ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.62 by dl, Mon Nov 29 00:52:28 2010 UTC vs.
Revision 1.68 by dl, Sat Dec 4 15:25:08 2010 UTC

# Line 18 | Line 18 | import java.util.concurrent.locks.LockSu
18   * but supporting more flexible usage.
19   *
20   * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 < * number of parties <em>registered</em> to synchronize on a Phaser
21 > * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
24   * constructors establishing initial numbers of parties), and
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating Phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return
81 > * value. Similarly, attempts to register upon termination have no
82 > * effect.  Termination is triggered when an invocation of {@code
83   * onAdvance} returns {@code true}. The default implementation returns
84   * {@code true} if a deregistration has caused the number of
85   * registered parties to become zero.  As illustrated below, when
86 < * Phasers control actions with a fixed number of iterations, it is
86 > * phasers control actions with a fixed number of iterations, it is
87   * often convenient to override this method to cause termination when
88   * the current phase number reaches a threshold. Method {@link
89   * #forceTermination} is also available to abruptly release waiting
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 < * only by registered parties, the current state of a Phaser may be
111 > * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
113   * #getRegisteredParties} parties in total, of which {@link
114   * #getArrivedParties} have arrived at the current phase ({@link
# Line 183 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of Phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a Phaser that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
224   * maximum number of parties to 65535. Attempts to register additional
225   * parties result in {@code IllegalStateException}. However, you can and
226 < * should create tiered Phasers to accommodate arbitrarily large sets
226 > * should create tiered phasers to accommodate arbitrarily large sets
227   * of participants.
228   *
229   * @since 1.7
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
230 <     * four values:
240 >     * Primary state representation, holding four fields:
241       *
242       * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243       * * parties -- the number of parties to wait              (bits 16-31)
244       * * phase -- the generation of the barrier                (bits 32-62)
245       * * terminated -- set if barrier is terminated            (bit  63 / sign)
246       *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished with the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed.  Method reconcileState
264 >     * is usually attempted only only when the number of unarrived
265 >     * parties appears to be zero, which indicates a potential lag in
266 >     * updating phase after the root advanced.
267       */
268      private volatile long state;
269  
# Line 248 | Line 273 | public class Phaser {
273      private static final int  PHASE_SHIFT     = 32;
274      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
275      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251    private static final long ONE_ARRIVAL     = 1L;
252    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
276      private static final long TERMINATION_BIT = 1L << 63;
277  
278 +    // some special values
279 +    private static final int  ONE_ARRIVAL     = 1;
280 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
281 +    private static final int  EMPTY           = 1;
282 +
283      // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286 <        return (int)s & UNARRIVED_MASK;
286 >        int counts = (int)s;
287 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
288      }
289  
290      private static int partiesOf(long s) {
# Line 267 | Line 296 | public class Phaser {
296      }
297  
298      private static int arrivedOf(long s) {
299 <        return partiesOf(s) - unarrivedOf(s);
299 >        int counts = (int)s;
300 >        return (counts == EMPTY) ? 0 :
301 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302      }
303  
304      /**
# Line 276 | Line 307 | public class Phaser {
307      private final Phaser parent;
308  
309      /**
310 <     * The root of phaser tree. Equals this if not in a tree.  Used to
280 <     * support faster state push-down.
310 >     * The root of phaser tree. Equals this if not in a tree.
311       */
312      private final Phaser root;
313  
# Line 315 | Line 345 | public class Phaser {
345       * Manually tuned to speed up and minimize race windows for the
346       * common case of just decrementing unarrived field.
347       *
348 <     * @param adj - adjustment to apply to state -- either
319 <     * ONE_ARRIVAL (for arrive) or
320 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
348 >     * @param deregister false for arrive, true for arriveAndDeregister
349       */
350 <    private int doArrive(long adj) {
350 >    private int doArrive(boolean deregister) {
351 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 >        final Phaser root = this.root;
353          for (;;) {
354 <            long s = state;
325 <            int unarrived = (int)s & UNARRIVED_MASK;
354 >            long s = (root == this) ? state : reconcileState();
355              int phase = (int)(s >>> PHASE_SHIFT);
356 +            int counts = (int)s;
357 +            int unarrived = (counts & UNARRIVED_MASK) - 1;
358              if (phase < 0)
359                  return phase;
360 <            else if (unarrived == 0) {
361 <                if (reconcileState() == s)     // recheck
360 >            else if (counts == EMPTY || unarrived < 0) {
361 >                if (root == this || reconcileState() == s)
362                      throw new IllegalStateException(badArrive(s));
363              }
364              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
365 <                if (unarrived == 1) {
366 <                    long p = s & PARTIES_MASK; // unshifted parties field
367 <                    long lu = p >>> PARTIES_SHIFT;
368 <                    int u = (int)lu;
369 <                    int nextPhase = (phase + 1) & MAX_PHASE;
370 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
371 <                    final Phaser parent = this.parent;
372 <                    if (parent == null) {
373 <                        if (onAdvance(phase, u))
374 <                            next |= TERMINATION_BIT;
375 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
376 <                        releaseWaiters(phase);
377 <                    }
378 <                    else {
348 <                        parent.doArrive((u == 0) ?
349 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
351 <                            reconcileState();
352 <                        else if (state == s)
353 <                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
354 <                                                      next);
355 <                    }
365 >                if (unarrived == 0) {
366 >                    long n = s & PARTIES_MASK;  // base of next state
367 >                    int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
368 >                    if (root != this)
369 >                        return parent.doArrive(nextUnarrived == 0);
370 >                    if (onAdvance(phase, nextUnarrived))
371 >                        n |= TERMINATION_BIT;
372 >                    else if (nextUnarrived == 0)
373 >                        n |= EMPTY;
374 >                    else
375 >                        n |= nextUnarrived;
376 >                    n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
377 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
378 >                    releaseWaiters(phase);
379                  }
380                  return phase;
381              }
# Line 368 | Line 391 | public class Phaser {
391      private int doRegister(int registrations) {
392          // adjustment to state
393          long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
394 <        final Phaser parent = this.parent;
394 >        Phaser par = parent;
395 >        int phase;
396          for (;;) {
397 <            long s = (parent == null) ? state : reconcileState();
398 <            int parties = (int)s >>> PARTIES_SHIFT;
399 <            int phase = (int)(s >>> PHASE_SHIFT);
400 <            if (phase < 0)
401 <                return phase;
378 <            else if (registrations > MAX_PARTIES - parties)
397 >            long s = state;
398 >            int counts = (int)s;
399 >            int parties = counts >>> PARTIES_SHIFT;
400 >            int unarrived = counts & UNARRIVED_MASK;
401 >            if (registrations > MAX_PARTIES - parties)
402                  throw new IllegalStateException(badRegister(s));
403 <            else if ((parties == 0 && parent == null) || // first reg of root
404 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
405 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
406 <                    return phase;
407 <            }
408 <            else if (parties != 0)               // wait for onAdvance
409 <                root.internalAwaitAdvance(phase, null);
410 <            else {                               // 1st registration of child
411 <                synchronized (this) {            // register parent first
412 <                    if (reconcileState() == s) { // recheck under lock
413 <                        parent.doRegister(1);    // OK if throws IllegalState
414 <                        for (;;) {               // simpler form of outer loop
415 <                            s = reconcileState();
416 <                            phase = (int)(s >>> PHASE_SHIFT);
417 <                            if (phase < 0 ||
418 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
419 <                                                          s, s + adj))
420 <                                return phase;
421 <                        }
403 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
404 >                break;
405 >            else if (counts != EMPTY) {             // not 1st registration
406 >                if (par == null || reconcileState() == s) {
407 >                    if (unarrived == 0)             // wait out advance
408 >                        root.internalAwaitAdvance(phase, null);
409 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
410 >                                                       s, s + adj))
411 >                        break;
412 >                }
413 >            }
414 >            else if (par == null) {                 // 1st root registration
415 >                long next = (((long) phase) << PHASE_SHIFT) | adj;
416 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
417 >                    break;
418 >            }
419 >            else {
420 >                synchronized (this) {               // 1st sub registration
421 >                    if (state == s) {               // recheck under lock
422 >                        par.doRegister(1);
423 >                        do {                        // force current phase
424 >                            phase = (int)(root.state >>> PHASE_SHIFT);
425 >                            // assert phase < 0 || (int)state == EMPTY;
426 >                        } while (!UNSAFE.compareAndSwapLong
427 >                                 (this, stateOffset, state,
428 >                                  (((long) phase) << PHASE_SHIFT) | adj));
429 >                        break;
430                      }
431                  }
432              }
433          }
434 +        return phase;
435      }
436  
437      /**
438 <     * Recursively resolves lagged phase propagation from root if necessary.
438 >     * Resolves lagged phase propagation from root if necessary.
439       */
440      private long reconcileState() {
441 <        Phaser par = parent;
441 >        Phaser rt = root;
442          long s = state;
443 <        if (par != null) {
444 <            Phaser rt = root;
445 <            int phase, rPhase;
446 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
447 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
448 <                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
449 <                    par.reconcileState();
450 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
451 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
452 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
453 <                                 (u >>> PARTIES_SHIFT));
454 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
443 >        if (rt != this) {
444 >            int phase;
445 >            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
446 >                   (int)(s >>> PHASE_SHIFT)) {
447 >                // assert phase < 0 || unarrivedOf(s) == 0
448 >                long t;                             // to reread s
449 >                long p = s & PARTIES_MASK;          // unshifted parties field
450 >                long n = (((long) phase) << PHASE_SHIFT) | p;
451 >                if (phase >= 0) {
452 >                    if (p == 0L)
453 >                        n |= EMPTY;                 // reset to empty
454 >                    else
455 >                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
456                  }
457 <                s = state;
457 >                if ((t = state) == s &&
458 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
459 >                    break;
460 >                s = t;
461              }
462          }
463          return s;
464      }
465  
466      /**
467 <     * Creates a new Phaser without any initially registered parties,
468 <     * initial phase number 0, and no parent. Any thread using this
469 <     * Phaser will need to first register for it.
467 >     * Creates a new phaser with no initially registered parties, no
468 >     * parent, and initial phase number 0. Any thread using this
469 >     * phaser will need to first register for it.
470       */
471      public Phaser() {
472          this(null, 0);
473      }
474  
475      /**
476 <     * Creates a new Phaser with the given number of registered
477 <     * unarrived parties, initial phase number 0, and no parent.
476 >     * Creates a new phaser with the given number of registered
477 >     * unarrived parties, no parent, and initial phase number 0.
478       *
479 <     * @param parties the number of parties required to trip barrier
479 >     * @param parties the number of parties required to advance to the
480 >     * next phase
481       * @throws IllegalArgumentException if parties less than zero
482       * or greater than the maximum number of parties supported
483       */
# Line 451 | Line 488 | public class Phaser {
488      /**
489       * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
490       *
491 <     * @param parent the parent Phaser
491 >     * @param parent the parent phaser
492       */
493      public Phaser(Phaser parent) {
494          this(parent, 0);
495      }
496  
497      /**
498 <     * Creates a new Phaser with the given parent and number of
499 <     * registered unarrived parties. Registration and deregistration
500 <     * of this child Phaser with its parent are managed automatically.
501 <     * If the given parent is non-null, whenever this child Phaser has
502 <     * any registered parties (as established in this constructor,
503 <     * {@link #register}, or {@link #bulkRegister}), this child Phaser
504 <     * is registered with its parent. Whenever the number of
505 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child Phaser is
470 <     * deregistered from its parent.
471 <     *
472 <     * @param parent the parent Phaser
473 <     * @param parties the number of parties required to trip barrier
498 >     * Creates a new phaser with the given parent and number of
499 >     * registered unarrived parties.  When the given parent is non-null
500 >     * and the given number of parties is greater than zero, this
501 >     * child phaser is registered with its parent.
502 >     *
503 >     * @param parent the parent phaser
504 >     * @param parties the number of parties required to advance to the
505 >     * next phase
506       * @throws IllegalArgumentException if parties less than zero
507       * or greater than the maximum number of parties supported
508       */
509      public Phaser(Phaser parent, int parties) {
510          if (parties >>> PARTIES_SHIFT != 0)
511              throw new IllegalArgumentException("Illegal number of parties");
512 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
512 >        int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515 <            Phaser r = parent.root;
516 <            this.root = r;
517 <            this.evenQ = r.evenQ;
518 <            this.oddQ = r.oddQ;
515 >            final Phaser root = parent.root;
516 >            this.root = root;
517 >            this.evenQ = root.evenQ;
518 >            this.oddQ = root.oddQ;
519              if (parties != 0)
520 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
520 >                phase = parent.doRegister(1);
521          }
522          else {
523              this.root = this;
524              this.evenQ = new AtomicReference<QNode>();
525              this.oddQ = new AtomicReference<QNode>();
526          }
527 <        this.state = s;
527 >        this.state = (parties == 0) ? (long) EMPTY :
528 >            ((((long) phase) << PHASE_SHIFT) |
529 >             (((long) parties) << PARTIES_SHIFT) |
530 >             ((long) parties));
531      }
532  
533      /**
534 <     * Adds a new unarrived party to this Phaser.  If an ongoing
534 >     * Adds a new unarrived party to this phaser.  If an ongoing
535       * invocation of {@link #onAdvance} is in progress, this method
536 <     * may await its completion before returning.  If this Phaser has
537 <     * a parent, and this Phaser previously had no registered parties,
538 <     * this Phaser is also registered with its parent.
539 <     *
540 <     * @return the arrival phase number to which this registration applied
536 >     * may await its completion before returning.  If this phaser has
537 >     * a parent, and this phaser previously had no registered parties,
538 >     * this child phaser is also registered with its parent. If
539 >     * this phaser is terminated, the attempt to register has
540 >     * no effect, and a negative value is returned.
541 >     *
542 >     * @return the arrival phase number to which this registration
543 >     * applied.  If this value is negative, then this phaser has
544 >     * terminated, in which casem registration has no effect.
545       * @throws IllegalStateException if attempting to register more
546       * than the maximum supported number of parties
547       */
# Line 511 | Line 550 | public class Phaser {
550      }
551  
552      /**
553 <     * Adds the given number of new unarrived parties to this Phaser.
553 >     * Adds the given number of new unarrived parties to this phaser.
554       * If an ongoing invocation of {@link #onAdvance} is in progress,
555       * this method may await its completion before returning.  If this
556 <     * Phaser has a parent, and the given number of parities is
557 <     * greater than zero, and this Phaser previously had no registered
558 <     * parties, this Phaser is also registered with its parent.
559 <     *
560 <     * @param parties the number of additional parties required to trip barrier
561 <     * @return the arrival phase number to which this registration applied
556 >     * phaser has a parent, and the given number of parties is greater
557 >     * than zero, and this phaser previously had no registered
558 >     * parties, this child phaser is also registered with its parent.
559 >     * If this phaser is terminated, the attempt to register has no
560 >     * effect, and a negative value is returned.
561 >     *
562 >     * @param parties the number of additional parties required to
563 >     * advance to the next phase
564 >     * @return the arrival phase number to which this registration
565 >     * applied.  If this value is negative, then this phaser has
566 >     * terminated, in which casem registration has no effect.
567       * @throws IllegalStateException if attempting to register more
568       * than the maximum supported number of parties
569       * @throws IllegalArgumentException if {@code parties < 0}
# Line 533 | Line 577 | public class Phaser {
577      }
578  
579      /**
580 <     * Arrives at the barrier, without waiting for others to arrive.
580 >     * Arrives at this phaser, without waiting for others to arrive.
581       *
582       * <p>It is a usage error for an unregistered party to invoke this
583       * method.  However, this error may result in an {@code
584       * IllegalStateException} only upon some subsequent operation on
585 <     * this Phaser, if ever.
585 >     * this phaser, if ever.
586       *
587       * @return the arrival phase number, or a negative value if terminated
588       * @throws IllegalStateException if not terminated and the number
589       * of unarrived parties would become negative
590       */
591      public int arrive() {
592 <        return doArrive(ONE_ARRIVAL);
592 >        return doArrive(false);
593      }
594  
595      /**
596 <     * Arrives at the barrier and deregisters from it without waiting
596 >     * Arrives at this phaser and deregisters from it without waiting
597       * for others to arrive. Deregistration reduces the number of
598 <     * parties required to trip the barrier in future phases.  If this
599 <     * Phaser has a parent, and deregistration causes this Phaser to
600 <     * have zero parties, this Phaser is also deregistered from its
557 <     * parent.
598 >     * parties required to advance in future phases.  If this phaser
599 >     * has a parent, and deregistration causes this phaser to have
600 >     * zero parties, this phaser is also deregistered from its parent.
601       *
602       * <p>It is a usage error for an unregistered party to invoke this
603       * method.  However, this error may result in an {@code
604       * IllegalStateException} only upon some subsequent operation on
605 <     * this Phaser, if ever.
605 >     * this phaser, if ever.
606       *
607       * @return the arrival phase number, or a negative value if terminated
608       * @throws IllegalStateException if not terminated and the number
609       * of registered or unarrived parties would become negative
610       */
611      public int arriveAndDeregister() {
612 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
612 >        return doArrive(true);
613      }
614  
615      /**
616 <     * Arrives at the barrier and awaits others. Equivalent in effect
616 >     * Arrives at this phaser and awaits others. Equivalent in effect
617       * to {@code awaitAdvance(arrive())}.  If you need to await with
618       * interruption or timeout, you can arrange this with an analogous
619       * construction using one of the other forms of the {@code
# Line 580 | Line 623 | public class Phaser {
623       * <p>It is a usage error for an unregistered party to invoke this
624       * method.  However, this error may result in an {@code
625       * IllegalStateException} only upon some subsequent operation on
626 <     * this Phaser, if ever.
626 >     * this phaser, if ever.
627       *
628 <     * @return the arrival phase number, or a negative number if terminated
628 >     * @return the arrival phase number, or the (negative)
629 >     * {@linkplain #getPhase() current phase} if terminated
630       * @throws IllegalStateException if not terminated and the number
631       * of unarrived parties would become negative
632       */
633      public int arriveAndAwaitAdvance() {
634 <        return awaitAdvance(doArrive(ONE_ARRIVAL));
634 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
635 >        final Phaser root = this.root;
636 >        for (;;) {
637 >            long s = (root == this) ? state : reconcileState();
638 >            int phase = (int)(s >>> PHASE_SHIFT);
639 >            int counts = (int)s;
640 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
641 >            if (phase < 0)
642 >                return phase;
643 >            else if (counts == EMPTY || unarrived < 0) {
644 >                if (reconcileState() == s)
645 >                    throw new IllegalStateException(badArrive(s));
646 >            }
647 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
648 >                                               s -= ONE_ARRIVAL)) {
649 >                if (unarrived != 0)
650 >                    return root.internalAwaitAdvance(phase, null);
651 >                if (root != this)
652 >                    return parent.arriveAndAwaitAdvance();
653 >                long n = s & PARTIES_MASK;  // base of next state
654 >                int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
655 >                if (onAdvance(phase, nextUnarrived))
656 >                    n |= TERMINATION_BIT;
657 >                else if (nextUnarrived == 0)
658 >                    n |= EMPTY;
659 >                else
660 >                    n |= nextUnarrived;
661 >                int nextPhase = (phase + 1) & MAX_PHASE;
662 >                n |= (long)nextPhase << PHASE_SHIFT;
663 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
664 >                    return (int)(state >>> PHASE_SHIFT); // terminated
665 >                releaseWaiters(phase);
666 >                return nextPhase;
667 >            }
668 >        }
669      }
670  
671      /**
672 <     * Awaits the phase of the barrier to advance from the given phase
673 <     * value, returning immediately if the current phase of the
674 <     * barrier is not equal to the given phase value or this barrier
597 <     * is terminated.
672 >     * Awaits the phase of this phaser to advance from the given phase
673 >     * value, returning immediately if the current phase is not equal
674 >     * to the given phase value or this phaser is terminated.
675       *
676       * @param phase an arrival phase number, or negative value if
677       * terminated; this argument is normally the value returned by a
678 <     * previous call to {@code arrive} or its variants
679 <     * @return the next arrival phase number, or a negative value
680 <     * if terminated or argument is negative
678 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
679 >     * @return the next arrival phase number, or the argument if it is
680 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
681 >     * if terminated
682       */
683      public int awaitAdvance(int phase) {
684 <        Phaser rt;
685 <        int p = (int)(state >>> PHASE_SHIFT);
684 >        final Phaser root = this.root;
685 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
686          if (phase < 0)
687              return phase;
688 <        if (p == phase &&
689 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 <            return rt.internalAwaitAdvance(phase, null);
688 >        if (p == phase)
689 >            return root.internalAwaitAdvance(phase, null);
690          return p;
691      }
692  
693      /**
694 <     * Awaits the phase of the barrier to advance from the given phase
694 >     * Awaits the phase of this phaser to advance from the given phase
695       * value, throwing {@code InterruptedException} if interrupted
696 <     * while waiting, or returning immediately if the current phase of
697 <     * the barrier is not equal to the given phase value or this
698 <     * barrier is terminated.
696 >     * while waiting, or returning immediately if the current phase is
697 >     * not equal to the given phase value or this phaser is
698 >     * terminated.
699       *
700       * @param phase an arrival phase number, or negative value if
701       * terminated; this argument is normally the value returned by a
702 <     * previous call to {@code arrive} or its variants
703 <     * @return the next arrival phase number, or a negative value
704 <     * if terminated or argument is negative
702 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
703 >     * @return the next arrival phase number, or the argument if it is
704 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
705 >     * if terminated
706       * @throws InterruptedException if thread interrupted while waiting
707       */
708      public int awaitAdvanceInterruptibly(int phase)
709          throws InterruptedException {
710 <        Phaser rt;
711 <        int p = (int)(state >>> PHASE_SHIFT);
710 >        final Phaser root = this.root;
711 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
712          if (phase < 0)
713              return phase;
714 <        if (p == phase &&
637 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
714 >        if (p == phase) {
715              QNode node = new QNode(this, phase, true, false, 0L);
716 <            p = rt.internalAwaitAdvance(phase, node);
716 >            p = root.internalAwaitAdvance(phase, node);
717              if (node.wasInterrupted)
718                  throw new InterruptedException();
719          }
# Line 644 | Line 721 | public class Phaser {
721      }
722  
723      /**
724 <     * Awaits the phase of the barrier to advance from the given phase
724 >     * Awaits the phase of this phaser to advance from the given phase
725       * value or the given timeout to elapse, throwing {@code
726       * InterruptedException} if interrupted while waiting, or
727 <     * returning immediately if the current phase of the barrier is
728 <     * not equal to the given phase value or this barrier is
652 <     * terminated.
727 >     * returning immediately if the current phase is not equal to the
728 >     * given phase value or this phaser is terminated.
729       *
730       * @param phase an arrival phase number, or negative value if
731       * terminated; this argument is normally the value returned by a
732 <     * previous call to {@code arrive} or its variants
732 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
733       * @param timeout how long to wait before giving up, in units of
734       *        {@code unit}
735       * @param unit a {@code TimeUnit} determining how to interpret the
736       *        {@code timeout} parameter
737 <     * @return the next arrival phase number, or a negative value
738 <     * if terminated or argument is negative
737 >     * @return the next arrival phase number, or the argument if it is
738 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
739 >     * if terminated
740       * @throws InterruptedException if thread interrupted while waiting
741       * @throws TimeoutException if timed out while waiting
742       */
# Line 667 | Line 744 | public class Phaser {
744                                           long timeout, TimeUnit unit)
745          throws InterruptedException, TimeoutException {
746          long nanos = unit.toNanos(timeout);
747 <        Phaser rt;
748 <        int p = (int)(state >>> PHASE_SHIFT);
747 >        final Phaser root = this.root;
748 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
749          if (phase < 0)
750              return phase;
751 <        if (p == phase &&
675 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
751 >        if (p == phase) {
752              QNode node = new QNode(this, phase, true, true, nanos);
753 <            p = rt.internalAwaitAdvance(phase, node);
753 >            p = root.internalAwaitAdvance(phase, node);
754              if (node.wasInterrupted)
755                  throw new InterruptedException();
756              else if (p == phase)
# Line 684 | Line 760 | public class Phaser {
760      }
761  
762      /**
763 <     * Forces this barrier to enter termination state.  Counts of
764 <     * arrived and registered parties are unaffected.  If this Phaser
765 <     * is a member of a tiered set of Phasers, then all of the Phasers
766 <     * in the set are terminated.  If this Phaser is already
767 <     * terminated, this method has no effect.  This method may be
768 <     * useful for coordinating recovery after one or more tasks
769 <     * encounter unexpected exceptions.
763 >     * Forces this phaser to enter termination state.  Counts of
764 >     * registered parties are unaffected.  If this phaser is a member
765 >     * of a tiered set of phasers, then all of the phasers in the set
766 >     * are terminated.  If this phaser is already terminated, this
767 >     * method has no effect.  This method may be useful for
768 >     * coordinating recovery after one or more tasks encounter
769 >     * unexpected exceptions.
770       */
771      public void forceTermination() {
772          // Only need to change root state
773          final Phaser root = this.root;
774          long s;
775          while ((s = root.state) >= 0) {
776 <            if (UNSAFE.compareAndSwapLong(root, stateOffset,
777 <                                          s, s | TERMINATION_BIT)) {
778 <                releaseWaiters(0); // signal all threads
776 >            long next = (s & ~((long)UNARRIVED_MASK)) | TERMINATION_BIT;
777 >            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
778 >                // signal all threads
779 >                releaseWaiters(0);
780                  releaseWaiters(1);
781                  return;
782              }
# Line 709 | Line 786 | public class Phaser {
786      /**
787       * Returns the current phase number. The maximum phase number is
788       * {@code Integer.MAX_VALUE}, after which it restarts at
789 <     * zero. Upon termination, the phase number is negative.
789 >     * zero. Upon termination, the phase number is negative,
790 >     * in which case the prevailing phase prior to termination
791 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
792       *
793       * @return the phase number, or a negative value if terminated
794       */
# Line 718 | Line 797 | public class Phaser {
797      }
798  
799      /**
800 <     * Returns the number of parties registered at this barrier.
800 >     * Returns the number of parties registered at this phaser.
801       *
802       * @return the number of parties
803       */
# Line 728 | Line 807 | public class Phaser {
807  
808      /**
809       * Returns the number of registered parties that have arrived at
810 <     * the current phase of this barrier.
810 >     * the current phase of this phaser.
811       *
812       * @return the number of arrived parties
813       */
814      public int getArrivedParties() {
815 <        long s = state;
737 <        int u = unarrivedOf(s); // only reconcile if possibly needed
738 <        return (u != 0 || parent == null) ?
739 <            partiesOf(s) - u :
740 <            arrivedOf(reconcileState());
815 >        return arrivedOf(reconcileState());
816      }
817  
818      /**
819       * Returns the number of registered parties that have not yet
820 <     * arrived at the current phase of this barrier.
820 >     * arrived at the current phase of this phaser.
821       *
822       * @return the number of unarrived parties
823       */
824      public int getUnarrivedParties() {
825 <        int u = unarrivedOf(state);
751 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
825 >        return unarrivedOf(reconcileState());
826      }
827  
828      /**
829 <     * Returns the parent of this Phaser, or {@code null} if none.
829 >     * Returns the parent of this phaser, or {@code null} if none.
830       *
831 <     * @return the parent of this Phaser, or {@code null} if none
831 >     * @return the parent of this phaser, or {@code null} if none
832       */
833      public Phaser getParent() {
834          return parent;
835      }
836  
837      /**
838 <     * Returns the root ancestor of this Phaser, which is the same as
839 <     * this Phaser if it has no parent.
838 >     * Returns the root ancestor of this phaser, which is the same as
839 >     * this phaser if it has no parent.
840       *
841 <     * @return the root ancestor of this Phaser
841 >     * @return the root ancestor of this phaser
842       */
843      public Phaser getRoot() {
844          return root;
845      }
846  
847      /**
848 <     * Returns {@code true} if this barrier has been terminated.
848 >     * Returns {@code true} if this phaser has been terminated.
849       *
850 <     * @return {@code true} if this barrier has been terminated
850 >     * @return {@code true} if this phaser has been terminated
851       */
852      public boolean isTerminated() {
853          return root.state < 0L;
# Line 782 | Line 856 | public class Phaser {
856      /**
857       * Overridable method to perform an action upon impending phase
858       * advance, and to control termination. This method is invoked
859 <     * upon arrival of the party tripping the barrier (when all other
859 >     * upon arrival of the party advancing this phaser (when all other
860       * waiting parties are dormant).  If this method returns {@code
861 <     * true}, then, rather than advance the phase number, this barrier
862 <     * will be set to a final termination state, and subsequent calls
863 <     * to {@link #isTerminated} will return true. Any (unchecked)
864 <     * Exception or Error thrown by an invocation of this method is
865 <     * propagated to the party attempting to trip the barrier, in
866 <     * which case no advance occurs.
861 >     * true}, this phaser will be set to a final termination state
862 >     * upon advance, and subsequent calls to {@link #isTerminated}
863 >     * will return true. Any (unchecked) Exception or Error thrown by
864 >     * an invocation of this method is propagated to the party
865 >     * attempting to advance this phaser, in which case no advance
866 >     * occurs.
867       *
868 <     * <p>The arguments to this method provide the state of the Phaser
868 >     * <p>The arguments to this method provide the state of the phaser
869       * prevailing for the current transition.  The effects of invoking
870 <     * arrival, registration, and waiting methods on this Phaser from
870 >     * arrival, registration, and waiting methods on this phaser from
871       * within {@code onAdvance} are unspecified and should not be
872       * relied on.
873       *
874 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
875 <     * {@code onAdvance} is invoked only for its root Phaser on each
874 >     * <p>If this phaser is a member of a tiered set of phasers, then
875 >     * {@code onAdvance} is invoked only for its root phaser on each
876       * advance.
877       *
878       * <p>To support the most common use cases, the default
# Line 814 | Line 888 | public class Phaser {
888       *   protected boolean onAdvance(int phase, int parties) { return false; }
889       * }}</pre>
890       *
891 <     * @param phase the phase number on entering the barrier
891 >     * @param phase the current phase number on entry to this method,
892 >     * before this phaser is advanced
893       * @param registeredParties the current number of registered parties
894 <     * @return {@code true} if this barrier should terminate
894 >     * @return {@code true} if this phaser should terminate
895       */
896      protected boolean onAdvance(int phase, int registeredParties) {
897          return registeredParties == 0;
898      }
899  
900      /**
901 <     * Returns a string identifying this Phaser, as well as its
901 >     * Returns a string identifying this phaser, as well as its
902       * state.  The state, in brackets, includes the String {@code
903       * "phase = "} followed by the phase number, {@code "parties = "}
904       * followed by the number of registered parties, and {@code
905       * "arrived = "} followed by the number of arrived parties.
906       *
907 <     * @return a string identifying this barrier, as well as its state
907 >     * @return a string identifying this phaser, as well as its state
908       */
909      public String toString() {
910          return stateToString(reconcileState());
# Line 851 | Line 926 | public class Phaser {
926       * Removes and signals threads from queue for phase.
927       */
928      private void releaseWaiters(int phase) {
929 +        QNode q;   // first element of queue
930 +        Thread t;  // its thread
931          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
855        QNode q;
856        int p;
932          while ((q = head.get()) != null &&
933 <               ((p = q.phase) == phase ||
934 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
935 <            if (head.compareAndSet(q, q.next))
936 <                q.signal();
933 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
934 >            if (head.compareAndSet(q, q.next) &&
935 >                (t = q.thread) != null) {
936 >                q.thread = null;
937 >                LockSupport.unpark(t);
938 >            }
939 >        }
940 >    }
941 >
942 >    /**
943 >     * Variant of releaseWaiters that additionally tries to remove any
944 >     * nodes no longer waiting for advance due to timeout or
945 >     * interrupt. Currently, nodes are removed only if they are at
946 >     * head of queue, which suffices to reduce memory footprint in
947 >     * most usages.
948 >     *
949 >     * @return current phase on exit
950 >     */
951 >    private int abortWait(int phase) {
952 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
953 >        for (;;) {
954 >            Thread t;
955 >            QNode q = head.get();
956 >            int p = (int)(root.state >>> PHASE_SHIFT);
957 >            if (q == null || ((t = q.thread) != null && q.phase == p))
958 >                return p;
959 >            if (head.compareAndSet(q, q.next) && t != null) {
960 >                q.thread = null;
961 >                LockSupport.unpark(t);
962 >            }
963          }
964      }
965  
# Line 888 | Line 989 | public class Phaser {
989       * @return current phase
990       */
991      private int internalAwaitAdvance(int phase, QNode node) {
992 <        boolean queued = false;      // true when node is enqueued
993 <        int lastUnarrived = -1;      // to increase spins upon change
992 >        releaseWaiters(phase-1);          // ensure old queue clean
993 >        boolean queued = false;           // true when node is enqueued
994 >        int lastUnarrived = 0;            // to increase spins upon change
995          int spins = SPINS_PER_ARRIVAL;
996          long s;
997          int p;
998          while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
999 <            int unarrived = (int)s & UNARRIVED_MASK;
1000 <            if (node != null && node.isReleasable()) {
1001 <                p = (int)(state >>> PHASE_SHIFT);
1002 <                break;               // done or aborted
901 <            }
902 <            else if (node == null && Thread.interrupted()) {
903 <                node = new QNode(this, phase, false, false, 0L);
904 <                node.wasInterrupted = true;
905 <            }
906 <            else if (unarrived != lastUnarrived) {
907 <                if (lastUnarrived == -1) // ensure old queue clean
908 <                    releaseWaiters(phase-1);
909 <                if ((lastUnarrived = unarrived) < NCPU)
999 >            if (node == null) {           // spinning in noninterruptible mode
1000 >                int unarrived = (int)s & UNARRIVED_MASK;
1001 >                if (unarrived != lastUnarrived &&
1002 >                    (lastUnarrived = unarrived) < NCPU)
1003                      spins += SPINS_PER_ARRIVAL;
1004 +                boolean interrupted = Thread.interrupted();
1005 +                if (interrupted || --spins < 0) { // need node to record intr
1006 +                    node = new QNode(this, phase, false, false, 0L);
1007 +                    node.wasInterrupted = interrupted;
1008 +                }
1009              }
1010 <            else if (spins > 0)
1011 <                --spins;
1012 <            else if (node == null)   // null if noninterruptible mode
915 <                node = new QNode(this, phase, false, false, 0L);
916 <            else if (!queued) {      // push onto queue
1010 >            else if (node.isReleasable()) // done or aborted
1011 >                break;
1012 >            else if (!queued) {           // push onto queue
1013                  AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1014 <                QNode q = head.get();
1015 <                if (q == null || q.phase == phase) {
1016 <                    node.next = q;
921 <                    if ((p = (int)(state >>> PHASE_SHIFT)) != phase)
922 <                        break;       // recheck to avoid stale enqueue
1014 >                QNode q = node.next = head.get();
1015 >                if ((q == null || q.phase == phase) &&
1016 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1017                      queued = head.compareAndSet(q, node);
924                }
1018              }
1019              else {
1020                  try {
# Line 934 | Line 1027 | public class Phaser {
1027  
1028          if (node != null) {
1029              if (node.thread != null)
1030 <                node.thread = null; // disable unpark() in node.signal
1030 >                node.thread = null;       // avoid need for unpark()
1031              if (node.wasInterrupted && !node.interruptible)
1032                  Thread.currentThread().interrupt();
1033 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1034 +                return abortWait(phase); // possibly clean up on abort
1035          }
1036 <        if (p != phase)
942 <            releaseWaiters(phase);
1036 >        releaseWaiters(phase);
1037          return p;
1038      }
1039  
# Line 964 | Line 1058 | public class Phaser {
1058              this.interruptible = interruptible;
1059              this.nanos = nanos;
1060              this.timed = timed;
1061 <            this.lastTime = timed? System.nanoTime() : 0L;
1061 >            this.lastTime = timed ? System.nanoTime() : 0L;
1062              thread = Thread.currentThread();
1063          }
1064  
1065          public boolean isReleasable() {
1066 <            Thread t = thread;
1067 <            if (t != null) {
1068 <                if (phaser.getPhase() != phase)
975 <                    t = null;
976 <                else {
977 <                    if (Thread.interrupted())
978 <                        wasInterrupted = true;
979 <                    if (wasInterrupted && interruptible)
980 <                        t = null;
981 <                    else if (timed) {
982 <                        if (nanos > 0) {
983 <                            long now = System.nanoTime();
984 <                            nanos -= now - lastTime;
985 <                            lastTime = now;
986 <                        }
987 <                        if (nanos <= 0)
988 <                            t = null;
989 <                    }
990 <                }
991 <                if (t != null)
992 <                    return false;
1066 >            if (thread == null)
1067 >                return true;
1068 >            if (phaser.getPhase() != phase) {
1069                  thread = null;
1070 +                return true;
1071 +            }
1072 +            if (Thread.interrupted())
1073 +                wasInterrupted = true;
1074 +            if (wasInterrupted && interruptible) {
1075 +                thread = null;
1076 +                return true;
1077              }
1078 <            return true;
1078 >            if (timed) {
1079 >                if (nanos > 0L) {
1080 >                    long now = System.nanoTime();
1081 >                    nanos -= now - lastTime;
1082 >                    lastTime = now;
1083 >                }
1084 >                if (nanos <= 0L) {
1085 >                    thread = null;
1086 >                    return true;
1087 >                }
1088 >            }
1089 >            return false;
1090          }
1091  
1092          public boolean block() {
# Line 1004 | Line 1098 | public class Phaser {
1098                  LockSupport.parkNanos(this, nanos);
1099              return isReleasable();
1100          }
1007
1008        void signal() {
1009            Thread t = thread;
1010            if (t != null) {
1011                thread = null;
1012                LockSupport.unpark(t);
1013            }
1014        }
1101      }
1102  
1103      // Unsafe mechanics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines