival.
299       */
300 <    private long getReconciledState() {
301 <        return (parent == null) ? state : reconcileState();
300 >    private String badArrive(long s) {
301 >        return "Attempted arrival of unregistered party for " +
302 >            stateToString(s);
303      }
304  
305      /**
306 <     * Recursively resolves state.
306 >     * Returns message string for bounds exceptions on registration.
307       */
308 <    private long reconcileState() {
309 <        Phaser p = parent;
310 <        long s = state;
311 <        if (p != null) {
312 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
313 <                long parentState = p.getReconciledState();
314 <                int parentPhase = phaseOf(parentState);
315 <                int phase = phaseOf(s = state);
316 <                if (phase != parentPhase) {
317 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
318 <                    if (casState(s, next)) {
308 >    private String badRegister(long s) {
309 >        return "Attempt to register more than " +
310 >            MAX_PARTIES + " parties for " + stateToString(s);
311 >    }
312 >
313 >    /**
314 >     * Main implementation for methods arrive and arriveAndDeregister.
315 >     * Manually tuned to speed up and minimize race windows for the
316 >     * common case of just decrementing unarrived field.
317 >     *
318 >     * @param adj - adjustment to apply to state -- either
319 >     * ONE_ARRIVAL (for arrive) or
320 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321 >     */
322 >    private int doArrive(long adj) {
323 >        for (;;) {
324 >            long s = state;
325 >            int unarrived = (int)s & UNARRIVED_MASK;
326 >            int phase = (int)(s >>> PHASE_SHIFT);
327 >            if (phase < 0)
328 >                return phase;
329 >            else if (unarrived == 0) {
330 >                if (reconcileState() == s)     // recheck
331 >                    throw new IllegalStateException(badArrive(s));
332 >            }
333 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 >                if (unarrived == 1) {
335 >                    long p = s & PARTIES_MASK; // unshifted parties field
336 >                    long lu = p >>> PARTIES_SHIFT;
337 >                    int u = (int)lu;
338 >                    int nextPhase = (phase + 1) & MAX_PHASE;
339 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 >                    final Phaser parent = this.parent;
341 >                    if (parent == null) {
342 >                        if (onAdvance(phase, u))
343 >                            next |= TERMINATION_BIT;
344 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345                          releaseWaiters(phase);
346 <                        s = next;
346 >                    }
347 >                    else {
348 >                        parent.doArrive((u == 0) ?
349 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
353 >                                                        s, next)))
354 >                            reconcileState();
355                      }
356                  }
357 +                return phase;
358 +            }
359 +        }
360 +    }
361 +
362 +    /**
363 +     * Implementation of register, bulkRegister
364 +     *
365 +     * @param registrations number to add to both parties and
366 +     * unarrived fields. Must be greater than zero.
367 +     */
368 +    private int doRegister(int registrations) {
369 +        // adjustment to state
370 +        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371 +        final Phaser parent = this.parent;
372 +        for (;;) {
373 +            long s = (parent == null) ? state : reconcileState();
374 +            int parties = (int)s >>> PARTIES_SHIFT;
375 +            int phase = (int)(s >>> PHASE_SHIFT);
376 +            if (phase < 0)
377 +                return phase;
378 +            else if (registrations > MAX_PARTIES - parties)
379 +                throw new IllegalStateException(badRegister(s));
380 +            else if ((parties == 0 && parent == null) || // first reg of root
381 +                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
382 +                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383 +                    return phase;
384 +            }
385 +            else if (parties != 0)               // wait for onAdvance
386 +                internalAwaitAdvance(phase, null);
387 +            else {                               // 1st registration of child
388 +                synchronized(this) {             // register parent first
389 +                    if (reconcileState() == s) { // recheck under lock
390 +                        parent.doRegister(1);    // OK if throws IllegalState
391 +                        for (;;) {               // simpler form of outer loop
392 +                            s = reconcileState();
393 +                            phase = (int)(s >>> PHASE_SHIFT);
394 +                            if (phase < 0 ||
395 +                                UNSAFE.compareAndSwapLong(this, stateOffset,
396 +                                                          s, s + adj))
397 +                                return phase;
398 +                        }
399 +                    }
400 +                }
401 +            }
402 +        }
403 +    }
404 +
405 +    /**
406 +     * Recursively resolves lagged phase propagation from root if necessary.
407 +     */
408 +    private long reconcileState() {
409 +        Phaser par = parent;
410 +        long s = state;
411 +        if (par != null) {
412 +            Phaser rt = root;
413 +            int phase, rPhase;
414 +            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415 +                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416 +                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
417 +                    par.reconcileState();
418 +                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419 +                    long u = s & PARTIES_MASK; // reset unarrived to parties
420 +                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421 +                                 (u >>> PARTIES_SHIFT));
422 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 +                }
424 +                s = state;
425              }
426          }
427          return s;
# Line 303 | Line 433 | public class Phaser {
433       * phaser will need to first register for it.
434       */
435      public Phaser() {
436 <        this(null);
436 >        this(null, 0);
437      }
438  
439      /**
440 <     * Creates a new phaser with the given numbers of registered
440 >     * Creates a new phaser with the given number of registered
441       * unarrived parties, initial phase number 0, and no parent.
442       *
443       * @param parties the number of parties required to trip barrier
# Line 319 | Line 449 | public class Phaser {
449      }
450  
451      /**
452 <     * Creates a new phaser with the given parent, without any
453 <     * initially registered parties. If parent is non-null this phaser
454 <     * is registered with the parent and its initial phase number is
455 <     * the same as that of parent phaser.
452 >     * Creates a new phaser with the given parent, and without any
453 >     * initially registered parties.  Any thread using this phaser
454 >     * will need to first register for it, at which point, if the
455 >     * given parent is non-null, this phaser will also be registered
456 >     * with the parent.
457 >     *
458 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
459       *
460       * @param parent the parent phaser
461       */
462      public Phaser(Phaser parent) {
463 <        int phase = 0;
331 <        this.parent = parent;
332 <        if (parent != null) {
333 <            this.root = parent.root;
334 <            phase = parent.register();
335 <        }
336 <        else
337 <            this.root = this;
338 <        this.state = trippedStateFor(phase, 0);
463 >        this(parent, 0);
464      }
465  
466      /**
467 <     * Creates a new phaser with the given parent and numbers of
468 <     * registered unarrived parties. If parent is non-null, this phaser
469 <     * is registered with the parent and its initial phase number is
470 <     * the same as that of parent phaser.
467 >     * Creates a new phaser with the given parent and number of
468 >     * registered unarrived parties. If parent is non-null and
469 >     * the number of parties is non-zero, this phaser is registered
470 >     * with the parent.
471       *
472       * @param parent the parent phaser
473       * @param parties the number of parties required to trip barrier
# Line 350 | Line 475 | public class Phaser {
475       * or greater than the maximum number of parties supported
476       */
477      public Phaser(Phaser parent, int parties) {
478 <        if (parties < 0 || parties > ushortMask)
478 >        if (parties >>> PARTIES_SHIFT != 0)
479              throw new IllegalArgumentException("Illegal number of parties");
480 <        int phase = 0;
480 >        int phase;
481          this.parent = parent;
482          if (parent != null) {
483 <            this.root = parent.root;
484 <            phase = parent.register();
483 >            Phaser r = parent.root;
484 >            this.root = r;
485 >            this.evenQ = r.evenQ;
486 >            this.oddQ = r.oddQ;
487 >            phase = (parties == 0) ? parent.getPhase() : parent.doRegister(1);
488          }
489 <        else
489 >        else {
490              this.root = this;
491 <        this.state = trippedStateFor(phase, parties);
491 >            this.evenQ = new AtomicReference<QNode>();
492 >            this.oddQ = new AtomicReference<QNode>();
493 >            phase = 0;
494 >        }
495 >        long p = (long)parties;
496 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
497      }
498  
499      /**
500 <     * Adds a new unarrived party to this phaser.
500 >     * Adds a new unarrived party to this phaser.  If an ongoing
501 >     * invocation of {@link #onAdvance} is in progress, this method
502 >     * may wait until its completion before registering.  If this
503 >     * phaser has a parent, and this phaser previously had no
504 >     * registered parties, this phaser is also registered with its
505 >     * parent.
506       *
507 <     * @return the current barrier phase number upon registration
507 >     * @return the arrival phase number to which this registration applied
508       * @throws IllegalStateException if attempting to register more
509       * than the maximum supported number of parties
510       */
# Line 376 | Line 514 | public class Phaser {
514  
515      /**
516       * Adds the given number of new unarrived parties to this phaser.
517 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
518 +     * this method may wait until its completion before registering.
519 +     * If this phaser has a parent, and the given number of parities
520 +     * is greater than zero, and this phaser previously had no
521 +     * registered parties, this phaser is also registered with its
522 +     * parent.
523       *
524 <     * @param parties the number of parties required to trip barrier
525 <     * @return the current barrier phase number upon registration
524 >     * @param parties the number of additional parties required to trip barrier
525 >     * @return the arrival phase number to which this registration applied
526       * @throws IllegalStateException if attempting to register more
527       * than the maximum supported number of parties
528 +     * @throws IllegalArgumentException if {@code parties < 0}
529       */
530      public int bulkRegister(int parties) {
531          if (parties < 0)
532              throw new IllegalArgumentException();
533 <        if (parties == 0)
533 >        else if (parties == 0)
534              return getPhase();
535          return doRegister(parties);
536      }
537  
538      /**
394     * Shared code for register, bulkRegister
395     */
396    private int doRegister(int registrations) {
397        int phase;
398        for (;;) {
399            long s = getReconciledState();
400            phase = phaseOf(s);
401            int unarrived = unarrivedOf(s) + registrations;
402            int parties = partiesOf(s) + registrations;
403            if (phase < 0)
404                break;
405            if (parties > ushortMask || unarrived > ushortMask)
406                throw new IllegalStateException(badBounds(parties, unarrived));
407            if (phase == phaseOf(root.state) &&
408                casState(s, stateFor(phase, parties, unarrived)))
409                break;
410        }
411        return phase;
412    }
413
414    /**
539       * Arrives at the barrier, but does not wait for others.  (You can
540 <     * in turn wait for others via {@link #awaitAdvance}).
540 >     * in turn wait for others via {@link #awaitAdvance}).  It is a
541 >     * usage error for an unregistered party to invoke this
542 >     * method. However, it is possible that this error will result in
543 >     * an {code IllegalStateException} only when some <em>other</em>
544 >     * party arrives.
545       *
546 <     * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated
546 >     * @return the arrival phase number, or a negative value if terminated
547       * @throws IllegalStateException if not terminated and the number
548       * of unarrived parties would become negative
549       */
550      public int arrive() {
551 <        int phase;
425 <        for (;;) {
426 <            long s = state;
427 <            phase = phaseOf(s);
428 <            if (phase < 0)
429 <                break;
430 <            int parties = partiesOf(s);
431 <            int unarrived = unarrivedOf(s) - 1;
432 <            if (unarrived > 0) {        // Not the last arrival
433 <                if (casState(s, s - 1)) // s-1 adds one arrival
434 <                    break;
435 <            }
436 <            else if (unarrived == 0) {  // the last arrival
437 <                Phaser par = parent;
438 <                if (par == null) {      // directly trip
439 <                    if (casState
440 <                        (s,
441 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442 <                                         ((phase + 1) & phaseMask), parties))) {
443 <                        releaseWaiters(phase);
444 <                        break;
445 <                    }
446 <                }
447 <                else {                  // cascade to parent
448 <                    if (casState(s, s - 1)) { // zeroes unarrived
449 <                        par.arrive();
450 <                        reconcileState();
451 <                        break;
452 <                    }
453 <                }
454 <            }
455 <            else if (phase != phaseOf(root.state)) // or if unreconciled
456 <                reconcileState();
457 <            else
458 <                throw new IllegalStateException(badBounds(parties, unarrived));
459 <        }
460 <        return phase;
551 >        return doArrive(ONE_ARRIVAL);
552      }
553  
554      /**
# Line 466 | Line 557 | public class Phaser {
557       * required to trip the barrier in future phases.  If this phaser
558       * has a parent, and deregistration causes this phaser to have
559       * zero parties, this phaser also arrives at and is deregistered
560 <     * from its parent.
560 >     * from its parent.  It is a usage error for an unregistered party
561 >     * to invoke this method. However, it is possible that this error
562 >     * will result in an {code IllegalStateException} only when some
563 >     * <em>other</em> party arrives.
564       *
565 <     * @return the current barrier phase number upon entry to
472 <     * this method, or a negative value if terminated
565 >     * @return the arrival phase number, or a negative value if terminated
566       * @throws IllegalStateException if not terminated and the number
567       * of registered or unarrived parties would become negative
568       */
569      public int arriveAndDeregister() {
570 <        // similar code to arrive, but too different to merge
478 <        Phaser par = parent;
479 <        int phase;
480 <        for (;;) {
481 <            long s = state;
482 <            phase = phaseOf(s);
483 <            if (phase < 0)
484 <                break;
485 <            int parties = partiesOf(s) - 1;
486 <            int unarrived = unarrivedOf(s) - 1;
487 <            if (parties >= 0) {
488 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 <                    if (casState
490 <                        (s,
491 <                         stateFor(phase, parties, unarrived))) {
492 <                        if (unarrived == 0) {
493 <                            par.arriveAndDeregister();
494 <                            reconcileState();
495 <                        }
496 <                        break;
497 <                    }
498 <                    continue;
499 <                }
500 <                if (unarrived == 0) {
501 <                    if (casState
502 <                        (s,
503 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504 <                                         ((phase + 1) & phaseMask), parties))) {
505 <                        releaseWaiters(phase);
506 <                        break;
507 <                    }
508 <                    continue;
509 <                }
510 <                if (par != null && phase != phaseOf(root.state)) {
511 <                    reconcileState();
512 <                    continue;
513 <                }
514 <            }
515 <            throw new IllegalStateException(badBounds(parties, unarrived));
516 <        }
517 <        return phase;
570 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
571      }
572  
573      /**
574       * Arrives at the barrier and awaits others. Equivalent in effect
575       * to {@code awaitAdvance(arrive())}.  If you need to await with
576       * interruption or timeout, you can arrange this with an analogous
577 <     * construction using one of the other forms of the awaitAdvance
578 <     * method.  If instead you need to deregister upon arrival use
579 <     * {@code arriveAndDeregister}.
577 >     * construction using one of the other forms of the {@code
578 >     * awaitAdvance} method.  If instead you need to deregister upon
579 >     * arrival, use {@link #arriveAndDeregister}.  It is a usage error
580 >     * for an unregistered party to invoke this method. However, it is
581 >     * possible that this error will result in an {code
582 >     * IllegalStateException} only when some <em>other</em> party
583 >     * arrives.
584       *
585 <     * @return the phase on entry to this method
585 >     * @return the arrival phase number, or a negative number if terminated
586       * @throws IllegalStateException if not terminated and the number
587       * of unarrived parties would become negative
588       */
# Line 535 | Line 592 | public class Phaser {
592  
593      /**
594       * Awaits the phase of the barrier to advance from the given phase
595 <     * value, or returns immediately if the current phase of the barrier
596 <     * is not equal to the given phase value or this barrier is
597 <     * terminated.
598 <     *
599 <     * @param phase the phase on entry to this method
600 <     * @return the phase on exit from this method
595 >     * value, returning immediately if the current phase of the
596 >     * barrier is not equal to the given phase value or this barrier
597 >     * is terminated.
598 >     *
599 >     * @param phase an arrival phase number, or negative value if
600 >     * terminated; this argument is normally the value returned by a
601 >     * previous call to {@code arrive} or its variants
602 >     * @return the next arrival phase number, or a negative value
603 >     * if terminated or argument is negative
604       */
605      public int awaitAdvance(int phase) {
606          if (phase < 0)
607              return phase;
608 <        long s = getReconciledState();
609 <        int p = phaseOf(s);
610 <        if (p != phase)
551 <            return p;
552 <        if (unarrivedOf(s) == 0 && parent != null)
553 <            parent.awaitAdvance(phase);
554 <        // Fall here even if parent waited, to reconcile and help release
555 <        return untimedWait(phase);
608 >        long s = (parent == null) ? state : reconcileState();
609 >        int p = (int)(s >>> PHASE_SHIFT);
610 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
611      }
612  
613      /**
614 <     * Awaits the phase of the barrier to advance from the given
615 <     * value, or returns immediately if argument is negative or this
616 <     * barrier is terminated, or throws InterruptedException if
617 <     * interrupted while waiting.
618 <     *
619 <     * @param phase the phase on entry to this method
620 <     * @return the phase on exit from this method
614 >     * Awaits the phase of the barrier to advance from the given phase
615 >     * value, throwing {@code InterruptedException} if interrupted
616 >     * while waiting, or returning immediately if the current phase of
617 >     * the barrier is not equal to the given phase value or this
618 >     * barrier is terminated.
619 >     *
620 >     * @param phase an arrival phase number, or negative value if
621 >     * terminated; this argument is normally the value returned by a
622 >     * previous call to {@code arrive} or its variants
623 >     * @return the next arrival phase number, or a negative value
624 >     * if terminated or argument is negative
625       * @throws InterruptedException if thread interrupted while waiting
626       */
627      public int awaitAdvanceInterruptibly(int phase)
628          throws InterruptedException {
629          if (phase < 0)
630              return phase;
631 <        long s = getReconciledState();
632 <        int p = phaseOf(s);
633 <        if (p != phase)
634 <            return p;
635 <        if (unarrivedOf(s) == 0 && parent != null)
636 <            parent.awaitAdvanceInterruptibly(phase);
637 <        return interruptibleWait(phase);
631 >        long s = (parent == null) ? state : reconcileState();
632 >        int p = (int)(s >>> PHASE_SHIFT);
633 >        if (p == phase) {
634 >            QNode node = new QNode(this, phase, true, false, 0L);
635 >            p = internalAwaitAdvance(phase, node);
636 >            if (node.wasInterrupted)
637 >                throw new InterruptedException();
638 >        }
639 >        return p;
640      }
641  
642      /**
643 <     * Awaits the phase of the barrier to advance from the given value
644 <     * or the given timeout elapses, or returns immediately if
645 <     * argument is negative or this barrier is terminated.
643 >     * Awaits the phase of the barrier to advance from the given phase
644 >     * value or the given timeout to elapse, throwing {@code
645 >     * InterruptedException} if interrupted while waiting, or
646 >     * returning immediately if the current phase of the barrier is
647 >     * not equal to the given phase value or this barrier is
648 >     * terminated.
649       *
650 <     * @param phase the phase on entry to this method
651 <     * @return the phase on exit from this method
650 >     * @param phase an arrival phase number, or negative value if
651 >     * terminated; this argument is normally the value returned by a
652 >     * previous call to {@code arrive} or its variants
653 >     * @param timeout how long to wait before giving up, in units of
654 >     *        {@code unit}
655 >     * @param unit a {@code TimeUnit} determining how to interpret the
656 >     *        {@code timeout} parameter
657 >     * @return the next arrival phase number, or a negative value
658 >     * if terminated or argument is negative
659       * @throws InterruptedException if thread interrupted while waiting
660       * @throws TimeoutException if timed out while waiting
661       */
# Line 593 | Line 664 | public class Phaser {
664          throws InterruptedException, TimeoutException {
665          if (phase < 0)
666              return phase;
667 <        long s = getReconciledState();
668 <        int p = phaseOf(s);
669 <        if (p != phase)
670 <            return p;
671 <        if (unarrivedOf(s) == 0 && parent != null)
672 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
673 <        return timedWait(phase, unit.toNanos(timeout));
667 >        long s = (parent == null) ? state : reconcileState();
668 >        int p = (int)(s >>> PHASE_SHIFT);
669 >        if (p == phase) {
670 >            long nanos = unit.toNanos(timeout);
671 >            QNode node = new QNode(this, phase, true, true, nanos);
672 >            p = internalAwaitAdvance(phase, node);
673 >            if (node.wasInterrupted)
674 >                throw new InterruptedException();
675 >            else if (p == phase)
676 >                throw new TimeoutException();
677 >        }
678 >        return p;
679      }
680  
681      /**
682 <     * Forces this barrier to enter termination state. Counts of
683 <     * arrived and registered parties are unaffected. If this phaser
684 <     * has a parent, it too is terminated. This method may be useful
685 <     * for coordinating recovery after one or more tasks encounter
686 <     * unexpected exceptions.
682 >     * Forces this barrier to enter termination state.  Counts of
683 >     * arrived and registered parties are unaffected.  If this phaser
684 >     * is a member of a tiered set of phasers, then all of the phasers
685 >     * in the set are terminated.  If this phaser is already
686 >     * terminated, this method has no effect.  This method may be
687 >     * useful for coordinating recovery after one or more tasks
688 >     * encounter unexpected exceptions.
689       */
690      public void forceTermination() {
691 <        for (;;) {
692 <            long s = getReconciledState();
693 <            int phase = phaseOf(s);
694 <            int parties = partiesOf(s);
695 <            int unarrived = unarrivedOf(s);
696 <            if (phase < 0 ||
697 <                casState(s, stateFor(-1, parties, unarrived))) {
620 <                releaseWaiters(0);
691 >        // Only need to change root state
692 >        final Phaser root = this.root;
693 >        long s;
694 >        while ((s = root.state) >= 0) {
695 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
696 >                                          s, s | TERMINATION_BIT)) {
697 >                releaseWaiters(0); // signal all threads
698                  releaseWaiters(1);
622                if (parent != null)
623                    parent.forceTermination();
699                  return;
700              }
701          }
# Line 634 | Line 709 | public class Phaser {
709       * @return the phase number, or a negative value if terminated
710       */
711      public final int getPhase() {
712 <        return phaseOf(getReconciledState());
712 >        return (int)(root.state >>> PHASE_SHIFT);
713      }
714  
715      /**
# Line 647 | Line 722 | public class Phaser {
722      }
723  
724      /**
725 <     * Returns the number of parties that have arrived at the current
726 <     * phase of this barrier.
725 >     * Returns the number of registered parties that have arrived at
726 >     * the current phase of this barrier.
727       *
728       * @return the number of arrived parties
729       */
730      public int getArrivedParties() {
731 <        return arrivedOf(state);
731 >        return arrivedOf(parent==null? state : reconcileState());
732      }
733  
734      /**
# Line 663 | Line 738 | public class Phaser {
738       * @return the number of unarrived parties
739       */
740      public int getUnarrivedParties() {
741 <        return unarrivedOf(state);
741 >        return unarrivedOf(parent==null? state : reconcileState());
742      }
743  
744      /**
# Line 691 | Line 766 | public class Phaser {
766       * @return {@code true} if this barrier has been terminated
767       */
768      public boolean isTerminated() {
769 <        return getPhase() < 0;
769 >        return root.state < 0L;
770      }
771  
772      /**
773 <     * Overridable method to perform an action upon phase advance, and
774 <     * to control termination. This method is invoked whenever the
775 <     * barrier is tripped (and thus all other waiting parties are
776 <     * dormant). If it returns {@code true}, then, rather than advance
777 <     * the phase number, this barrier will be set to a final
778 <     * termination state, and subsequent calls to {@link #isTerminated}
779 <     * will return true.
780 <     *
781 <     * <p>The default version returns {@code true} when the number of
782 <     * registered parties is zero. Normally, overrides that arrange
783 <     * termination for other reasons should also preserve this
784 <     * property.
785 <     *
786 <     * <p>You may override this method to perform an action with side
787 <     * effects visible to participating tasks, but it is in general
788 <     * only sensible to do so in designs where all parties register
789 <     * before any arrive, and all {@link #awaitAdvance} at each phase.
790 <     * Otherwise, you cannot ensure lack of interference from other
791 <     * parties during the the invocation of this method.
773 >     * Overridable method to perform an action upon impending phase
774 >     * advance, and to control termination. This method is invoked
775 >     * upon arrival of the party tripping the barrier (when all other
776 >     * waiting parties are dormant).  If this method returns {@code
777 >     * true}, then, rather than advance the phase number, this barrier
778 >     * will be set to a final termination state, and subsequent calls
779 >     * to {@link #isTerminated} will return true. Any (unchecked)
780 >     * Exception or Error thrown by an invocation of this method is
781 >     * propagated to the party attempting to trip the barrier, in
782 >     * which case no advance occurs.
783 >     *
784 >     * <p>The arguments to this method provide the state of the phaser
785 >     * prevailing for the current transition.  The effects of invoking
786 >     * arrival, registration, and waiting methods on this Phaser from
787 >     * within {@code onAdvance} are unspecified and should not be
788 >     * relied on.
789 >     *
790 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
791 >     * {@code onAdvance} is invoked only for its root Phaser on each
792 >     * advance.
793 >     *
794 >     * <p>To support the most common use cases, the default
795 >     * implementation of this method returns {@code true} when the
796 >     * number of registered parties has become zero as the result of a
797 >     * party invoking {@code arriveAndDeregister}.  You can disable
798 >     * this behavior, thus enabling continuation upon future
799 >     * registrations, by overriding this method to always return
800 >     * {@code false}:
801 >     *
802 >     * <pre> {@code
803 >     * Phaser phaser = new Phaser() {
804 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
805 >     * }}</pre>
806       *
807       * @param phase the phase number on entering the barrier
808       * @param registeredParties the current number of registered parties
# Line 733 | Line 822 | public class Phaser {
822       * @return a string identifying this barrier, as well as its state
823       */
824      public String toString() {
825 <        long s = getReconciledState();
825 >        return stateToString(reconcileState());
826 >    }
827 >
828 >    /**
829 >     * Implementation of toString and string-based error messages
830 >     */
831 >    private String stateToString(long s) {
832          return super.toString() +
833              "[phase = " + phaseOf(s) +
834              " parties = " + partiesOf(s) +
835              " arrived = " + arrivedOf(s) + "]";
836      }
837  
838 <    // methods for waiting
838 >    // Waiting mechanics
839 >
840 >    /**
841 >     * Removes and signals threads from queue for phase.
842 >     */
843 >    private void releaseWaiters(int phase) {
844 >        AtomicReference<QNode> head = queueFor(phase);
845 >        QNode q;
846 >        int p;
847 >        while ((q = head.get()) != null &&
848 >               ((p = q.phase) == phase ||
849 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
850 >            if (head.compareAndSet(q, q.next))
851 >                q.signal();
852 >        }
853 >    }
854 >
855 >    /** The number of CPUs, for spin control */
856 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
857 >
858 >    /**
859 >     * The number of times to spin before blocking while waiting for
860 >     * advance, per arrival while waiting. On multiprocessors, fully
861 >     * blocking and waking up a large number of threads all at once is
862 >     * usually a very slow process, so we use rechargeable spins to
863 >     * avoid it when threads regularly arrive: When a thread in
864 >     * internalAwaitAdvance notices another arrival before blocking,
865 >     * and there appear to be enough CPUs available, it spins
866 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
867 >     * uniprocessors, there is at least one intervening Thread.yield
868 >     * before blocking. The value trades off good-citizenship vs big
869 >     * unnecessary slowdowns.
870 >     */
871 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
872 >
873 >    /**
874 >     * Possibly blocks and waits for phase to advance unless aborted.
875 >     *
876 >     * @param phase current phase
877 >     * @param node if non-null, the wait node to track interrupt and timeout;
878 >     * if null, denotes noninterruptible wait
879 >     * @return current phase
880 >     */
881 >    private int internalAwaitAdvance(int phase, QNode node) {
882 >        Phaser current = this;       // to eventually wait at root if tiered
883 >        boolean queued = false;      // true when node is enqueued
884 >        int lastUnarrived = -1;      // to increase spins upon change
885 >        int spins = SPINS_PER_ARRIVAL;
886 >        long s;
887 >        int p;
888 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
889 >            Phaser par;
890 >            int unarrived = (int)s & UNARRIVED_MASK;
891 >            if (unarrived != lastUnarrived) {
892 >                if (lastUnarrived == -1) // ensure old queue clean
893 >                    releaseWaiters(phase-1);
894 >                if ((lastUnarrived = unarrived) < NCPU)
895 >                    spins += SPINS_PER_ARRIVAL;
896 >            }
897 >            else if (unarrived == 0 && (par = current.parent) != null) {
898 >                current = par;       // if all arrived, use parent
899 >                par = par.parent;
900 >                lastUnarrived = -1;
901 >            }
902 >            else if (spins > 0) {
903 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
904 >                    Thread.yield();  // yield midway through spin
905 >            }
906 >            else if (node == null)   // must be noninterruptible
907 >                node = new QNode(this, phase, false, false, 0L);
908 >            else if (node.isReleasable()) {
909 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
910 >                    break;
911 >                else
912 >                    return phase;    // aborted
913 >            }
914 >            else if (!queued) {      // push onto queue
915 >                AtomicReference<QNode> head = queueFor(phase);
916 >                QNode q = head.get();
917 >                if (q == null || q.phase == phase) {
918 >                    node.next = q;
919 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
920 >                        break;       // recheck to avoid stale enqueue
921 >                    else
922 >                        queued = head.compareAndSet(q, node);
923 >                }
924 >            }
925 >            else {
926 >                try {
927 >                    ForkJoinPool.managedBlock(node);
928 >                } catch (InterruptedException ie) {
929 >                    node.wasInterrupted = true;
930 >                }
931 >            }
932 >        }
933 >        releaseWaiters(phase);
934 >        if (node != null)
935 >            node.onRelease();
936 >        return p;
937 >    }
938  
939      /**
940       * Wait nodes for Treiber stack representing wait queue
# Line 748 | Line 942 | public class Phaser {
942      static final class QNode implements ForkJoinPool.ManagedBlocker {
943          final Phaser phaser;
944          final int phase;
751        final long startTime;
752        final long nanos;
753        final boolean timed;
945          final boolean interruptible;
946 <        volatile boolean wasInterrupted = false;
946 >        final boolean timed;
947 >        boolean wasInterrupted;
948 >        long nanos;
949 >        long lastTime;
950          volatile Thread thread; // nulled to cancel wait
951          QNode next;
952 +
953          QNode(Phaser phaser, int phase, boolean interruptible,
954 <              boolean timed, long startTime, long nanos) {
954 >              boolean timed, long nanos) {
955              this.phaser = phaser;
956              this.phase = phase;
762            this.timed = timed;
957              this.interruptible = interruptible;
764            this.startTime = startTime;
958              this.nanos = nanos;
959 +            this.timed = timed;
960 +            this.lastTime = timed? System.nanoTime() : 0L;
961              thread = Thread.currentThread();
962          }
963 +
964          public boolean isReleasable() {
965 <            return (thread == null ||
966 <                    phaser.getPhase() != phase ||
967 <                    (interruptible && wasInterrupted) ||
968 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
965 >            Thread t = thread;
966 >            if (t != null) {
967 >                if (phaser.getPhase() != phase)
968 >                    t = null;
969 >                else {
970 >                    if (Thread.interrupted())
971 >                        wasInterrupted = true;
972 >                    if (interruptible && wasInterrupted)
973 >                        t = null;
974 >                    else if (timed) {
975 >                        if (nanos > 0) {
976 >                            long now = System.nanoTime();
977 >                            nanos -= now - lastTime;
978 >                            lastTime = now;
979 >                        }
980 >                        if (nanos <= 0)
981 >                            t = null;
982 >                    }
983 >                }
984 >                if (t != null)
985 >                    return false;
986 >                thread = null;
987 >            }
988 >            return true;
989          }
990 +
991          public boolean block() {
992 <            if (Thread.interrupted()) {
993 <                wasInterrupted = true;
994 <                if (interruptible)
778 <                    return true;
779 <            }
780 <            if (!timed)
992 >            if (isReleasable())
993 >                return true;
994 >            else if (!timed)
995                  LockSupport.park(this);
996 <            else {
997 <                long waitTime = nanos - (System.nanoTime() - startTime);
784 <                if (waitTime <= 0)
785 <                    return true;
786 <                LockSupport.parkNanos(this, waitTime);
787 <            }
996 >            else if (nanos > 0)
997 >                LockSupport.parkNanos(this, nanos);
998              return isReleasable();
999          }
1000 +
1001          void signal() {
1002              Thread t = thread;
1003              if (t != null) {
# Line 794 | Line 1005 | public class Phaser {
1005                  LockSupport.unpark(t);
1006              }
1007          }
797        boolean doWait() {
798            if (thread != null) {
799                try {
800                    ForkJoinPool.managedBlock(this, false);
801                } catch (InterruptedException ie) {
802                }
803            }
804            return wasInterrupted;
805        }
1008  
1009 <    }
1010 <
1011 <    /**
1012 <     * Removes and signals waiting threads from wait queue.
1013 <     */
812 <    private void releaseWaiters(int phase) {
813 <        AtomicReference<QNode> head = queueFor(phase);
814 <        QNode q;
815 <        while ((q = head.get()) != null) {
816 <            if (head.compareAndSet(q, q.next))
817 <                q.signal();
818 <        }
819 <    }
820 <
821 <    /**
822 <     * Tries to enqueue given node in the appropriate wait queue.
823 <     *
824 <     * @return true if successful
825 <     */
826 <    private boolean tryEnqueue(QNode node) {
827 <        AtomicReference<QNode> head = queueFor(node.phase);
828 <        return head.compareAndSet(node.next = head.get(), node);
829 <    }
830 <
831 <    /**
832 <     * Enqueues node and waits unless aborted or signalled.
833 <     *
834 <     * @return current phase
835 <     */
836 <    private int untimedWait(int phase) {
837 <        QNode node = null;
838 <        boolean queued = false;
839 <        boolean interrupted = false;
840 <        int p;
841 <        while ((p = getPhase()) == phase) {
842 <            if (Thread.interrupted())
843 <                interrupted = true;
844 <            else if (node == null)
845 <                node = new QNode(this, phase, false, false, 0, 0);
846 <            else if (!queued)
847 <                queued = tryEnqueue(node);
848 <            else
849 <                interrupted = node.doWait();
850 <        }
851 <        if (node != null)
852 <            node.thread = null;
853 <        releaseWaiters(phase);
854 <        if (interrupted)
855 <            Thread.currentThread().interrupt();
856 <        return p;
857 <    }
858 <
859 <    /**
860 <     * Interruptible version
861 <     * @return current phase
862 <     */
863 <    private int interruptibleWait(int phase) throws InterruptedException {
864 <        QNode node = null;
865 <        boolean queued = false;
866 <        boolean interrupted = false;
867 <        int p;
868 <        while ((p = getPhase()) == phase && !interrupted) {
869 <            if (Thread.interrupted())
870 <                interrupted = true;
871 <            else if (node == null)
872 <                node = new QNode(this, phase, true, false, 0, 0);
873 <            else if (!queued)
874 <                queued = tryEnqueue(node);
875 <            else
876 <                interrupted = node.doWait();
1009 >        void onRelease() { // actions upon return from internalAwaitAdvance
1010 >            if (!interruptible && wasInterrupted)
1011 >                Thread.currentThread().interrupt();
1012 >            if (thread != null)
1013 >                thread = null;
1014          }
878        if (node != null)
879            node.thread = null;
880        if (p != phase || (p = getPhase()) != phase)
881            releaseWaiters(phase);
882        if (interrupted)
883            throw new InterruptedException();
884        return p;
885    }
1015  
887    /**
888     * Timeout version.
889     * @return current phase
890     */
891    private int timedWait(int phase, long nanos)
892        throws InterruptedException, TimeoutException {
893        long startTime = System.nanoTime();
894        QNode node = null;
895        boolean queued = false;
896        boolean interrupted = false;
897        int p;
898        while ((p = getPhase()) == phase && !interrupted) {
899            if (Thread.interrupted())
900                interrupted = true;
901            else if (nanos - (System.nanoTime() - startTime) <= 0)
902                break;
903            else if (node == null)
904                node = new QNode(this, phase, true, true, startTime, nanos);
905            else if (!queued)
906                queued = tryEnqueue(node);
907            else
908                interrupted = node.doWait();
909        }
910        if (node != null)
911            node.thread = null;
912        if (p != phase || (p = getPhase()) != phase)
913            releaseWaiters(phase);
914        if (interrupted)
915            throw new InterruptedException();
916        if (p == phase)
917            throw new TimeoutException();
918        return p;
1016      }
1017  
1018      // Unsafe mechanics
# Line 924 | Line 1021 | public class Phaser {
1021      private static final long stateOffset =
1022          objectFieldOffset("state", Phaser.class);
1023  
927    private final boolean casState(long cmp, long val) {
928        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
929    }
930
1024      private static long objectFieldOffset(String field, Class<?> klazz) {
1025          try {
1026              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines