ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.62 by dl, Mon Nov 29 00:52:28 2010 UTC vs.
Revision 1.75 by dl, Wed Sep 21 12:30:39 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 18 | Line 18 | import java.util.concurrent.locks.LockSu
18   * but supporting more flexible usage.
19   *
20   * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 < * number of parties <em>registered</em> to synchronize on a Phaser
21 > * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
24   * constructors establishing initial numbers of parties), and
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating Phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}. The default implementation returns
83 < * {@code true} if a deregistration has caused the number of
84 < * registered parties to become zero.  As illustrated below, when
85 < * Phasers control actions with a fixed number of iterations, it is
86 < * often convenient to override this method to cause termination when
87 < * the current phase number reaches a threshold. Method {@link
88 < * #forceTermination} is also available to abruptly release waiting
89 < * threads and allow them to terminate.
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82 > * Termination is triggered when an invocation of {@code onAdvance}
83 > * returns {@code true}. The default implementation returns {@code
84 > * true} if a deregistration has caused the number of registered
85 > * parties to become zero.  As illustrated below, when phasers control
86 > * actions with a fixed number of iterations, it is often convenient
87 > * to override this method to cause termination when the current phase
88 > * number reaches a threshold. Method {@link #forceTermination} is
89 > * also available to abruptly release waiting threads and allow them
90 > * to terminate.
91   *
92   * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 < * only by registered parties, the current state of a Phaser may be
111 > * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
113   * #getRegisteredParties} parties in total, of which {@link
114   * #getArrivedParties} have arrived at the current phase ({@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 183 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of Phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a Phaser that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
224   * maximum number of parties to 65535. Attempts to register additional
225   * parties result in {@code IllegalStateException}. However, you can and
226 < * should create tiered Phasers to accommodate arbitrarily large sets
226 > * should create tiered phasers to accommodate arbitrarily large sets
227   * of participants.
228   *
229   * @since 1.7
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
241 <     * four values:
240 >     * Primary state representation, holding four bit-fields:
241 >     *
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261       *
262 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
263 <     * * parties -- the number of parties to wait              (bits 16-31)
264 <     * * phase -- the generation of the barrier                (bits 32-62)
235 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
236 <     *
237 <     * However, to efficiently maintain atomicity, these values are
238 <     * packed into a single (atomic) long. Termination uses the sign
239 <     * bit of 32 bit representation of phase, so phase is set to -1 on
240 <     * termination. Good performance relies on keeping state decoding
241 <     * and encoding simple, and keeping race windows short.
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268      private static final int  MAX_PARTIES     = 0xffff;
269 <    private static final int  MAX_PHASE       = 0x7fffffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251    private static final long ONE_ARRIVAL     = 1L;
252    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
274      private static final long TERMINATION_BIT = 1L << 63;
275  
276 +    // some special values
277 +    private static final int  ONE_ARRIVAL     = 1;
278 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 +    private static final int  EMPTY           = 1;
280 +
281      // The following unpacking methods are usually manually inlined
282  
283      private static int unarrivedOf(long s) {
284 <        return (int)s & UNARRIVED_MASK;
284 >        int counts = (int)s;
285 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286      }
287  
288      private static int partiesOf(long s) {
# Line 263 | Line 290 | public class Phaser {
290      }
291  
292      private static int phaseOf(long s) {
293 <        return (int) (s >>> PHASE_SHIFT);
293 >        return (int)(s >>> PHASE_SHIFT);
294      }
295  
296      private static int arrivedOf(long s) {
297 <        return partiesOf(s) - unarrivedOf(s);
297 >        int counts = (int)s;
298 >        return (counts == EMPTY) ? 0 :
299 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300      }
301  
302      /**
# Line 276 | Line 305 | public class Phaser {
305      private final Phaser parent;
306  
307      /**
308 <     * The root of phaser tree. Equals this if not in a tree.  Used to
280 <     * support faster state push-down.
308 >     * The root of phaser tree. Equals this if not in a tree.
309       */
310      private final Phaser root;
311  
# Line 315 | Line 343 | public class Phaser {
343       * Manually tuned to speed up and minimize race windows for the
344       * common case of just decrementing unarrived field.
345       *
346 <     * @param adj - adjustment to apply to state -- either
319 <     * ONE_ARRIVAL (for arrive) or
320 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
346 >     * @param deregister false for arrive, true for arriveAndDeregister
347       */
348 <    private int doArrive(long adj) {
348 >    private int doArrive(boolean deregister) {
349 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 >        final Phaser root = this.root;
351          for (;;) {
352 <            long s = state;
325 <            int unarrived = (int)s & UNARRIVED_MASK;
352 >            long s = (root == this) ? state : reconcileState();
353              int phase = (int)(s >>> PHASE_SHIFT);
354 +            int counts = (int)s;
355 +            int unarrived = (counts & UNARRIVED_MASK) - 1;
356              if (phase < 0)
357                  return phase;
358 <            else if (unarrived == 0) {
359 <                if (reconcileState() == s)     // recheck
358 >            else if (counts == EMPTY || unarrived < 0) {
359 >                if (root == this || reconcileState() == s)
360                      throw new IllegalStateException(badArrive(s));
361              }
362              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 <                if (unarrived == 1) {
364 <                    long p = s & PARTIES_MASK; // unshifted parties field
365 <                    long lu = p >>> PARTIES_SHIFT;
366 <                    int u = (int)lu;
367 <                    int nextPhase = (phase + 1) & MAX_PHASE;
368 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
369 <                    final Phaser parent = this.parent;
370 <                    if (parent == null) {
371 <                        if (onAdvance(phase, u))
372 <                            next |= TERMINATION_BIT;
373 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
374 <                        releaseWaiters(phase);
363 >                long n = s & PARTIES_MASK;  // base of next state
364 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 >                if (unarrived == 0) {
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368 >                            n |= TERMINATION_BIT;
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371 >                        else
372 >                            n |= nextUnarrived;
373 >                        n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
374 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
375                      }
376 <                    else {
377 <                        parent.doArrive((u == 0) ?
378 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
379 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
351 <                            reconcileState();
352 <                        else if (state == s)
353 <                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
354 <                                                      next);
376 >                    else if (nextUnarrived == 0) { // propagate deregistration
377 >                        phase = parent.doArrive(true);
378 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
379 >                                                  s, s | EMPTY);
380                      }
381 +                    else
382 +                        phase = parent.doArrive(false);
383 +                    releaseWaiters(phase);
384                  }
385                  return phase;
386              }
# Line 369 | Line 397 | public class Phaser {
397          // adjustment to state
398          long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399          final Phaser parent = this.parent;
400 +        int phase;
401          for (;;) {
402              long s = (parent == null) ? state : reconcileState();
403 <            int parties = (int)s >>> PARTIES_SHIFT;
404 <            int phase = (int)(s >>> PHASE_SHIFT);
405 <            if (phase < 0)
406 <                return phase;
378 <            else if (registrations > MAX_PARTIES - parties)
403 >            int counts = (int)s;
404 >            int parties = counts >>> PARTIES_SHIFT;
405 >            int unarrived = counts & UNARRIVED_MASK;
406 >            if (registrations > MAX_PARTIES - parties)
407                  throw new IllegalStateException(badRegister(s));
408 <            else if ((parties == 0 && parent == null) || // first reg of root
409 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
410 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
411 <                    return phase;
408 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
409 >                break;
410 >            else if (counts != EMPTY) {             // not 1st registration
411 >                if (parent == null || reconcileState() == s) {
412 >                    if (unarrived == 0)             // wait out advance
413 >                        root.internalAwaitAdvance(phase, null);
414 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
415 >                                                       s, s + adj))
416 >                        break;
417 >                }
418 >            }
419 >            else if (parent == null) {              // 1st root registration
420 >                long next = ((long)phase << PHASE_SHIFT) | adj;
421 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422 >                    break;
423              }
424 <            else if (parties != 0)               // wait for onAdvance
425 <                root.internalAwaitAdvance(phase, null);
426 <            else {                               // 1st registration of child
427 <                synchronized (this) {            // register parent first
428 <                    if (reconcileState() == s) { // recheck under lock
429 <                        parent.doRegister(1);    // OK if throws IllegalState
430 <                        for (;;) {               // simpler form of outer loop
431 <                            s = reconcileState();
432 <                            phase = (int)(s >>> PHASE_SHIFT);
433 <                            if (phase < 0 ||
434 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
396 <                                                          s, s + adj))
397 <                                return phase;
398 <                        }
424 >            else {
425 >                synchronized (this) {               // 1st sub registration
426 >                    if (state == s) {               // recheck under lock
427 >                        parent.doRegister(1);
428 >                        do {                        // force current phase
429 >                            phase = (int)(root.state >>> PHASE_SHIFT);
430 >                            // assert phase < 0 || (int)state == EMPTY;
431 >                        } while (!UNSAFE.compareAndSwapLong
432 >                                 (this, stateOffset, state,
433 >                                  ((long)phase << PHASE_SHIFT) | adj));
434 >                        break;
435                      }
436                  }
437              }
438          }
439 +        return phase;
440      }
441  
442      /**
443 <     * Recursively resolves lagged phase propagation from root if necessary.
443 >     * Resolves lagged phase propagation from root if necessary.
444 >     * Reconciliation normally occurs when root has advanced but
445 >     * subphasers have not yet done so, in which case they must finish
446 >     * their own advance by setting unarrived to parties (or if
447 >     * parties is zero, resetting to unregistered EMPTY state).
448 >     * However, this method may also be called when "floating"
449 >     * subphasers with possibly some unarrived parties are merely
450 >     * catching up to current phase, in which case counts are
451 >     * unaffected.
452 >     *
453 >     * @return reconciled state
454       */
455      private long reconcileState() {
456 <        Phaser par = parent;
456 >        final Phaser root = this.root;
457          long s = state;
458 <        if (par != null) {
459 <            Phaser rt = root;
460 <            int phase, rPhase;
461 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
462 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
463 <                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
464 <                    par.reconcileState();
465 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
466 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
467 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
468 <                                 (u >>> PARTIES_SHIFT));
469 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 <                }
458 >        if (root != this) {
459 >            int phase, u, p;
460 >            // CAS root phase with current parties; possibly trip unarrived
461 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462 >                   (int)(s >>> PHASE_SHIFT) &&
463 >                   !UNSAFE.compareAndSwapLong
464 >                   (this, stateOffset, s,
465 >                    s = (((long)phase << PHASE_SHIFT) |
466 >                         (s & PARTIES_MASK) |
467 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
468 >                          ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
469 >                          p : u))))
470                  s = state;
425            }
471          }
472          return s;
473      }
474  
475      /**
476 <     * Creates a new Phaser without any initially registered parties,
477 <     * initial phase number 0, and no parent. Any thread using this
478 <     * Phaser will need to first register for it.
476 >     * Creates a new phaser with no initially registered parties, no
477 >     * parent, and initial phase number 0. Any thread using this
478 >     * phaser will need to first register for it.
479       */
480      public Phaser() {
481          this(null, 0);
482      }
483  
484      /**
485 <     * Creates a new Phaser with the given number of registered
486 <     * unarrived parties, initial phase number 0, and no parent.
485 >     * Creates a new phaser with the given number of registered
486 >     * unarrived parties, no parent, and initial phase number 0.
487       *
488 <     * @param parties the number of parties required to trip barrier
488 >     * @param parties the number of parties required to advance to the
489 >     * next phase
490       * @throws IllegalArgumentException if parties less than zero
491       * or greater than the maximum number of parties supported
492       */
# Line 451 | Line 497 | public class Phaser {
497      /**
498       * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
499       *
500 <     * @param parent the parent Phaser
500 >     * @param parent the parent phaser
501       */
502      public Phaser(Phaser parent) {
503          this(parent, 0);
504      }
505  
506      /**
507 <     * Creates a new Phaser with the given parent and number of
508 <     * registered unarrived parties. Registration and deregistration
509 <     * of this child Phaser with its parent are managed automatically.
510 <     * If the given parent is non-null, whenever this child Phaser has
511 <     * any registered parties (as established in this constructor,
512 <     * {@link #register}, or {@link #bulkRegister}), this child Phaser
513 <     * is registered with its parent. Whenever the number of
514 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child Phaser is
470 <     * deregistered from its parent.
471 <     *
472 <     * @param parent the parent Phaser
473 <     * @param parties the number of parties required to trip barrier
507 >     * Creates a new phaser with the given parent and number of
508 >     * registered unarrived parties.  When the given parent is non-null
509 >     * and the given number of parties is greater than zero, this
510 >     * child phaser is registered with its parent.
511 >     *
512 >     * @param parent the parent phaser
513 >     * @param parties the number of parties required to advance to the
514 >     * next phase
515       * @throws IllegalArgumentException if parties less than zero
516       * or greater than the maximum number of parties supported
517       */
518      public Phaser(Phaser parent, int parties) {
519          if (parties >>> PARTIES_SHIFT != 0)
520              throw new IllegalArgumentException("Illegal number of parties");
521 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
521 >        int phase = 0;
522          this.parent = parent;
523          if (parent != null) {
524 <            Phaser r = parent.root;
525 <            this.root = r;
526 <            this.evenQ = r.evenQ;
527 <            this.oddQ = r.oddQ;
524 >            final Phaser root = parent.root;
525 >            this.root = root;
526 >            this.evenQ = root.evenQ;
527 >            this.oddQ = root.oddQ;
528              if (parties != 0)
529 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
529 >                phase = parent.doRegister(1);
530          }
531          else {
532              this.root = this;
533              this.evenQ = new AtomicReference<QNode>();
534              this.oddQ = new AtomicReference<QNode>();
535          }
536 <        this.state = s;
536 >        this.state = (parties == 0) ? (long)EMPTY :
537 >            ((long)phase << PHASE_SHIFT) |
538 >            ((long)parties << PARTIES_SHIFT) |
539 >            ((long)parties);
540      }
541  
542      /**
543 <     * Adds a new unarrived party to this Phaser.  If an ongoing
543 >     * Adds a new unarrived party to this phaser.  If an ongoing
544       * invocation of {@link #onAdvance} is in progress, this method
545 <     * may await its completion before returning.  If this Phaser has
546 <     * a parent, and this Phaser previously had no registered parties,
547 <     * this Phaser is also registered with its parent.
548 <     *
549 <     * @return the arrival phase number to which this registration applied
545 >     * may await its completion before returning.  If this phaser has
546 >     * a parent, and this phaser previously had no registered parties,
547 >     * this child phaser is also registered with its parent. If
548 >     * this phaser is terminated, the attempt to register has
549 >     * no effect, and a negative value is returned.
550 >     *
551 >     * @return the arrival phase number to which this registration
552 >     * applied.  If this value is negative, then this phaser has
553 >     * terminated, in which case registration has no effect.
554       * @throws IllegalStateException if attempting to register more
555       * than the maximum supported number of parties
556       */
# Line 511 | Line 559 | public class Phaser {
559      }
560  
561      /**
562 <     * Adds the given number of new unarrived parties to this Phaser.
562 >     * Adds the given number of new unarrived parties to this phaser.
563       * If an ongoing invocation of {@link #onAdvance} is in progress,
564       * this method may await its completion before returning.  If this
565 <     * Phaser has a parent, and the given number of parities is
566 <     * greater than zero, and this Phaser previously had no registered
567 <     * parties, this Phaser is also registered with its parent.
568 <     *
569 <     * @param parties the number of additional parties required to trip barrier
570 <     * @return the arrival phase number to which this registration applied
565 >     * phaser has a parent, and the given number of parties is greater
566 >     * than zero, and this phaser previously had no registered
567 >     * parties, this child phaser is also registered with its parent.
568 >     * If this phaser is terminated, the attempt to register has no
569 >     * effect, and a negative value is returned.
570 >     *
571 >     * @param parties the number of additional parties required to
572 >     * advance to the next phase
573 >     * @return the arrival phase number to which this registration
574 >     * applied.  If this value is negative, then this phaser has
575 >     * terminated, in which case registration has no effect.
576       * @throws IllegalStateException if attempting to register more
577       * than the maximum supported number of parties
578       * @throws IllegalArgumentException if {@code parties < 0}
# Line 533 | Line 586 | public class Phaser {
586      }
587  
588      /**
589 <     * Arrives at the barrier, without waiting for others to arrive.
589 >     * Arrives at this phaser, without waiting for others to arrive.
590       *
591       * <p>It is a usage error for an unregistered party to invoke this
592       * method.  However, this error may result in an {@code
593       * IllegalStateException} only upon some subsequent operation on
594 <     * this Phaser, if ever.
594 >     * this phaser, if ever.
595       *
596       * @return the arrival phase number, or a negative value if terminated
597       * @throws IllegalStateException if not terminated and the number
598       * of unarrived parties would become negative
599       */
600      public int arrive() {
601 <        return doArrive(ONE_ARRIVAL);
601 >        return doArrive(false);
602      }
603  
604      /**
605 <     * Arrives at the barrier and deregisters from it without waiting
605 >     * Arrives at this phaser and deregisters from it without waiting
606       * for others to arrive. Deregistration reduces the number of
607 <     * parties required to trip the barrier in future phases.  If this
608 <     * Phaser has a parent, and deregistration causes this Phaser to
609 <     * have zero parties, this Phaser is also deregistered from its
557 <     * parent.
607 >     * parties required to advance in future phases.  If this phaser
608 >     * has a parent, and deregistration causes this phaser to have
609 >     * zero parties, this phaser is also deregistered from its parent.
610       *
611       * <p>It is a usage error for an unregistered party to invoke this
612       * method.  However, this error may result in an {@code
613       * IllegalStateException} only upon some subsequent operation on
614 <     * this Phaser, if ever.
614 >     * this phaser, if ever.
615       *
616       * @return the arrival phase number, or a negative value if terminated
617       * @throws IllegalStateException if not terminated and the number
618       * of registered or unarrived parties would become negative
619       */
620      public int arriveAndDeregister() {
621 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
621 >        return doArrive(true);
622      }
623  
624      /**
625 <     * Arrives at the barrier and awaits others. Equivalent in effect
625 >     * Arrives at this phaser and awaits others. Equivalent in effect
626       * to {@code awaitAdvance(arrive())}.  If you need to await with
627       * interruption or timeout, you can arrange this with an analogous
628       * construction using one of the other forms of the {@code
# Line 580 | Line 632 | public class Phaser {
632       * <p>It is a usage error for an unregistered party to invoke this
633       * method.  However, this error may result in an {@code
634       * IllegalStateException} only upon some subsequent operation on
635 <     * this Phaser, if ever.
635 >     * this phaser, if ever.
636       *
637 <     * @return the arrival phase number, or a negative number if terminated
637 >     * @return the arrival phase number, or the (negative)
638 >     * {@linkplain #getPhase() current phase} if terminated
639       * @throws IllegalStateException if not terminated and the number
640       * of unarrived parties would become negative
641       */
642      public int arriveAndAwaitAdvance() {
643 <        return awaitAdvance(doArrive(ONE_ARRIVAL));
643 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
644 >        final Phaser root = this.root;
645 >        for (;;) {
646 >            long s = (root == this) ? state : reconcileState();
647 >            int phase = (int)(s >>> PHASE_SHIFT);
648 >            int counts = (int)s;
649 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
650 >            if (phase < 0)
651 >                return phase;
652 >            else if (counts == EMPTY || unarrived < 0) {
653 >                if (reconcileState() == s)
654 >                    throw new IllegalStateException(badArrive(s));
655 >            }
656 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657 >                                               s -= ONE_ARRIVAL)) {
658 >                if (unarrived != 0)
659 >                    return root.internalAwaitAdvance(phase, null);
660 >                if (root != this)
661 >                    return parent.arriveAndAwaitAdvance();
662 >                long n = s & PARTIES_MASK;  // base of next state
663 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 >                if (onAdvance(phase, nextUnarrived))
665 >                    n |= TERMINATION_BIT;
666 >                else if (nextUnarrived == 0)
667 >                    n |= EMPTY;
668 >                else
669 >                    n |= nextUnarrived;
670 >                int nextPhase = (phase + 1) & MAX_PHASE;
671 >                n |= (long)nextPhase << PHASE_SHIFT;
672 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673 >                    return (int)(state >>> PHASE_SHIFT); // terminated
674 >                releaseWaiters(phase);
675 >                return nextPhase;
676 >            }
677 >        }
678      }
679  
680      /**
681 <     * Awaits the phase of the barrier to advance from the given phase
682 <     * value, returning immediately if the current phase of the
683 <     * barrier is not equal to the given phase value or this barrier
597 <     * is terminated.
681 >     * Awaits the phase of this phaser to advance from the given phase
682 >     * value, returning immediately if the current phase is not equal
683 >     * to the given phase value or this phaser is terminated.
684       *
685       * @param phase an arrival phase number, or negative value if
686       * terminated; this argument is normally the value returned by a
687 <     * previous call to {@code arrive} or its variants
688 <     * @return the next arrival phase number, or a negative value
689 <     * if terminated or argument is negative
687 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 >     * @return the next arrival phase number, or the argument if it is
689 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
690 >     * if terminated
691       */
692      public int awaitAdvance(int phase) {
693 <        Phaser rt;
694 <        int p = (int)(state >>> PHASE_SHIFT);
693 >        final Phaser root = this.root;
694 >        long s = (root == this) ? state : reconcileState();
695 >        int p = (int)(s >>> PHASE_SHIFT);
696          if (phase < 0)
697              return phase;
698 <        if (p == phase &&
699 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 <            return rt.internalAwaitAdvance(phase, null);
698 >        if (p == phase)
699 >            return root.internalAwaitAdvance(phase, null);
700          return p;
701      }
702  
703      /**
704 <     * Awaits the phase of the barrier to advance from the given phase
704 >     * Awaits the phase of this phaser to advance from the given phase
705       * value, throwing {@code InterruptedException} if interrupted
706 <     * while waiting, or returning immediately if the current phase of
707 <     * the barrier is not equal to the given phase value or this
708 <     * barrier is terminated.
706 >     * while waiting, or returning immediately if the current phase is
707 >     * not equal to the given phase value or this phaser is
708 >     * terminated.
709       *
710       * @param phase an arrival phase number, or negative value if
711       * terminated; this argument is normally the value returned by a
712 <     * previous call to {@code arrive} or its variants
713 <     * @return the next arrival phase number, or a negative value
714 <     * if terminated or argument is negative
712 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 >     * @return the next arrival phase number, or the argument if it is
714 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
715 >     * if terminated
716       * @throws InterruptedException if thread interrupted while waiting
717       */
718      public int awaitAdvanceInterruptibly(int phase)
719          throws InterruptedException {
720 <        Phaser rt;
721 <        int p = (int)(state >>> PHASE_SHIFT);
720 >        final Phaser root = this.root;
721 >        long s = (root == this) ? state : reconcileState();
722 >        int p = (int)(s >>> PHASE_SHIFT);
723          if (phase < 0)
724              return phase;
725 <        if (p == phase &&
637 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
725 >        if (p == phase) {
726              QNode node = new QNode(this, phase, true, false, 0L);
727 <            p = rt.internalAwaitAdvance(phase, node);
727 >            p = root.internalAwaitAdvance(phase, node);
728              if (node.wasInterrupted)
729                  throw new InterruptedException();
730          }
# Line 644 | Line 732 | public class Phaser {
732      }
733  
734      /**
735 <     * Awaits the phase of the barrier to advance from the given phase
735 >     * Awaits the phase of this phaser to advance from the given phase
736       * value or the given timeout to elapse, throwing {@code
737       * InterruptedException} if interrupted while waiting, or
738 <     * returning immediately if the current phase of the barrier is
739 <     * not equal to the given phase value or this barrier is
652 <     * terminated.
738 >     * returning immediately if the current phase is not equal to the
739 >     * given phase value or this phaser is terminated.
740       *
741       * @param phase an arrival phase number, or negative value if
742       * terminated; this argument is normally the value returned by a
743 <     * previous call to {@code arrive} or its variants
743 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
744       * @param timeout how long to wait before giving up, in units of
745       *        {@code unit}
746       * @param unit a {@code TimeUnit} determining how to interpret the
747       *        {@code timeout} parameter
748 <     * @return the next arrival phase number, or a negative value
749 <     * if terminated or argument is negative
748 >     * @return the next arrival phase number, or the argument if it is
749 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
750 >     * if terminated
751       * @throws InterruptedException if thread interrupted while waiting
752       * @throws TimeoutException if timed out while waiting
753       */
# Line 667 | Line 755 | public class Phaser {
755                                           long timeout, TimeUnit unit)
756          throws InterruptedException, TimeoutException {
757          long nanos = unit.toNanos(timeout);
758 <        Phaser rt;
759 <        int p = (int)(state >>> PHASE_SHIFT);
758 >        final Phaser root = this.root;
759 >        long s = (root == this) ? state : reconcileState();
760 >        int p = (int)(s >>> PHASE_SHIFT);
761          if (phase < 0)
762              return phase;
763 <        if (p == phase &&
675 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
763 >        if (p == phase) {
764              QNode node = new QNode(this, phase, true, true, nanos);
765 <            p = rt.internalAwaitAdvance(phase, node);
765 >            p = root.internalAwaitAdvance(phase, node);
766              if (node.wasInterrupted)
767                  throw new InterruptedException();
768              else if (p == phase)
# Line 684 | Line 772 | public class Phaser {
772      }
773  
774      /**
775 <     * Forces this barrier to enter termination state.  Counts of
776 <     * arrived and registered parties are unaffected.  If this Phaser
777 <     * is a member of a tiered set of Phasers, then all of the Phasers
778 <     * in the set are terminated.  If this Phaser is already
779 <     * terminated, this method has no effect.  This method may be
780 <     * useful for coordinating recovery after one or more tasks
781 <     * encounter unexpected exceptions.
775 >     * Forces this phaser to enter termination state.  Counts of
776 >     * registered parties are unaffected.  If this phaser is a member
777 >     * of a tiered set of phasers, then all of the phasers in the set
778 >     * are terminated.  If this phaser is already terminated, this
779 >     * method has no effect.  This method may be useful for
780 >     * coordinating recovery after one or more tasks encounter
781 >     * unexpected exceptions.
782       */
783      public void forceTermination() {
784          // Only need to change root state
# Line 699 | Line 787 | public class Phaser {
787          while ((s = root.state) >= 0) {
788              if (UNSAFE.compareAndSwapLong(root, stateOffset,
789                                            s, s | TERMINATION_BIT)) {
790 <                releaseWaiters(0); // signal all threads
790 >                // signal all threads
791 >                releaseWaiters(0);
792                  releaseWaiters(1);
793                  return;
794              }
# Line 709 | Line 798 | public class Phaser {
798      /**
799       * Returns the current phase number. The maximum phase number is
800       * {@code Integer.MAX_VALUE}, after which it restarts at
801 <     * zero. Upon termination, the phase number is negative.
801 >     * zero. Upon termination, the phase number is negative,
802 >     * in which case the prevailing phase prior to termination
803 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
804       *
805       * @return the phase number, or a negative value if terminated
806       */
# Line 718 | Line 809 | public class Phaser {
809      }
810  
811      /**
812 <     * Returns the number of parties registered at this barrier.
812 >     * Returns the number of parties registered at this phaser.
813       *
814       * @return the number of parties
815       */
# Line 728 | Line 819 | public class Phaser {
819  
820      /**
821       * Returns the number of registered parties that have arrived at
822 <     * the current phase of this barrier.
822 >     * the current phase of this phaser. If this phaser has terminated,
823 >     * the returned value is meaningless and arbitrary.
824       *
825       * @return the number of arrived parties
826       */
827      public int getArrivedParties() {
828 <        long s = state;
737 <        int u = unarrivedOf(s); // only reconcile if possibly needed
738 <        return (u != 0 || parent == null) ?
739 <            partiesOf(s) - u :
740 <            arrivedOf(reconcileState());
828 >        return arrivedOf(reconcileState());
829      }
830  
831      /**
832       * Returns the number of registered parties that have not yet
833 <     * arrived at the current phase of this barrier.
833 >     * arrived at the current phase of this phaser. If this phaser has
834 >     * terminated, the returned value is meaningless and arbitrary.
835       *
836       * @return the number of unarrived parties
837       */
838      public int getUnarrivedParties() {
839 <        int u = unarrivedOf(state);
751 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
839 >        return unarrivedOf(reconcileState());
840      }
841  
842      /**
843 <     * Returns the parent of this Phaser, or {@code null} if none.
843 >     * Returns the parent of this phaser, or {@code null} if none.
844       *
845 <     * @return the parent of this Phaser, or {@code null} if none
845 >     * @return the parent of this phaser, or {@code null} if none
846       */
847      public Phaser getParent() {
848          return parent;
849      }
850  
851      /**
852 <     * Returns the root ancestor of this Phaser, which is the same as
853 <     * this Phaser if it has no parent.
852 >     * Returns the root ancestor of this phaser, which is the same as
853 >     * this phaser if it has no parent.
854       *
855 <     * @return the root ancestor of this Phaser
855 >     * @return the root ancestor of this phaser
856       */
857      public Phaser getRoot() {
858          return root;
859      }
860  
861      /**
862 <     * Returns {@code true} if this barrier has been terminated.
862 >     * Returns {@code true} if this phaser has been terminated.
863       *
864 <     * @return {@code true} if this barrier has been terminated
864 >     * @return {@code true} if this phaser has been terminated
865       */
866      public boolean isTerminated() {
867          return root.state < 0L;
# Line 782 | Line 870 | public class Phaser {
870      /**
871       * Overridable method to perform an action upon impending phase
872       * advance, and to control termination. This method is invoked
873 <     * upon arrival of the party tripping the barrier (when all other
873 >     * upon arrival of the party advancing this phaser (when all other
874       * waiting parties are dormant).  If this method returns {@code
875 <     * true}, then, rather than advance the phase number, this barrier
876 <     * will be set to a final termination state, and subsequent calls
877 <     * to {@link #isTerminated} will return true. Any (unchecked)
878 <     * Exception or Error thrown by an invocation of this method is
879 <     * propagated to the party attempting to trip the barrier, in
880 <     * which case no advance occurs.
875 >     * true}, this phaser will be set to a final termination state
876 >     * upon advance, and subsequent calls to {@link #isTerminated}
877 >     * will return true. Any (unchecked) Exception or Error thrown by
878 >     * an invocation of this method is propagated to the party
879 >     * attempting to advance this phaser, in which case no advance
880 >     * occurs.
881       *
882 <     * <p>The arguments to this method provide the state of the Phaser
882 >     * <p>The arguments to this method provide the state of the phaser
883       * prevailing for the current transition.  The effects of invoking
884 <     * arrival, registration, and waiting methods on this Phaser from
884 >     * arrival, registration, and waiting methods on this phaser from
885       * within {@code onAdvance} are unspecified and should not be
886       * relied on.
887       *
888 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
889 <     * {@code onAdvance} is invoked only for its root Phaser on each
888 >     * <p>If this phaser is a member of a tiered set of phasers, then
889 >     * {@code onAdvance} is invoked only for its root phaser on each
890       * advance.
891       *
892       * <p>To support the most common use cases, the default
# Line 814 | Line 902 | public class Phaser {
902       *   protected boolean onAdvance(int phase, int parties) { return false; }
903       * }}</pre>
904       *
905 <     * @param phase the phase number on entering the barrier
905 >     * @param phase the current phase number on entry to this method,
906 >     * before this phaser is advanced
907       * @param registeredParties the current number of registered parties
908 <     * @return {@code true} if this barrier should terminate
908 >     * @return {@code true} if this phaser should terminate
909       */
910      protected boolean onAdvance(int phase, int registeredParties) {
911          return registeredParties == 0;
912      }
913  
914      /**
915 <     * Returns a string identifying this Phaser, as well as its
915 >     * Returns a string identifying this phaser, as well as its
916       * state.  The state, in brackets, includes the String {@code
917       * "phase = "} followed by the phase number, {@code "parties = "}
918       * followed by the number of registered parties, and {@code
919       * "arrived = "} followed by the number of arrived parties.
920       *
921 <     * @return a string identifying this barrier, as well as its state
921 >     * @return a string identifying this phaser, as well as its state
922       */
923      public String toString() {
924          return stateToString(reconcileState());
# Line 851 | Line 940 | public class Phaser {
940       * Removes and signals threads from queue for phase.
941       */
942      private void releaseWaiters(int phase) {
943 +        QNode q;   // first element of queue
944 +        Thread t;  // its thread
945          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
855        QNode q;
856        int p;
946          while ((q = head.get()) != null &&
947 <               ((p = q.phase) == phase ||
948 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
949 <            if (head.compareAndSet(q, q.next))
950 <                q.signal();
947 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
948 >            if (head.compareAndSet(q, q.next) &&
949 >                (t = q.thread) != null) {
950 >                q.thread = null;
951 >                LockSupport.unpark(t);
952 >            }
953 >        }
954 >    }
955 >
956 >    /**
957 >     * Variant of releaseWaiters that additionally tries to remove any
958 >     * nodes no longer waiting for advance due to timeout or
959 >     * interrupt. Currently, nodes are removed only if they are at
960 >     * head of queue, which suffices to reduce memory footprint in
961 >     * most usages.
962 >     *
963 >     * @return current phase on exit
964 >     */
965 >    private int abortWait(int phase) {
966 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967 >        for (;;) {
968 >            Thread t;
969 >            QNode q = head.get();
970 >            int p = (int)(root.state >>> PHASE_SHIFT);
971 >            if (q == null || ((t = q.thread) != null && q.phase == p))
972 >                return p;
973 >            if (head.compareAndSet(q, q.next) && t != null) {
974 >                q.thread = null;
975 >                LockSupport.unpark(t);
976 >            }
977          }
978      }
979  
# Line 888 | Line 1003 | public class Phaser {
1003       * @return current phase
1004       */
1005      private int internalAwaitAdvance(int phase, QNode node) {
1006 <        boolean queued = false;      // true when node is enqueued
1007 <        int lastUnarrived = -1;      // to increase spins upon change
1006 >        releaseWaiters(phase-1);          // ensure old queue clean
1007 >        boolean queued = false;           // true when node is enqueued
1008 >        int lastUnarrived = 0;            // to increase spins upon change
1009          int spins = SPINS_PER_ARRIVAL;
1010          long s;
1011          int p;
1012          while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013 <            int unarrived = (int)s & UNARRIVED_MASK;
1014 <            if (node != null && node.isReleasable()) {
1015 <                p = (int)(state >>> PHASE_SHIFT);
1016 <                break;               // done or aborted
901 <            }
902 <            else if (node == null && Thread.interrupted()) {
903 <                node = new QNode(this, phase, false, false, 0L);
904 <                node.wasInterrupted = true;
905 <            }
906 <            else if (unarrived != lastUnarrived) {
907 <                if (lastUnarrived == -1) // ensure old queue clean
908 <                    releaseWaiters(phase-1);
909 <                if ((lastUnarrived = unarrived) < NCPU)
1013 >            if (node == null) {           // spinning in noninterruptible mode
1014 >                int unarrived = (int)s & UNARRIVED_MASK;
1015 >                if (unarrived != lastUnarrived &&
1016 >                    (lastUnarrived = unarrived) < NCPU)
1017                      spins += SPINS_PER_ARRIVAL;
1018 +                boolean interrupted = Thread.interrupted();
1019 +                if (interrupted || --spins < 0) { // need node to record intr
1020 +                    node = new QNode(this, phase, false, false, 0L);
1021 +                    node.wasInterrupted = interrupted;
1022 +                }
1023              }
1024 <            else if (spins > 0)
1025 <                --spins;
1026 <            else if (node == null)   // null if noninterruptible mode
915 <                node = new QNode(this, phase, false, false, 0L);
916 <            else if (!queued) {      // push onto queue
1024 >            else if (node.isReleasable()) // done or aborted
1025 >                break;
1026 >            else if (!queued) {           // push onto queue
1027                  AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028 <                QNode q = head.get();
1029 <                if (q == null || q.phase == phase) {
1030 <                    node.next = q;
921 <                    if ((p = (int)(state >>> PHASE_SHIFT)) != phase)
922 <                        break;       // recheck to avoid stale enqueue
1028 >                QNode q = node.next = head.get();
1029 >                if ((q == null || q.phase == phase) &&
1030 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031                      queued = head.compareAndSet(q, node);
924                }
1032              }
1033              else {
1034                  try {
# Line 934 | Line 1041 | public class Phaser {
1041  
1042          if (node != null) {
1043              if (node.thread != null)
1044 <                node.thread = null; // disable unpark() in node.signal
1044 >                node.thread = null;       // avoid need for unpark()
1045              if (node.wasInterrupted && !node.interruptible)
1046                  Thread.currentThread().interrupt();
1047 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 +                return abortWait(phase); // possibly clean up on abort
1049          }
1050 <        if (p != phase)
942 <            releaseWaiters(phase);
1050 >        releaseWaiters(phase);
1051          return p;
1052      }
1053  
# Line 964 | Line 1072 | public class Phaser {
1072              this.interruptible = interruptible;
1073              this.nanos = nanos;
1074              this.timed = timed;
1075 <            this.lastTime = timed? System.nanoTime() : 0L;
1075 >            this.lastTime = timed ? System.nanoTime() : 0L;
1076              thread = Thread.currentThread();
1077          }
1078  
1079          public boolean isReleasable() {
1080 <            Thread t = thread;
1081 <            if (t != null) {
1082 <                if (phaser.getPhase() != phase)
975 <                    t = null;
976 <                else {
977 <                    if (Thread.interrupted())
978 <                        wasInterrupted = true;
979 <                    if (wasInterrupted && interruptible)
980 <                        t = null;
981 <                    else if (timed) {
982 <                        if (nanos > 0) {
983 <                            long now = System.nanoTime();
984 <                            nanos -= now - lastTime;
985 <                            lastTime = now;
986 <                        }
987 <                        if (nanos <= 0)
988 <                            t = null;
989 <                    }
990 <                }
991 <                if (t != null)
992 <                    return false;
1080 >            if (thread == null)
1081 >                return true;
1082 >            if (phaser.getPhase() != phase) {
1083                  thread = null;
1084 +                return true;
1085              }
1086 <            return true;
1086 >            if (Thread.interrupted())
1087 >                wasInterrupted = true;
1088 >            if (wasInterrupted && interruptible) {
1089 >                thread = null;
1090 >                return true;
1091 >            }
1092 >            if (timed) {
1093 >                if (nanos > 0L) {
1094 >                    long now = System.nanoTime();
1095 >                    nanos -= now - lastTime;
1096 >                    lastTime = now;
1097 >                }
1098 >                if (nanos <= 0L) {
1099 >                    thread = null;
1100 >                    return true;
1101 >                }
1102 >            }
1103 >            return false;
1104          }
1105  
1106          public boolean block() {
# Line 1004 | Line 1112 | public class Phaser {
1112                  LockSupport.parkNanos(this, nanos);
1113              return isReleasable();
1114          }
1007
1008        void signal() {
1009            Thread t = thread;
1010            if (t != null) {
1011                thread = null;
1012                LockSupport.unpark(t);
1013            }
1014        }
1115      }
1116  
1117      // Unsafe mechanics
1118  
1119 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1120 <    private static final long stateOffset =
1121 <        objectFieldOffset("state", Phaser.class);
1022 <
1023 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1119 >    private static final sun.misc.Unsafe UNSAFE;
1120 >    private static final long stateOffset;
1121 >    static {
1122          try {
1123 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1124 <        } catch (NoSuchFieldException e) {
1125 <            // Convert Exception to corresponding Error
1126 <            NoSuchFieldError error = new NoSuchFieldError(field);
1127 <            error.initCause(e);
1128 <            throw error;
1123 >            UNSAFE = getUnsafe();
1124 >            Class<?> k = Phaser.class;
1125 >            stateOffset = UNSAFE.objectFieldOffset
1126 >                (k.getDeclaredField("state"));
1127 >        } catch (Exception e) {
1128 >            throw new Error(e);
1129          }
1130      }
1131  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines