ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.8 by jsr166, Mon Jan 5 05:50:47 2009 UTC vs.
Revision 1.59 by dl, Sat Nov 27 16:46:53 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.concurrent.*;
9 < import java.util.concurrent.atomic.*;
8 >
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19 > *
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < * <li> The number of parties synchronizing on a phaser may vary over
48 < * time.  A task may register to be a party at any time, and may
49 < * deregister upon arriving at the barrier.  As is the case with most
50 < * basic synchronization constructs, registration and deregistration
51 < * affect only internal counts; they do not establish any further
52 < * internal bookkeeping, so tasks cannot query whether they are
53 < * registered. (However, you can introduce such bookkeeping in by
54 < * subclassing this class.)
55 < *
56 < * <li> Each generation has an associated phase value, starting at
57 < * zero, and advancing when all parties reach the barrier (wrapping
58 < * around to zero after reaching {@code Integer.MAX_VALUE}).
59 < *
60 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
61 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
62 < * {@code CyclicBarrier.await}.  However, Phasers separate two
63 < * aspects of coordination, that may also be invoked independently:
64 < *
65 < * <ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
42 *   <li> Arriving at a barrier. Methods {@code arrive} and
43 *       {@code arriveAndDeregister} do not block, but return
44 *       the phase value current upon entry to the method.
45 *
46 *   <li> Awaiting others. Method {@code awaitAdvance} requires an
47 *       argument indicating the entry phase, and returns when the
48 *       barrier advances to a new phase.
75   * </ul>
76   *
77 < *
78 < * <li> Barrier actions, performed by the task triggering a phase
79 < * advance while others may be waiting, are arranged by overriding
80 < * method {@code onAdvance}, that also controls termination.
81 < * Overriding this method may be used to similar but more flexible
82 < * effect as providing a barrier action to a CyclicBarrier.
83 < *
84 < * <li> Phasers may enter a <em>termination</em> state in which all
85 < * await actions immediately return, indicating (via a negative phase
60 < * value) that execution is complete.  Termination is triggered by
61 < * executing the overridable {@code onAdvance} method that is invoked
62 < * each time the barrier is about to be tripped. When a Phaser is
63 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}. The default implementation returns
83 > * {@code true} if a deregistration has caused the number of
84 > * registered parties to become zero.  As illustrated below, when
85 > * phasers control actions with a fixed number of iterations, it is
86   * often convenient to override this method to cause termination when
87 < * the current phase number reaches a threshold. Method
88 < * {@code forceTermination} is also available to abruptly release
89 < * waiting threads and allow them to terminate.
90 < *
91 < * <li> Phasers may be tiered to reduce contention. Phasers with large
92 < * numbers of parties that would otherwise experience heavy
93 < * synchronization contention costs may instead be arranged in trees.
94 < * This will typically greatly increase throughput even though it
95 < * incurs somewhat greater per-operation overhead.
96 < *
97 < * <li> By default, {@code awaitAdvance} continues to wait even if
98 < * the waiting thread is interrupted. And unlike the case in
99 < * CyclicBarriers, exceptions encountered while tasks wait
100 < * interruptibly or with timeout do not change the state of the
101 < * barrier. If necessary, you can perform any associated recovery
102 < * within handlers of those exceptions, often after invoking
103 < * {@code forceTermination}.
104 < *
105 < * </ul>
87 > * the current phase number reaches a threshold. Method {@link
88 > * #forceTermination} is also available to abruptly release waiting
89 > * threads and allow them to terminate.
90 > *
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94 > * synchronization contention costs may instead be set up so that
95 > * groups of sub-phasers share a common parent.  This may greatly
96 > * increase throughput even though it incurs greater per-operation
97 > * overhead.
98 > *
99 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 > * only by registered parties, the current state of a phaser may be
101 > * monitored by any caller.  At any given moment there are {@link
102 > * #getRegisteredParties} parties in total, of which {@link
103 > * #getArrivedParties} have arrived at the current phase ({@link
104 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
105 > * parties arrive, the phase advances.  The values returned by these
106 > * methods may reflect transient states and so are not in general
107 > * useful for synchronization control.  Method {@link #toString}
108 > * returns snapshots of these state queries in a form convenient for
109 > * informal monitoring.
110   *
111   * <p><b>Sample usages:</b>
112   *
113 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
114 < * a one-shot action serving a variable number of parties. The typical
115 < * idiom is for the method setting this up to first register, then
116 < * start the actions, then deregister, as in:
117 < *
118 < * <pre>
119 < *  void runTasks(List&lt;Runnable&gt; list) {
120 < *    final Phaser phaser = new Phaser(1); // "1" to register self
121 < *    for (Runnable r : list) {
122 < *      phaser.register();
123 < *      new Thread() {
124 < *        public void run() {
125 < *          phaser.arriveAndAwaitAdvance(); // await all creation
126 < *          r.run();
127 < *          phaser.arriveAndDeregister();   // signal completion
128 < *        }
129 < *      }.start();
113 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 > * to control a one-shot action serving a variable number of parties.
115 > * The typical idiom is for the method setting this up to first
116 > * register, then start the actions, then deregister, as in:
117 > *
118 > *  <pre> {@code
119 > * void runTasks(List<Runnable> tasks) {
120 > *   final Phaser phaser = new Phaser(1); // "1" to register self
121 > *   // create and start threads
122 > *   for (Runnable task : tasks) {
123 > *     phaser.register();
124 > *     new Thread() {
125 > *       public void run() {
126 > *         phaser.arriveAndAwaitAdvance(); // await all creation
127 > *         task.run();
128 > *       }
129 > *     }.start();
130   *   }
131   *
132 < *   doSomethingOnBehalfOfWorkers();
133 < *   phaser.arrive(); // allow threads to start
134 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
109 < *   p = phaser.awaitAdvance(p); // ... and await arrival
110 < *   otherActions(); // do other things while tasks execute
111 < *   phaser.awaitAdvance(p); // await final completion
112 < * }
113 < * </pre>
132 > *   // allow threads to start and deregister self
133 > *   phaser.arriveAndDeregister();
134 > * }}</pre>
135   *
136   * <p>One way to cause a set of threads to repeatedly perform actions
137   * for a given number of iterations is to override {@code onAdvance}:
138   *
139 < * <pre>
140 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
141 < *    final Phaser phaser = new Phaser() {
142 < *       public boolean onAdvance(int phase, int registeredParties) {
143 < *         return phase &gt;= iterations || registeredParties == 0;
139 > *  <pre> {@code
140 > * void startTasks(List<Runnable> tasks, final int iterations) {
141 > *   final Phaser phaser = new Phaser() {
142 > *     protected boolean onAdvance(int phase, int registeredParties) {
143 > *       return phase >= iterations || registeredParties == 0;
144 > *     }
145 > *   };
146 > *   phaser.register();
147 > *   for (final Runnable task : tasks) {
148 > *     phaser.register();
149 > *     new Thread() {
150 > *       public void run() {
151 > *         do {
152 > *           task.run();
153 > *           phaser.arriveAndAwaitAdvance();
154 > *         } while (!phaser.isTerminated());
155   *       }
156 < *    };
125 < *    phaser.register();
126 < *    for (Runnable r : list) {
127 < *      phaser.register();
128 < *      new Thread() {
129 < *        public void run() {
130 < *           do {
131 < *             r.run();
132 < *             phaser.arriveAndAwaitAdvance();
133 < *           } while(!phaser.isTerminated();
134 < *        }
135 < *      }.start();
156 > *     }.start();
157   *   }
158   *   phaser.arriveAndDeregister(); // deregister self, don't wait
159 < * }
160 < * </pre>
159 > * }}</pre>
160 > *
161 > * If the main task must later await termination, it
162 > * may re-register and then execute a similar loop:
163 > *  <pre> {@code
164 > *   // ...
165 > *   phaser.register();
166 > *   while (!phaser.isTerminated())
167 > *     phaser.arriveAndAwaitAdvance();}</pre>
168 > *
169 > * <p>Related constructions may be used to await particular phase numbers
170 > * in contexts where you are sure that the phase will never wrap around
171 > * {@code Integer.MAX_VALUE}. For example:
172 > *
173 > *  <pre> {@code
174 > * void awaitPhase(Phaser phaser, int phase) {
175 > *   int p = phaser.register(); // assumes caller not already registered
176 > *   while (p < phase) {
177 > *     if (phaser.isTerminated())
178 > *       // ... deal with unexpected termination
179 > *     else
180 > *       p = phaser.arriveAndAwaitAdvance();
181 > *   }
182 > *   phaser.arriveAndDeregister();
183 > * }}</pre>
184 > *
185   *
186 < * <p> To create a set of tasks using a tree of Phasers,
186 > * <p>To create a set of tasks using a tree of phasers,
187   * you could use code of the following form, assuming a
188 < * Task class with a constructor accepting a Phaser that
189 < * it registers for upon construction:
190 < * <pre>
191 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
192 < *    int step = (hi - lo) / TASKS_PER_PHASER;
193 < *    if (step &gt; 1) {
194 < *       int i = lo;
195 < *       while (i &lt; hi) {
196 < *         int r = Math.min(i + step, hi);
197 < *         build(actions, i, r, new Phaser(b));
198 < *         i = r;
199 < *       }
200 < *    }
201 < *    else {
202 < *      for (int i = lo; i &lt; hi; ++i)
203 < *        actions[i] = new Task(b);
204 < *        // assumes new Task(b) performs b.register()
205 < *    }
161 < *  }
162 < *  // .. initially called, for n tasks via
163 < *  build(new Task[n], 0, n, new Phaser());
164 < * </pre>
188 > * Task class with a constructor accepting a phaser that
189 > * it registers with upon construction:
190 > *
191 > *  <pre> {@code
192 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
193 > *   if (hi - lo > TASKS_PER_PHASER) {
194 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
195 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
196 > *       build(actions, i, j, new Phaser(ph));
197 > *     }
198 > *   } else {
199 > *     for (int i = lo; i < hi; ++i)
200 > *       actions[i] = new Task(ph);
201 > *       // assumes new Task(ph) performs ph.register()
202 > *   }
203 > * }
204 > * // .. initially called, for n tasks via
205 > * build(new Task[n], 0, n, new Phaser());}</pre>
206   *
207   * The best value of {@code TASKS_PER_PHASER} depends mainly on
208   * expected barrier synchronization rates. A value as low as four may
209   * be appropriate for extremely small per-barrier task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
171 * </pre>
172 *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214 < * parties result in IllegalStateExceptions. However, you can and
214 > * parties result in {@code IllegalStateException}. However, you can and
215   * should create tiered phasers to accommodate arbitrarily large sets
216   * of participants.
217 + *
218 + * @since 1.7
219 + * @author Doug Lea
220   */
221   public class Phaser {
222      /*
# Line 187 | Line 229 | public class Phaser {
229       * Barrier state representation. Conceptually, a barrier contains
230       * four values:
231       *
232 <     * * parties -- the number of parties to wait (16 bits)
233 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
234 <     * * phase -- the generation of the barrier (31 bits)
235 <     * * terminated -- set if barrier is terminated (1 bit)
232 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
233 >     * * parties -- the number of parties to wait              (bits 16-31)
234 >     * * phase -- the generation of the barrier                (bits 32-62)
235 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
236       *
237       * However, to efficiently maintain atomicity, these values are
238       * packed into a single (atomic) long. Termination uses the sign
239       * bit of 32 bit representation of phase, so phase is set to -1 on
240       * termination. Good performance relies on keeping state decoding
241       * and encoding simple, and keeping race windows short.
200     *
201     * Note: there are some cheats in arrive() that rely on unarrived
202     * being lowest 16 bits.
242       */
243      private volatile long state;
244  
245 <    private static final int ushortBits = 16;
246 <    private static final int ushortMask =  (1 << ushortBits) - 1;
247 <    private static final int phaseMask = 0x7fffffff;
245 >    private static final int  MAX_PARTIES     = 0xffff;
246 >    private static final int  MAX_PHASE       = 0x7fffffff;
247 >    private static final int  PARTIES_SHIFT   = 16;
248 >    private static final int  PHASE_SHIFT     = 32;
249 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
250 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251 >    private static final long ONE_ARRIVAL     = 1L;
252 >    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
253 >    private static final long TERMINATION_BIT = 1L << 63;
254 >
255 >    // The following unpacking methods are usually manually inlined
256  
257      private static int unarrivedOf(long s) {
258 <        return (int)(s & ushortMask);
258 >        return (int)s & UNARRIVED_MASK;
259      }
260  
261      private static int partiesOf(long s) {
262 <        return (int)(s & (ushortMask << 16)) >>> 16;
262 >        return (int)s >>> PARTIES_SHIFT;
263      }
264  
265      private static int phaseOf(long s) {
266 <        return (int)(s >>> 32);
266 >        return (int) (s >>> PHASE_SHIFT);
267      }
268  
269      private static int arrivedOf(long s) {
270          return partiesOf(s) - unarrivedOf(s);
271      }
272  
226    private static long stateFor(int phase, int parties, int unarrived) {
227        return (((long)phase) << 32) | ((parties << 16) | unarrived);
228    }
229
230    private static long trippedStateFor(int phase, int parties) {
231        return (((long)phase) << 32) | ((parties << 16) | parties);
232    }
233
234    private static IllegalStateException badBounds(int parties, int unarrived) {
235        return new IllegalStateException
236            ("Attempt to set " + unarrived +
237             " unarrived of " + parties + " parties");
238    }
239
273      /**
274       * The parent of this phaser, or null if none
275       */
276      private final Phaser parent;
277  
278      /**
279 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
279 >     * The root of phaser tree. Equals this if not in a tree.  Used to
280       * support faster state push-down.
281       */
282      private final Phaser root;
283  
251    // Wait queues
252
284      /**
285 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
286 <     * contention while releasing some threads while adding others, we
285 >     * Heads of Treiber stacks for waiting threads. To eliminate
286 >     * contention when releasing some threads while adding others, we
287       * use two of them, alternating across even and odd phases.
288 +     * Subphasers share queues with root to speed up releases.
289       */
290 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
291 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
290 >    private final AtomicReference<QNode> evenQ;
291 >    private final AtomicReference<QNode> oddQ;
292  
293      private AtomicReference<QNode> queueFor(int phase) {
294 <        return (phase & 1) == 0? evenQ : oddQ;
294 >        return ((phase & 1) == 0) ? evenQ : oddQ;
295      }
296  
297      /**
298 <     * Returns current state, first resolving lagged propagation from
267 <     * root if necessary.
298 >     * Returns message string for bounds exceptions on arrival.
299       */
300 <    private long getReconciledState() {
301 <        return parent == null? state : reconcileState();
300 >    private String badArrive(long s) {
301 >        return "Attempted arrival of unregistered party for " +
302 >            stateToString(s);
303      }
304  
305      /**
306 <     * Recursively resolves state.
306 >     * Returns message string for bounds exceptions on registration.
307       */
308 <    private long reconcileState() {
309 <        Phaser p = parent;
310 <        long s = state;
311 <        if (p != null) {
312 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
313 <                long parentState = p.getReconciledState();
314 <                int parentPhase = phaseOf(parentState);
315 <                int phase = phaseOf(s = state);
316 <                if (phase != parentPhase) {
317 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
318 <                    if (casState(s, next)) {
308 >    private String badRegister(long s) {
309 >        return "Attempt to register more than " +
310 >            MAX_PARTIES + " parties for " + stateToString(s);
311 >    }
312 >
313 >    /**
314 >     * Main implementation for methods arrive and arriveAndDeregister.
315 >     * Manually tuned to speed up and minimize race windows for the
316 >     * common case of just decrementing unarrived field.
317 >     *
318 >     * @param adj - adjustment to apply to state -- either
319 >     * ONE_ARRIVAL (for arrive) or
320 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321 >     */
322 >    private int doArrive(long adj) {
323 >        for (;;) {
324 >            long s = state;
325 >            int unarrived = (int)s & UNARRIVED_MASK;
326 >            int phase = (int)(s >>> PHASE_SHIFT);
327 >            if (phase < 0)
328 >                return phase;
329 >            else if (unarrived == 0) {
330 >                if (reconcileState() == s)     // recheck
331 >                    throw new IllegalStateException(badArrive(s));
332 >            }
333 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 >                if (unarrived == 1) {
335 >                    long p = s & PARTIES_MASK; // unshifted parties field
336 >                    long lu = p >>> PARTIES_SHIFT;
337 >                    int u = (int)lu;
338 >                    int nextPhase = (phase + 1) & MAX_PHASE;
339 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 >                    final Phaser parent = this.parent;
341 >                    if (parent == null) {
342 >                        if (onAdvance(phase, u))
343 >                            next |= TERMINATION_BIT;
344 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345                          releaseWaiters(phase);
288                        s = next;
346                      }
347 +                    else {
348 +                        parent.doArrive((u == 0) ?
349 +                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 +                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 +                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352 +                             !UNSAFE.compareAndSwapLong(this, stateOffset,
353 +                                                        s, next)))
354 +                            reconcileState();
355 +                    }
356 +                }
357 +                return phase;
358 +            }
359 +        }
360 +    }
361 +
362 +    /**
363 +     * Implementation of register, bulkRegister
364 +     *
365 +     * @param registrations number to add to both parties and
366 +     * unarrived fields. Must be greater than zero.
367 +     */
368 +    private int doRegister(int registrations) {
369 +        // adjustment to state
370 +        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371 +        final Phaser parent = this.parent;
372 +        for (;;) {
373 +            long s = (parent == null) ? state : reconcileState();
374 +            int parties = (int)s >>> PARTIES_SHIFT;
375 +            int phase = (int)(s >>> PHASE_SHIFT);
376 +            if (phase < 0)
377 +                return phase;
378 +            else if (registrations > MAX_PARTIES - parties)
379 +                throw new IllegalStateException(badRegister(s));
380 +            else if ((parties == 0 && parent == null) || // first reg of root
381 +                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
382 +                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383 +                    return phase;
384 +            }
385 +            else if (parties != 0)               // wait for onAdvance
386 +                internalAwaitAdvance(phase, null);
387 +            else {                               // 1st registration of child
388 +                synchronized(this) {             // register parent first
389 +                    if (reconcileState() == s) { // recheck under lock
390 +                        parent.doRegister(1);    // OK if throws IllegalState
391 +                        for (;;) {               // simpler form of outer loop
392 +                            s = reconcileState();
393 +                            phase = (int)(s >>> PHASE_SHIFT);
394 +                            if (phase < 0 ||
395 +                                UNSAFE.compareAndSwapLong(this, stateOffset,
396 +                                                          s, s + adj))
397 +                                return phase;
398 +                        }
399 +                    }
400 +                }
401 +            }
402 +        }
403 +    }
404 +
405 +    /**
406 +     * Recursively resolves lagged phase propagation from root if necessary.
407 +     */
408 +    private long reconcileState() {
409 +        Phaser par = parent;
410 +        long s = state;
411 +        if (par != null) {
412 +            Phaser rt = root;
413 +            int phase, rPhase;
414 +            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415 +                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416 +                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
417 +                    par.reconcileState();
418 +                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419 +                    long u = s & PARTIES_MASK; // reset unarrived to parties
420 +                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421 +                                 (u >>> PARTIES_SHIFT));
422 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423                  }
424 +                s = state;
425              }
426          }
427          return s;
428      }
429  
430      /**
431 <     * Creates a new Phaser without any initially registered parties,
432 <     * initial phase number 0, and no parent.
431 >     * Creates a new phaser without any initially registered parties,
432 >     * initial phase number 0, and no parent. Any thread using this
433 >     * phaser will need to first register for it.
434       */
435      public Phaser() {
436 <        this(null);
436 >        this(null, 0);
437      }
438  
439      /**
440 <     * Creates a new Phaser with the given numbers of registered
440 >     * Creates a new phaser with the given number of registered
441       * unarrived parties, initial phase number 0, and no parent.
442 <     * @param parties the number of parties required to trip barrier.
442 >     *
443 >     * @param parties the number of parties required to trip barrier
444       * @throws IllegalArgumentException if parties less than zero
445 <     * or greater than the maximum number of parties supported.
445 >     * or greater than the maximum number of parties supported
446       */
447      public Phaser(int parties) {
448          this(null, parties);
449      }
450  
451      /**
452 <     * Creates a new Phaser with the given parent, without any
453 <     * initially registered parties. If parent is non-null this phaser
454 <     * is registered with the parent and its initial phase number is
455 <     * the same as that of parent phaser.
456 <     * @param parent the parent phaser.
452 >     * Creates a new phaser with the given parent, and without any
453 >     * initially registered parties.  Any thread using this phaser
454 >     * will need to first register for it, at which point, if the
455 >     * given parent is non-null, this phaser will also be registered
456 >     * with the parent.
457 >     *
458 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
459 >     *
460 >     * @param parent the parent phaser
461       */
462      public Phaser(Phaser parent) {
463 <        int phase = 0;
324 <        this.parent = parent;
325 <        if (parent != null) {
326 <            this.root = parent.root;
327 <            phase = parent.register();
328 <        }
329 <        else
330 <            this.root = this;
331 <        this.state = trippedStateFor(phase, 0);
463 >        this(parent, 0);
464      }
465  
466      /**
467 <     * Creates a new Phaser with the given parent and numbers of
468 <     * registered unarrived parties. If parent is non-null this phaser
469 <     * is registered with the parent and its initial phase number is
470 <     * the same as that of parent phaser.
471 <     * @param parent the parent phaser.
472 <     * @param parties the number of parties required to trip barrier.
467 >     * Creates a new phaser with the given parent and number of
468 >     * registered unarrived parties. If parent is non-null and
469 >     * the number of parties is non-zero, this phaser is registered
470 >     * with the parent.
471 >     *
472 >     * @param parent the parent phaser
473 >     * @param parties the number of parties required to trip barrier
474       * @throws IllegalArgumentException if parties less than zero
475 <     * or greater than the maximum number of parties supported.
475 >     * or greater than the maximum number of parties supported
476       */
477      public Phaser(Phaser parent, int parties) {
478 <        if (parties < 0 || parties > ushortMask)
478 >        if (parties >>> PARTIES_SHIFT != 0)
479              throw new IllegalArgumentException("Illegal number of parties");
480 <        int phase = 0;
480 >        int phase;
481          this.parent = parent;
482          if (parent != null) {
483 <            this.root = parent.root;
484 <            phase = parent.register();
483 >            Phaser r = parent.root;
484 >            this.root = r;
485 >            this.evenQ = r.evenQ;
486 >            this.oddQ = r.oddQ;
487 >            phase = (parties == 0) ? parent.getPhase() : parent.doRegister(1);
488          }
489 <        else
489 >        else {
490              this.root = this;
491 <        this.state = trippedStateFor(phase, parties);
491 >            this.evenQ = new AtomicReference<QNode>();
492 >            this.oddQ = new AtomicReference<QNode>();
493 >            phase = 0;
494 >        }
495 >        long p = (long)parties;
496 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
497      }
498  
499      /**
500 <     * Adds a new unarrived party to this phaser.
501 <     * @return the current barrier phase number upon registration
500 >     * Adds a new unarrived party to this phaser.  If an ongoing
501 >     * invocation of {@link #onAdvance} is in progress, this method
502 >     * may wait until its completion before registering.  If this
503 >     * phaser has a parent, and this phaser previously had no
504 >     * registered parties, this phaser is also registered with its
505 >     * parent.
506 >     *
507 >     * @return the arrival phase number to which this registration applied
508       * @throws IllegalStateException if attempting to register more
509 <     * than the maximum supported number of parties.
509 >     * than the maximum supported number of parties
510       */
511      public int register() {
512          return doRegister(1);
# Line 367 | Line 514 | public class Phaser {
514  
515      /**
516       * Adds the given number of new unarrived parties to this phaser.
517 <     * @param parties the number of parties required to trip barrier.
518 <     * @return the current barrier phase number upon registration
517 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
518 >     * this method may wait until its completion before registering.
519 >     * If this phaser has a parent, and the given number of parities
520 >     * is greater than zero, and this phaser previously had no
521 >     * registered parties, this phaser is also registered with its
522 >     * parent.
523 >     *
524 >     * @param parties the number of additional parties required to trip barrier
525 >     * @return the arrival phase number to which this registration applied
526       * @throws IllegalStateException if attempting to register more
527 <     * than the maximum supported number of parties.
527 >     * than the maximum supported number of parties
528 >     * @throws IllegalArgumentException if {@code parties < 0}
529       */
530      public int bulkRegister(int parties) {
531          if (parties < 0)
532              throw new IllegalArgumentException();
533 <        if (parties == 0)
533 >        else if (parties == 0)
534              return getPhase();
535          return doRegister(parties);
536      }
537  
538      /**
384     * Shared code for register, bulkRegister
385     */
386    private int doRegister(int registrations) {
387        int phase;
388        for (;;) {
389            long s = getReconciledState();
390            phase = phaseOf(s);
391            int unarrived = unarrivedOf(s) + registrations;
392            int parties = partiesOf(s) + registrations;
393            if (phase < 0)
394                break;
395            if (parties > ushortMask || unarrived > ushortMask)
396                throw badBounds(parties, unarrived);
397            if (phase == phaseOf(root.state) &&
398                casState(s, stateFor(phase, parties, unarrived)))
399                break;
400        }
401        return phase;
402    }
403
404    /**
539       * Arrives at the barrier, but does not wait for others.  (You can
540 <     * in turn wait for others via {@link #awaitAdvance}).
540 >     * in turn wait for others via {@link #awaitAdvance}).  It is a
541 >     * usage error for an unregistered party to invoke this
542 >     * method. However, it is possible that this error will result in
543 >     * an {code IllegalStateException} only when some <em>other</em>
544 >     * party arrives.
545       *
546 <     * @return the barrier phase number upon entry to this method, or a
409 <     * negative value if terminated;
546 >     * @return the arrival phase number, or a negative value if terminated
547       * @throws IllegalStateException if not terminated and the number
548 <     * of unarrived parties would become negative.
548 >     * of unarrived parties would become negative
549       */
550      public int arrive() {
551 <        int phase;
415 <        for (;;) {
416 <            long s = state;
417 <            phase = phaseOf(s);
418 <            int parties = partiesOf(s);
419 <            int unarrived = unarrivedOf(s) - 1;
420 <            if (unarrived > 0) {        // Not the last arrival
421 <                if (casState(s, s - 1)) // s-1 adds one arrival
422 <                    break;
423 <            }
424 <            else if (unarrived == 0) {  // the last arrival
425 <                Phaser par = parent;
426 <                if (par == null) {      // directly trip
427 <                    if (casState
428 <                        (s,
429 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
430 <                                         ((phase + 1) & phaseMask), parties))) {
431 <                        releaseWaiters(phase);
432 <                        break;
433 <                    }
434 <                }
435 <                else {                  // cascade to parent
436 <                    if (casState(s, s - 1)) { // zeroes unarrived
437 <                        par.arrive();
438 <                        reconcileState();
439 <                        break;
440 <                    }
441 <                }
442 <            }
443 <            else if (phase < 0) // Don't throw exception if terminated
444 <                break;
445 <            else if (phase != phaseOf(root.state)) // or if unreconciled
446 <                reconcileState();
447 <            else
448 <                throw badBounds(parties, unarrived);
449 <        }
450 <        return phase;
551 >        return doArrive(ONE_ARRIVAL);
552      }
553  
554      /**
555 <     * Arrives at the barrier, and deregisters from it, without
556 <     * waiting for others. Deregistration reduces number of parties
555 >     * Arrives at the barrier and deregisters from it without waiting
556 >     * for others. Deregistration reduces the number of parties
557       * required to trip the barrier in future phases.  If this phaser
558       * has a parent, and deregistration causes this phaser to have
559 <     * zero parties, this phaser is also deregistered from its parent.
559 >     * zero parties, this phaser also arrives at and is deregistered
560 >     * from its parent.  It is a usage error for an unregistered party
561 >     * to invoke this method. However, it is possible that this error
562 >     * will result in an {code IllegalStateException} only when some
563 >     * <em>other</em> party arrives.
564       *
565 <     * @return the current barrier phase number upon entry to
461 <     * this method, or a negative value if terminated;
565 >     * @return the arrival phase number, or a negative value if terminated
566       * @throws IllegalStateException if not terminated and the number
567 <     * of registered or unarrived parties would become negative.
567 >     * of registered or unarrived parties would become negative
568       */
569      public int arriveAndDeregister() {
570 <        // similar code to arrive, but too different to merge
467 <        Phaser par = parent;
468 <        int phase;
469 <        for (;;) {
470 <            long s = state;
471 <            phase = phaseOf(s);
472 <            int parties = partiesOf(s) - 1;
473 <            int unarrived = unarrivedOf(s) - 1;
474 <            if (parties >= 0) {
475 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
476 <                    if (casState
477 <                        (s,
478 <                         stateFor(phase, parties, unarrived))) {
479 <                        if (unarrived == 0) {
480 <                            par.arriveAndDeregister();
481 <                            reconcileState();
482 <                        }
483 <                        break;
484 <                    }
485 <                    continue;
486 <                }
487 <                if (unarrived == 0) {
488 <                    if (casState
489 <                        (s,
490 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
491 <                                         ((phase + 1) & phaseMask), parties))) {
492 <                        releaseWaiters(phase);
493 <                        break;
494 <                    }
495 <                    continue;
496 <                }
497 <                if (phase < 0)
498 <                    break;
499 <                if (par != null && phase != phaseOf(root.state)) {
500 <                    reconcileState();
501 <                    continue;
502 <                }
503 <            }
504 <            throw badBounds(parties, unarrived);
505 <        }
506 <        return phase;
570 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
571      }
572  
573      /**
574       * Arrives at the barrier and awaits others. Equivalent in effect
575 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
576 <     * await with interruption of timeout, and/or deregister upon
577 <     * arrival, you can arrange them using analogous constructions.
578 <     * @return the phase on entry to this method
575 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
576 >     * interruption or timeout, you can arrange this with an analogous
577 >     * construction using one of the other forms of the {@code
578 >     * awaitAdvance} method.  If instead you need to deregister upon
579 >     * arrival, use {@link #arriveAndDeregister}.  It is a usage error
580 >     * for an unregistered party to invoke this method. However, it is
581 >     * possible that this error will result in an {code
582 >     * IllegalStateException} only when some <em>other</em> party
583 >     * arrives.
584 >     *
585 >     * @return the arrival phase number, or a negative number if terminated
586       * @throws IllegalStateException if not terminated and the number
587 <     * of unarrived parties would become negative.
587 >     * of unarrived parties would become negative
588       */
589      public int arriveAndAwaitAdvance() {
590          return awaitAdvance(arrive());
591      }
592  
593      /**
594 <     * Awaits the phase of the barrier to advance from the given
595 <     * value, or returns immediately if argument is negative or this
596 <     * barrier is terminated.
597 <     * @param phase the phase on entry to this method
598 <     * @return the phase on exit from this method
594 >     * Awaits the phase of the barrier to advance from the given phase
595 >     * value, returning immediately if the current phase of the
596 >     * barrier is not equal to the given phase value or this barrier
597 >     * is terminated.
598 >     *
599 >     * @param phase an arrival phase number, or negative value if
600 >     * terminated; this argument is normally the value returned by a
601 >     * previous call to {@code arrive} or its variants
602 >     * @return the next arrival phase number, or a negative value
603 >     * if terminated or argument is negative
604       */
605      public int awaitAdvance(int phase) {
606          if (phase < 0)
607              return phase;
608 <        long s = getReconciledState();
609 <        int p = phaseOf(s);
610 <        if (p != phase)
535 <            return p;
536 <        if (unarrivedOf(s) == 0)
537 <            parent.awaitAdvance(phase);
538 <        // Fall here even if parent waited, to reconcile and help release
539 <        return untimedWait(phase);
608 >        long s = (parent == null) ? state : reconcileState();
609 >        int p = (int)(s >>> PHASE_SHIFT);
610 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
611      }
612  
613      /**
614 <     * Awaits the phase of the barrier to advance from the given
615 <     * value, or returns immediately if argument is negative or this
616 <     * barrier is terminated, or throws InterruptedException if
617 <     * interrupted while waiting.
618 <     * @param phase the phase on entry to this method
619 <     * @return the phase on exit from this method
614 >     * Awaits the phase of the barrier to advance from the given phase
615 >     * value, throwing {@code InterruptedException} if interrupted
616 >     * while waiting, or returning immediately if the current phase of
617 >     * the barrier is not equal to the given phase value or this
618 >     * barrier is terminated.
619 >     *
620 >     * @param phase an arrival phase number, or negative value if
621 >     * terminated; this argument is normally the value returned by a
622 >     * previous call to {@code arrive} or its variants
623 >     * @return the next arrival phase number, or a negative value
624 >     * if terminated or argument is negative
625       * @throws InterruptedException if thread interrupted while waiting
626       */
627 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
627 >    public int awaitAdvanceInterruptibly(int phase)
628 >        throws InterruptedException {
629          if (phase < 0)
630              return phase;
631 <        long s = getReconciledState();
632 <        int p = phaseOf(s);
633 <        if (p != phase)
634 <            return p;
635 <        if (unarrivedOf(s) != 0)
636 <            parent.awaitAdvanceInterruptibly(phase);
637 <        return interruptibleWait(phase);
631 >        long s = (parent == null) ? state : reconcileState();
632 >        int p = (int)(s >>> PHASE_SHIFT);
633 >        if (p == phase) {
634 >            QNode node = new QNode(this, phase, true, false, 0L);
635 >            p = internalAwaitAdvance(phase, node);
636 >            if (node.wasInterrupted)
637 >                throw new InterruptedException();
638 >        }
639 >        return p;
640      }
641  
642      /**
643 <     * Awaits the phase of the barrier to advance from the given value
644 <     * or the given timeout elapses, or returns immediately if
645 <     * argument is negative or this barrier is terminated.
646 <     * @param phase the phase on entry to this method
647 <     * @return the phase on exit from this method
643 >     * Awaits the phase of the barrier to advance from the given phase
644 >     * value or the given timeout to elapse, throwing {@code
645 >     * InterruptedException} if interrupted while waiting, or
646 >     * returning immediately if the current phase of the barrier is
647 >     * not equal to the given phase value or this barrier is
648 >     * terminated.
649 >     *
650 >     * @param phase an arrival phase number, or negative value if
651 >     * terminated; this argument is normally the value returned by a
652 >     * previous call to {@code arrive} or its variants
653 >     * @param timeout how long to wait before giving up, in units of
654 >     *        {@code unit}
655 >     * @param unit a {@code TimeUnit} determining how to interpret the
656 >     *        {@code timeout} parameter
657 >     * @return the next arrival phase number, or a negative value
658 >     * if terminated or argument is negative
659       * @throws InterruptedException if thread interrupted while waiting
660       * @throws TimeoutException if timed out while waiting
661       */
662 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
662 >    public int awaitAdvanceInterruptibly(int phase,
663 >                                         long timeout, TimeUnit unit)
664          throws InterruptedException, TimeoutException {
665          if (phase < 0)
666              return phase;
667 <        long s = getReconciledState();
668 <        int p = phaseOf(s);
669 <        if (p != phase)
670 <            return p;
671 <        if (unarrivedOf(s) == 0)
672 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
673 <        return timedWait(phase, unit.toNanos(timeout));
667 >        long s = (parent == null) ? state : reconcileState();
668 >        int p = (int)(s >>> PHASE_SHIFT);
669 >        if (p == phase) {
670 >            long nanos = unit.toNanos(timeout);
671 >            QNode node = new QNode(this, phase, true, true, nanos);
672 >            p = internalAwaitAdvance(phase, node);
673 >            if (node.wasInterrupted)
674 >                throw new InterruptedException();
675 >            else if (p == phase)
676 >                throw new TimeoutException();
677 >        }
678 >        return p;
679      }
680  
681      /**
682 <     * Forces this barrier to enter termination state. Counts of
683 <     * arrived and registered parties are unaffected. If this phaser
684 <     * has a parent, it too is terminated. This method may be useful
685 <     * for coordinating recovery after one or more tasks encounter
686 <     * unexpected exceptions.
682 >     * Forces this barrier to enter termination state.  Counts of
683 >     * arrived and registered parties are unaffected.  If this phaser
684 >     * is a member of a tiered set of phasers, then all of the phasers
685 >     * in the set are terminated.  If this phaser is already
686 >     * terminated, this method has no effect.  This method may be
687 >     * useful for coordinating recovery after one or more tasks
688 >     * encounter unexpected exceptions.
689       */
690      public void forceTermination() {
691 <        for (;;) {
692 <            long s = getReconciledState();
693 <            int phase = phaseOf(s);
694 <            int parties = partiesOf(s);
695 <            int unarrived = unarrivedOf(s);
696 <            if (phase < 0 ||
697 <                casState(s, stateFor(-1, parties, unarrived))) {
600 <                releaseWaiters(0);
691 >        // Only need to change root state
692 >        final Phaser root = this.root;
693 >        long s;
694 >        while ((s = root.state) >= 0) {
695 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
696 >                                          s, s | TERMINATION_BIT)) {
697 >                releaseWaiters(0); // signal all threads
698                  releaseWaiters(1);
602                if (parent != null)
603                    parent.forceTermination();
699                  return;
700              }
701          }
# Line 610 | Line 705 | public class Phaser {
705       * Returns the current phase number. The maximum phase number is
706       * {@code Integer.MAX_VALUE}, after which it restarts at
707       * zero. Upon termination, the phase number is negative.
708 +     *
709       * @return the phase number, or a negative value if terminated
710       */
711      public final int getPhase() {
712 <        return phaseOf(getReconciledState());
617 <    }
618 <
619 <    /**
620 <     * Returns true if the current phase number equals the given phase.
621 <     * @param phase the phase
622 <     * @return true if the current phase number equals the given phase.
623 <     */
624 <    public final boolean hasPhase(int phase) {
625 <        return phaseOf(getReconciledState()) == phase;
712 >        return (int)(root.state >>> PHASE_SHIFT);
713      }
714  
715      /**
716       * Returns the number of parties registered at this barrier.
717 +     *
718       * @return the number of parties
719       */
720      public int getRegisteredParties() {
# Line 634 | Line 722 | public class Phaser {
722      }
723  
724      /**
725 <     * Returns the number of parties that have arrived at the current
726 <     * phase of this barrier.
725 >     * Returns the number of registered parties that have arrived at
726 >     * the current phase of this barrier.
727 >     *
728       * @return the number of arrived parties
729       */
730      public int getArrivedParties() {
731 <        return arrivedOf(state);
731 >        return arrivedOf(parent==null? state : reconcileState());
732      }
733  
734      /**
735       * Returns the number of registered parties that have not yet
736       * arrived at the current phase of this barrier.
737 +     *
738       * @return the number of unarrived parties
739       */
740      public int getUnarrivedParties() {
741 <        return unarrivedOf(state);
741 >        return unarrivedOf(parent==null? state : reconcileState());
742      }
743  
744      /**
745 <     * Returns the parent of this phaser, or null if none.
746 <     * @return the parent of this phaser, or null if none.
745 >     * Returns the parent of this phaser, or {@code null} if none.
746 >     *
747 >     * @return the parent of this phaser, or {@code null} if none
748       */
749      public Phaser getParent() {
750          return parent;
# Line 662 | Line 753 | public class Phaser {
753      /**
754       * Returns the root ancestor of this phaser, which is the same as
755       * this phaser if it has no parent.
756 <     * @return the root ancestor of this phaser.
756 >     *
757 >     * @return the root ancestor of this phaser
758       */
759      public Phaser getRoot() {
760          return root;
761      }
762  
763      /**
764 <     * Returns true if this barrier has been terminated.
765 <     * @return true if this barrier has been terminated
764 >     * Returns {@code true} if this barrier has been terminated.
765 >     *
766 >     * @return {@code true} if this barrier has been terminated
767       */
768      public boolean isTerminated() {
769 <        return getPhase() < 0;
769 >        return root.state < 0L;
770      }
771  
772      /**
773 <     * Overridable method to perform an action upon phase advance, and
774 <     * to control termination. This method is invoked whenever the
775 <     * barrier is tripped (and thus all other waiting parties are
776 <     * dormant). If it returns true, then, rather than advance the
777 <     * phase number, this barrier will be set to a final termination
778 <     * state, and subsequent calls to {@code isTerminated} will
779 <     * return true.
780 <     *
781 <     * <p> The default version returns true when the number of
782 <     * registered parties is zero. Normally, overrides that arrange
783 <     * termination for other reasons should also preserve this
784 <     * property.
785 <     *
786 <     * <p> You may override this method to perform an action with side
787 <     * effects visible to participating tasks, but it is in general
788 <     * only sensible to do so in designs where all parties register
789 <     * before any arrive, and all {@code awaitAdvance} at each phase.
790 <     * Otherwise, you cannot ensure lack of interference. In
791 <     * particular, this method may be invoked more than once per
792 <     * transition if other parties successfully register while the
793 <     * invocation of this method is in progress, thus postponing the
794 <     * transition until those parties also arrive, re-triggering this
795 <     * method.
773 >     * Overridable method to perform an action upon impending phase
774 >     * advance, and to control termination. This method is invoked
775 >     * upon arrival of the party tripping the barrier (when all other
776 >     * waiting parties are dormant).  If this method returns {@code
777 >     * true}, then, rather than advance the phase number, this barrier
778 >     * will be set to a final termination state, and subsequent calls
779 >     * to {@link #isTerminated} will return true. Any (unchecked)
780 >     * Exception or Error thrown by an invocation of this method is
781 >     * propagated to the party attempting to trip the barrier, in
782 >     * which case no advance occurs.
783 >     *
784 >     * <p>The arguments to this method provide the state of the phaser
785 >     * prevailing for the current transition.  The effects of invoking
786 >     * arrival, registration, and waiting methods on this Phaser from
787 >     * within {@code onAdvance} are unspecified and should not be
788 >     * relied on.
789 >     *
790 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
791 >     * {@code onAdvance} is invoked only for its root Phaser on each
792 >     * advance.
793 >     *
794 >     * <p>To support the most common use cases, the default
795 >     * implementation of this method returns {@code true} when the
796 >     * number of registered parties has become zero as the result of a
797 >     * party invoking {@code arriveAndDeregister}.  You can disable
798 >     * this behavior, thus enabling continuation upon future
799 >     * registrations, by overriding this method to always return
800 >     * {@code false}:
801 >     *
802 >     * <pre> {@code
803 >     * Phaser phaser = new Phaser() {
804 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
805 >     * }}</pre>
806       *
807       * @param phase the phase number on entering the barrier
808 <     * @param registeredParties the current number of registered
809 <     * parties.
707 <     * @return true if this barrier should terminate
808 >     * @param registeredParties the current number of registered parties
809 >     * @return {@code true} if this barrier should terminate
810       */
811      protected boolean onAdvance(int phase, int registeredParties) {
812          return registeredParties <= 0;
# Line 713 | Line 815 | public class Phaser {
815      /**
816       * Returns a string identifying this phaser, as well as its
817       * state.  The state, in brackets, includes the String {@code
818 <     * "phase ="} followed by the phase number, {@code "parties ="}
818 >     * "phase = "} followed by the phase number, {@code "parties = "}
819       * followed by the number of registered parties, and {@code
820 <     * "arrived ="} followed by the number of arrived parties
820 >     * "arrived = "} followed by the number of arrived parties.
821       *
822       * @return a string identifying this barrier, as well as its state
823       */
824      public String toString() {
825 <        long s = getReconciledState();
724 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
825 >        return stateToString(reconcileState());
826      }
827  
727    // methods for waiting
728
729    /** The number of CPUs, for spin control */
730    static final int NCPUS = Runtime.getRuntime().availableProcessors();
731
732    /**
733     * The number of times to spin before blocking in timed waits.
734     * The value is empirically derived.
735     */
736    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
737
738    /**
739     * The number of times to spin before blocking in untimed waits.
740     * This is greater than timed value because untimed waits spin
741     * faster since they don't need to check times on each spin.
742     */
743    static final int maxUntimedSpins = maxTimedSpins * 32;
744
828      /**
829 <     * The number of nanoseconds for which it is faster to spin
747 <     * rather than to use timed park. A rough estimate suffices.
829 >     * Implementation of toString and string-based error messages
830       */
831 <    static final long spinForTimeoutThreshold = 1000L;
832 <
833 <    /**
834 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
835 <     * tasks.
754 <     */
755 <    static final class QNode {
756 <        QNode next;
757 <        volatile Thread thread; // nulled to cancel wait
758 <        QNode() {
759 <            thread = Thread.currentThread();
760 <        }
761 <        void signal() {
762 <            Thread t = thread;
763 <            if (t != null) {
764 <                thread = null;
765 <                LockSupport.unpark(t);
766 <            }
767 <        }
831 >    private String stateToString(long s) {
832 >        return super.toString() +
833 >            "[phase = " + phaseOf(s) +
834 >            " parties = " + partiesOf(s) +
835 >            " arrived = " + arrivedOf(s) + "]";
836      }
837  
838 +    // Waiting mechanics
839 +
840      /**
841 <     * Removes and signals waiting threads from wait queue
841 >     * Removes and signals threads from queue for phase.
842       */
843      private void releaseWaiters(int phase) {
844          AtomicReference<QNode> head = queueFor(phase);
845          QNode q;
846 <        while ((q = head.get()) != null) {
846 >        int p;
847 >        while ((q = head.get()) != null &&
848 >               ((p = q.phase) == phase ||
849 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
850              if (head.compareAndSet(q, q.next))
851                  q.signal();
852          }
853      }
854  
855 +    /** The number of CPUs, for spin control */
856 +    private static final int NCPU = Runtime.getRuntime().availableProcessors();
857 +
858      /**
859 <     * Enqueues node and waits unless aborted or signalled.
859 >     * The number of times to spin before blocking while waiting for
860 >     * advance, per arrival while waiting. On multiprocessors, fully
861 >     * blocking and waking up a large number of threads all at once is
862 >     * usually a very slow process, so we use rechargeable spins to
863 >     * avoid it when threads regularly arrive: When a thread in
864 >     * internalAwaitAdvance notices another arrival before blocking,
865 >     * and there appear to be enough CPUs available, it spins
866 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
867 >     * uniprocessors, there is at least one intervening Thread.yield
868 >     * before blocking. The value trades off good-citizenship vs big
869 >     * unnecessary slowdowns.
870       */
871 <    private int untimedWait(int phase) {
786 <        int spins = maxUntimedSpins;
787 <        QNode node = null;
788 <        boolean interrupted = false;
789 <        boolean queued = false;
790 <        int p;
791 <        while ((p = getPhase()) == phase) {
792 <            interrupted = Thread.interrupted();
793 <            if (node != null) {
794 <                if (!queued) {
795 <                    AtomicReference<QNode> head = queueFor(phase);
796 <                    queued = head.compareAndSet(node.next = head.get(), node);
797 <                }
798 <                else if (node.thread != null)
799 <                    LockSupport.park(this);
800 <            }
801 <            else if (spins <= 0)
802 <                node = new QNode();
803 <            else
804 <                --spins;
805 <        }
806 <        if (node != null)
807 <            node.thread = null;
808 <        if (interrupted)
809 <            Thread.currentThread().interrupt();
810 <        releaseWaiters(phase);
811 <        return p;
812 <    }
871 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
872  
873      /**
874 <     * Messier interruptible version
875 <     */
876 <    private int interruptibleWait(int phase) throws InterruptedException {
877 <        int spins = maxUntimedSpins;
878 <        QNode node = null;
879 <        boolean queued = false;
880 <        boolean interrupted = false;
874 >     * Possibly blocks and waits for phase to advance unless aborted.
875 >     *
876 >     * @param phase current phase
877 >     * @param node if non-null, the wait node to track interrupt and timeout;
878 >     * if null, denotes noninterruptible wait
879 >     * @return current phase
880 >     */
881 >    private int internalAwaitAdvance(int phase, QNode node) {
882 >        Phaser current = this;       // to eventually wait at root if tiered
883 >        boolean queued = false;      // true when node is enqueued
884 >        int lastUnarrived = -1;      // to increase spins upon change
885 >        int spins = SPINS_PER_ARRIVAL;
886 >        long s;
887          int p;
888 <        while ((p = getPhase()) == phase) {
889 <            if (interrupted = Thread.interrupted())
890 <                break;
891 <            if (node != null) {
892 <                if (!queued) {
893 <                    AtomicReference<QNode> head = queueFor(phase);
894 <                    queued = head.compareAndSet(node.next = head.get(), node);
888 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
889 >            Phaser par;
890 >            int unarrived = (int)s & UNARRIVED_MASK;
891 >            if (unarrived != lastUnarrived) {
892 >                if (lastUnarrived == -1) // ensure old queue clean
893 >                    releaseWaiters(phase-1);
894 >                if ((lastUnarrived = unarrived) < NCPU)
895 >                    spins += SPINS_PER_ARRIVAL;
896 >            }
897 >            else if (unarrived == 0 && (par = current.parent) != null) {
898 >                current = par;       // if all arrived, use parent
899 >                par = par.parent;
900 >                lastUnarrived = -1;
901 >            }
902 >            else if (spins > 0) {
903 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
904 >                    Thread.yield();  // yield midway through spin
905 >            }
906 >            else if (node == null)   // must be noninterruptible
907 >                node = new QNode(this, phase, false, false, 0L);
908 >            else if (node.isReleasable()) {
909 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
910 >                    break;
911 >                else
912 >                    return phase;    // aborted
913 >            }
914 >            else if (!queued) {      // push onto queue
915 >                AtomicReference<QNode> head = queueFor(phase);
916 >                QNode q = head.get();
917 >                if (q == null || q.phase == phase) {
918 >                    node.next = q;
919 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
920 >                        break;       // recheck to avoid stale enqueue
921 >                    else
922 >                        queued = head.compareAndSet(q, node);
923 >                }
924 >            }
925 >            else {
926 >                try {
927 >                    ForkJoinPool.managedBlock(node);
928 >                } catch (InterruptedException ie) {
929 >                    node.wasInterrupted = true;
930                  }
831                else if (node.thread != null)
832                    LockSupport.park(this);
931              }
834            else if (spins <= 0)
835                node = new QNode();
836            else
837                --spins;
932          }
839        if (node != null)
840            node.thread = null;
841        if (interrupted)
842            throw new InterruptedException();
933          releaseWaiters(phase);
934 +        if (node != null)
935 +            node.onRelease();
936          return p;
937      }
938  
939      /**
940 <     * Even messier timeout version.
940 >     * Wait nodes for Treiber stack representing wait queue
941       */
942 <    private int timedWait(int phase, long nanos)
943 <        throws InterruptedException, TimeoutException {
944 <        int p;
945 <        if ((p = getPhase()) == phase) {
946 <            long lastTime = System.nanoTime();
947 <            int spins = maxTimedSpins;
948 <            QNode node = null;
949 <            boolean queued = false;
950 <            boolean interrupted = false;
951 <            while ((p = getPhase()) == phase) {
952 <                if (interrupted = Thread.interrupted())
953 <                    break;
954 <                long now = System.nanoTime();
955 <                if ((nanos -= now - lastTime) <= 0)
956 <                    break;
957 <                lastTime = now;
958 <                if (node != null) {
959 <                    if (!queued) {
960 <                        AtomicReference<QNode> head = queueFor(phase);
961 <                        queued = head.compareAndSet(node.next = head.get(), node);
962 <                    }
963 <                    else if (node.thread != null &&
964 <                             nanos > spinForTimeoutThreshold) {
965 <                        LockSupport.parkNanos(this, nanos);
942 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
943 >        final Phaser phaser;
944 >        final int phase;
945 >        final boolean interruptible;
946 >        final boolean timed;
947 >        boolean wasInterrupted;
948 >        long nanos;
949 >        long lastTime;
950 >        volatile Thread thread; // nulled to cancel wait
951 >        QNode next;
952 >
953 >        QNode(Phaser phaser, int phase, boolean interruptible,
954 >              boolean timed, long nanos) {
955 >            this.phaser = phaser;
956 >            this.phase = phase;
957 >            this.interruptible = interruptible;
958 >            this.nanos = nanos;
959 >            this.timed = timed;
960 >            this.lastTime = timed? System.nanoTime() : 0L;
961 >            thread = Thread.currentThread();
962 >        }
963 >
964 >        public boolean isReleasable() {
965 >            Thread t = thread;
966 >            if (t != null) {
967 >                if (phaser.getPhase() != phase)
968 >                    t = null;
969 >                else {
970 >                    if (Thread.interrupted())
971 >                        wasInterrupted = true;
972 >                    if (interruptible && wasInterrupted)
973 >                        t = null;
974 >                    else if (timed) {
975 >                        if (nanos > 0) {
976 >                            long now = System.nanoTime();
977 >                            nanos -= now - lastTime;
978 >                            lastTime = now;
979 >                        }
980 >                        if (nanos <= 0)
981 >                            t = null;
982                      }
983                  }
984 <                else if (spins <= 0)
985 <                    node = new QNode();
986 <                else
879 <                    --spins;
984 >                if (t != null)
985 >                    return false;
986 >                thread = null;
987              }
988 <            if (node != null)
882 <                node.thread = null;
883 <            if (interrupted)
884 <                throw new InterruptedException();
885 <            if (p == phase && (p = getPhase()) == phase)
886 <                throw new TimeoutException();
988 >            return true;
989          }
990 <        releaseWaiters(phase);
991 <        return p;
990 >
991 >        public boolean block() {
992 >            if (isReleasable())
993 >                return true;
994 >            else if (!timed)
995 >                LockSupport.park(this);
996 >            else if (nanos > 0)
997 >                LockSupport.parkNanos(this, nanos);
998 >            return isReleasable();
999 >        }
1000 >
1001 >        void signal() {
1002 >            Thread t = thread;
1003 >            if (t != null) {
1004 >                thread = null;
1005 >                LockSupport.unpark(t);
1006 >            }
1007 >        }
1008 >
1009 >        void onRelease() { // actions upon return from internalAwaitAdvance
1010 >            if (!interruptible && wasInterrupted)
1011 >                Thread.currentThread().interrupt();
1012 >            if (thread != null)
1013 >                thread = null;
1014 >        }
1015 >
1016      }
1017  
1018 <    // Temporary Unsafe mechanics for preliminary release
1018 >    // Unsafe mechanics
1019  
1020 <    static final Unsafe _unsafe;
1021 <    static final long stateOffset;
1020 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1021 >    private static final long stateOffset =
1022 >        objectFieldOffset("state", Phaser.class);
1023  
1024 <    static {
1024 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1025          try {
1026 <            if (Phaser.class.getClassLoader() != null) {
1027 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1028 <                f.setAccessible(true);
1029 <                _unsafe = (Unsafe)f.get(null);
1030 <            }
1031 <            else
905 <                _unsafe = Unsafe.getUnsafe();
906 <            stateOffset = _unsafe.objectFieldOffset
907 <                (Phaser.class.getDeclaredField("state"));
908 <        } catch (Exception e) {
909 <            throw new RuntimeException("Could not initialize intrinsics", e);
1026 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1027 >        } catch (NoSuchFieldException e) {
1028 >            // Convert Exception to corresponding Error
1029 >            NoSuchFieldError error = new NoSuchFieldError(field);
1030 >            error.initCause(e);
1031 >            throw error;
1032          }
1033      }
1034  
1035 <    final boolean casState(long cmp, long val) {
1036 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1035 >    /**
1036 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1037 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1038 >     * into a jdk.
1039 >     *
1040 >     * @return a sun.misc.Unsafe
1041 >     */
1042 >    private static sun.misc.Unsafe getUnsafe() {
1043 >        try {
1044 >            return sun.misc.Unsafe.getUnsafe();
1045 >        } catch (SecurityException se) {
1046 >            try {
1047 >                return java.security.AccessController.doPrivileged
1048 >                    (new java.security
1049 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1050 >                        public sun.misc.Unsafe run() throws Exception {
1051 >                            java.lang.reflect.Field f = sun.misc
1052 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1053 >                            f.setAccessible(true);
1054 >                            return (sun.misc.Unsafe) f.get(null);
1055 >                        }});
1056 >            } catch (java.security.PrivilegedActionException e) {
1057 >                throw new RuntimeException("Could not initialize intrinsics",
1058 >                                           e.getCause());
1059 >            }
1060 >        }
1061      }
1062   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines