ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.64 by jsr166, Mon Nov 29 20:58:06 2010 UTC vs.
Revision 1.68 by dl, Sat Dec 4 15:25:08 2010 UTC

# Line 75 | Line 75 | import java.util.concurrent.locks.LockSu
75   * </ul>
76   *
77   * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
81 < * Termination is triggered when an invocation of {@code onAdvance}
82 < * returns {@code true}. The default implementation returns {@code
83 < * true} if a deregistration has caused the number of registered
84 < * parties to become zero.  As illustrated below, when phasers control
85 < * actions with a fixed number of iterations, it is often convenient
86 < * to override this method to cause termination when the current phase
87 < * number reaches a threshold. Method {@link #forceTermination} is
88 < * also available to abruptly release waiting threads and allow them
89 < * to terminate.
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return
81 > * value. Similarly, attempts to register upon termination have no
82 > * effect.  Termination is triggered when an invocation of {@code
83 > * onAdvance} returns {@code true}. The default implementation returns
84 > * {@code true} if a deregistration has caused the number of
85 > * registered parties to become zero.  As illustrated below, when
86 > * phasers control actions with a fixed number of iterations, it is
87 > * often convenient to override this method to cause termination when
88 > * the current phase number reaches a threshold. Method {@link
89 > * #forceTermination} is also available to abruptly release waiting
90 > * threads and allow them to terminate.
91   *
92   * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 183 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a {@code Phaser} that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219   * expected synchronization rates. A value as low as four may
# Line 233 | Line 244 | public class Phaser {
244       * * phase -- the generation of the barrier                (bits 32-62)
245       * * terminated -- set if barrier is terminated            (bit  63 / sign)
246       *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished with the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed.  Method reconcileState
264 >     * is usually attempted only only when the number of unarrived
265 >     * parties appears to be zero, which indicates a potential lag in
266 >     * updating phase after the root advanced.
267       */
268      private volatile long state;
269  
# Line 247 | Line 273 | public class Phaser {
273      private static final int  PHASE_SHIFT     = 32;
274      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
275      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
250    private static final long ONE_ARRIVAL     = 1L;
251    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
276      private static final long TERMINATION_BIT = 1L << 63;
277  
278 +    // some special values
279 +    private static final int  ONE_ARRIVAL     = 1;
280 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
281 +    private static final int  EMPTY           = 1;
282 +
283      // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286 <        return (int)s & UNARRIVED_MASK;
286 >        int counts = (int)s;
287 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
288      }
289  
290      private static int partiesOf(long s) {
# Line 266 | Line 296 | public class Phaser {
296      }
297  
298      private static int arrivedOf(long s) {
299 <        return partiesOf(s) - unarrivedOf(s);
299 >        int counts = (int)s;
300 >        return (counts == EMPTY) ? 0 :
301 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302      }
303  
304      /**
# Line 275 | Line 307 | public class Phaser {
307      private final Phaser parent;
308  
309      /**
310 <     * The root of phaser tree. Equals this if not in a tree.  Used to
279 <     * support faster state push-down.
310 >     * The root of phaser tree. Equals this if not in a tree.
311       */
312      private final Phaser root;
313  
# Line 314 | Line 345 | public class Phaser {
345       * Manually tuned to speed up and minimize race windows for the
346       * common case of just decrementing unarrived field.
347       *
348 <     * @param adj - adjustment to apply to state -- either
318 <     * ONE_ARRIVAL (for arrive) or
319 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
348 >     * @param deregister false for arrive, true for arriveAndDeregister
349       */
350 <    private int doArrive(long adj) {
350 >    private int doArrive(boolean deregister) {
351 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 >        final Phaser root = this.root;
353          for (;;) {
354 <            long s = state;
324 <            int unarrived = (int)s & UNARRIVED_MASK;
354 >            long s = (root == this) ? state : reconcileState();
355              int phase = (int)(s >>> PHASE_SHIFT);
356 +            int counts = (int)s;
357 +            int unarrived = (counts & UNARRIVED_MASK) - 1;
358              if (phase < 0)
359                  return phase;
360 <            else if (unarrived == 0) {
361 <                if (reconcileState() == s)     // recheck
360 >            else if (counts == EMPTY || unarrived < 0) {
361 >                if (root == this || reconcileState() == s)
362                      throw new IllegalStateException(badArrive(s));
363              }
364              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
365 <                if (unarrived == 1) {
366 <                    long p = s & PARTIES_MASK; // unshifted parties field
367 <                    long lu = p >>> PARTIES_SHIFT;
368 <                    int u = (int)lu;
369 <                    int nextPhase = (phase + 1) & MAX_PHASE;
370 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
371 <                    final Phaser parent = this.parent;
372 <                    if (parent == null) {
373 <                        if (onAdvance(phase, u))
374 <                            next |= TERMINATION_BIT;
375 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
376 <                        releaseWaiters(phase);
377 <                    }
378 <                    else {
347 <                        parent.doArrive((u == 0) ?
348 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
349 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350 <                            reconcileState();
351 <                        else if (state == s)
352 <                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 <                                                      next);
354 <                    }
365 >                if (unarrived == 0) {
366 >                    long n = s & PARTIES_MASK;  // base of next state
367 >                    int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
368 >                    if (root != this)
369 >                        return parent.doArrive(nextUnarrived == 0);
370 >                    if (onAdvance(phase, nextUnarrived))
371 >                        n |= TERMINATION_BIT;
372 >                    else if (nextUnarrived == 0)
373 >                        n |= EMPTY;
374 >                    else
375 >                        n |= nextUnarrived;
376 >                    n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
377 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
378 >                    releaseWaiters(phase);
379                  }
380                  return phase;
381              }
# Line 367 | Line 391 | public class Phaser {
391      private int doRegister(int registrations) {
392          // adjustment to state
393          long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
394 <        final Phaser parent = this.parent;
394 >        Phaser par = parent;
395 >        int phase;
396          for (;;) {
397 <            long s = (parent == null) ? state : reconcileState();
398 <            int parties = (int)s >>> PARTIES_SHIFT;
399 <            int phase = (int)(s >>> PHASE_SHIFT);
400 <            if (phase < 0)
401 <                return phase;
377 <            else if (registrations > MAX_PARTIES - parties)
397 >            long s = state;
398 >            int counts = (int)s;
399 >            int parties = counts >>> PARTIES_SHIFT;
400 >            int unarrived = counts & UNARRIVED_MASK;
401 >            if (registrations > MAX_PARTIES - parties)
402                  throw new IllegalStateException(badRegister(s));
403 <            else if ((parties == 0 && parent == null) || // first reg of root
404 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
405 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
406 <                    return phase;
407 <            }
408 <            else if (parties != 0)               // wait for onAdvance
409 <                root.internalAwaitAdvance(phase, null);
410 <            else {                               // 1st registration of child
411 <                synchronized (this) {            // register parent first
412 <                    if (reconcileState() == s) { // recheck under lock
413 <                        parent.doRegister(1);    // OK if throws IllegalState
414 <                        for (;;) {               // simpler form of outer loop
415 <                            s = reconcileState();
416 <                            phase = (int)(s >>> PHASE_SHIFT);
417 <                            if (phase < 0 ||
418 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
419 <                                                          s, s + adj))
420 <                                return phase;
421 <                        }
403 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
404 >                break;
405 >            else if (counts != EMPTY) {             // not 1st registration
406 >                if (par == null || reconcileState() == s) {
407 >                    if (unarrived == 0)             // wait out advance
408 >                        root.internalAwaitAdvance(phase, null);
409 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
410 >                                                       s, s + adj))
411 >                        break;
412 >                }
413 >            }
414 >            else if (par == null) {                 // 1st root registration
415 >                long next = (((long) phase) << PHASE_SHIFT) | adj;
416 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
417 >                    break;
418 >            }
419 >            else {
420 >                synchronized (this) {               // 1st sub registration
421 >                    if (state == s) {               // recheck under lock
422 >                        par.doRegister(1);
423 >                        do {                        // force current phase
424 >                            phase = (int)(root.state >>> PHASE_SHIFT);
425 >                            // assert phase < 0 || (int)state == EMPTY;
426 >                        } while (!UNSAFE.compareAndSwapLong
427 >                                 (this, stateOffset, state,
428 >                                  (((long) phase) << PHASE_SHIFT) | adj));
429 >                        break;
430                      }
431                  }
432              }
433          }
434 +        return phase;
435      }
436  
437      /**
438 <     * Recursively resolves lagged phase propagation from root if necessary.
438 >     * Resolves lagged phase propagation from root if necessary.
439       */
440      private long reconcileState() {
441 <        Phaser par = parent;
441 >        Phaser rt = root;
442          long s = state;
443 <        if (par != null) {
444 <            Phaser rt = root;
445 <            int phase, rPhase;
446 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
447 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
448 <                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
449 <                    par.reconcileState();
450 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
451 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
452 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
453 <                                 (u >>> PARTIES_SHIFT));
454 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
443 >        if (rt != this) {
444 >            int phase;
445 >            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
446 >                   (int)(s >>> PHASE_SHIFT)) {
447 >                // assert phase < 0 || unarrivedOf(s) == 0
448 >                long t;                             // to reread s
449 >                long p = s & PARTIES_MASK;          // unshifted parties field
450 >                long n = (((long) phase) << PHASE_SHIFT) | p;
451 >                if (phase >= 0) {
452 >                    if (p == 0L)
453 >                        n |= EMPTY;                 // reset to empty
454 >                    else
455 >                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
456                  }
457 <                s = state;
457 >                if ((t = state) == s &&
458 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
459 >                    break;
460 >                s = t;
461              }
462          }
463          return s;
# Line 459 | Line 496 | public class Phaser {
496  
497      /**
498       * Creates a new phaser with the given parent and number of
499 <     * registered unarrived parties. Registration and deregistration
500 <     * of this child phaser with its parent are managed automatically.
501 <     * If the given parent is non-null, whenever this child phaser has
465 <     * any registered parties (as established in this constructor,
466 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
467 <     * is registered with its parent. Whenever the number of
468 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child phaser is
470 <     * deregistered from its parent.
499 >     * registered unarrived parties.  When the given parent is non-null
500 >     * and the given number of parties is greater than zero, this
501 >     * child phaser is registered with its parent.
502       *
503       * @param parent the parent phaser
504       * @param parties the number of parties required to advance to the
# Line 478 | Line 509 | public class Phaser {
509      public Phaser(Phaser parent, int parties) {
510          if (parties >>> PARTIES_SHIFT != 0)
511              throw new IllegalArgumentException("Illegal number of parties");
512 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
512 >        int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515 <            Phaser r = parent.root;
516 <            this.root = r;
517 <            this.evenQ = r.evenQ;
518 <            this.oddQ = r.oddQ;
515 >            final Phaser root = parent.root;
516 >            this.root = root;
517 >            this.evenQ = root.evenQ;
518 >            this.oddQ = root.oddQ;
519              if (parties != 0)
520 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
520 >                phase = parent.doRegister(1);
521          }
522          else {
523              this.root = this;
524              this.evenQ = new AtomicReference<QNode>();
525              this.oddQ = new AtomicReference<QNode>();
526          }
527 <        this.state = s;
527 >        this.state = (parties == 0) ? (long) EMPTY :
528 >            ((((long) phase) << PHASE_SHIFT) |
529 >             (((long) parties) << PARTIES_SHIFT) |
530 >             ((long) parties));
531      }
532  
533      /**
# Line 501 | Line 535 | public class Phaser {
535       * invocation of {@link #onAdvance} is in progress, this method
536       * may await its completion before returning.  If this phaser has
537       * a parent, and this phaser previously had no registered parties,
538 <     * this phaser is also registered with its parent.
539 <     *
540 <     * @return the arrival phase number to which this registration applied
538 >     * this child phaser is also registered with its parent. If
539 >     * this phaser is terminated, the attempt to register has
540 >     * no effect, and a negative value is returned.
541 >     *
542 >     * @return the arrival phase number to which this registration
543 >     * applied.  If this value is negative, then this phaser has
544 >     * terminated, in which casem registration has no effect.
545       * @throws IllegalStateException if attempting to register more
546       * than the maximum supported number of parties
547       */
# Line 515 | Line 553 | public class Phaser {
553       * Adds the given number of new unarrived parties to this phaser.
554       * If an ongoing invocation of {@link #onAdvance} is in progress,
555       * this method may await its completion before returning.  If this
556 <     * phaser has a parent, and the given number of parities is
557 <     * greater than zero, and this phaser previously had no registered
558 <     * parties, this phaser is also registered with its parent.
556 >     * phaser has a parent, and the given number of parties is greater
557 >     * than zero, and this phaser previously had no registered
558 >     * parties, this child phaser is also registered with its parent.
559 >     * If this phaser is terminated, the attempt to register has no
560 >     * effect, and a negative value is returned.
561       *
562       * @param parties the number of additional parties required to
563       * advance to the next phase
564 <     * @return the arrival phase number to which this registration applied
564 >     * @return the arrival phase number to which this registration
565 >     * applied.  If this value is negative, then this phaser has
566 >     * terminated, in which casem registration has no effect.
567       * @throws IllegalStateException if attempting to register more
568       * than the maximum supported number of parties
569       * @throws IllegalArgumentException if {@code parties < 0}
# Line 547 | Line 589 | public class Phaser {
589       * of unarrived parties would become negative
590       */
591      public int arrive() {
592 <        return doArrive(ONE_ARRIVAL);
592 >        return doArrive(false);
593      }
594  
595      /**
# Line 567 | Line 609 | public class Phaser {
609       * of registered or unarrived parties would become negative
610       */
611      public int arriveAndDeregister() {
612 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
612 >        return doArrive(true);
613      }
614  
615      /**
# Line 583 | Line 625 | public class Phaser {
625       * IllegalStateException} only upon some subsequent operation on
626       * this phaser, if ever.
627       *
628 <     * @return the arrival phase number, or a negative number if terminated
628 >     * @return the arrival phase number, or the (negative)
629 >     * {@linkplain #getPhase() current phase} if terminated
630       * @throws IllegalStateException if not terminated and the number
631       * of unarrived parties would become negative
632       */
633      public int arriveAndAwaitAdvance() {
634 <        return awaitAdvance(doArrive(ONE_ARRIVAL));
634 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
635 >        final Phaser root = this.root;
636 >        for (;;) {
637 >            long s = (root == this) ? state : reconcileState();
638 >            int phase = (int)(s >>> PHASE_SHIFT);
639 >            int counts = (int)s;
640 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
641 >            if (phase < 0)
642 >                return phase;
643 >            else if (counts == EMPTY || unarrived < 0) {
644 >                if (reconcileState() == s)
645 >                    throw new IllegalStateException(badArrive(s));
646 >            }
647 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
648 >                                               s -= ONE_ARRIVAL)) {
649 >                if (unarrived != 0)
650 >                    return root.internalAwaitAdvance(phase, null);
651 >                if (root != this)
652 >                    return parent.arriveAndAwaitAdvance();
653 >                long n = s & PARTIES_MASK;  // base of next state
654 >                int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
655 >                if (onAdvance(phase, nextUnarrived))
656 >                    n |= TERMINATION_BIT;
657 >                else if (nextUnarrived == 0)
658 >                    n |= EMPTY;
659 >                else
660 >                    n |= nextUnarrived;
661 >                int nextPhase = (phase + 1) & MAX_PHASE;
662 >                n |= (long)nextPhase << PHASE_SHIFT;
663 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
664 >                    return (int)(state >>> PHASE_SHIFT); // terminated
665 >                releaseWaiters(phase);
666 >                return nextPhase;
667 >            }
668 >        }
669      }
670  
671      /**
# Line 599 | Line 676 | public class Phaser {
676       * @param phase an arrival phase number, or negative value if
677       * terminated; this argument is normally the value returned by a
678       * previous call to {@code arrive} or {@code arriveAndDeregister}.
679 <     * @return the next arrival phase number, or a negative value
680 <     * if terminated or argument is negative
679 >     * @return the next arrival phase number, or the argument if it is
680 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
681 >     * if terminated
682       */
683      public int awaitAdvance(int phase) {
684 <        Phaser rt;
685 <        int p = (int)(state >>> PHASE_SHIFT);
684 >        final Phaser root = this.root;
685 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
686          if (phase < 0)
687              return phase;
688 <        if (p == phase &&
689 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 <            return rt.internalAwaitAdvance(phase, null);
688 >        if (p == phase)
689 >            return root.internalAwaitAdvance(phase, null);
690          return p;
691      }
692  
# Line 623 | Line 700 | public class Phaser {
700       * @param phase an arrival phase number, or negative value if
701       * terminated; this argument is normally the value returned by a
702       * previous call to {@code arrive} or {@code arriveAndDeregister}.
703 <     * @return the next arrival phase number, or a negative value
704 <     * if terminated or argument is negative
703 >     * @return the next arrival phase number, or the argument if it is
704 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
705 >     * if terminated
706       * @throws InterruptedException if thread interrupted while waiting
707       */
708      public int awaitAdvanceInterruptibly(int phase)
709          throws InterruptedException {
710 <        Phaser rt;
711 <        int p = (int)(state >>> PHASE_SHIFT);
710 >        final Phaser root = this.root;
711 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
712          if (phase < 0)
713              return phase;
714 <        if (p == phase &&
637 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
714 >        if (p == phase) {
715              QNode node = new QNode(this, phase, true, false, 0L);
716 <            p = rt.internalAwaitAdvance(phase, node);
716 >            p = root.internalAwaitAdvance(phase, node);
717              if (node.wasInterrupted)
718                  throw new InterruptedException();
719          }
# Line 657 | Line 734 | public class Phaser {
734       *        {@code unit}
735       * @param unit a {@code TimeUnit} determining how to interpret the
736       *        {@code timeout} parameter
737 <     * @return the next arrival phase number, or a negative value
738 <     * if terminated or argument is negative
737 >     * @return the next arrival phase number, or the argument if it is
738 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
739 >     * if terminated
740       * @throws InterruptedException if thread interrupted while waiting
741       * @throws TimeoutException if timed out while waiting
742       */
# Line 666 | Line 744 | public class Phaser {
744                                           long timeout, TimeUnit unit)
745          throws InterruptedException, TimeoutException {
746          long nanos = unit.toNanos(timeout);
747 <        Phaser rt;
748 <        int p = (int)(state >>> PHASE_SHIFT);
747 >        final Phaser root = this.root;
748 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
749          if (phase < 0)
750              return phase;
751 <        if (p == phase &&
674 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
751 >        if (p == phase) {
752              QNode node = new QNode(this, phase, true, true, nanos);
753 <            p = rt.internalAwaitAdvance(phase, node);
753 >            p = root.internalAwaitAdvance(phase, node);
754              if (node.wasInterrupted)
755                  throw new InterruptedException();
756              else if (p == phase)
# Line 684 | Line 761 | public class Phaser {
761  
762      /**
763       * Forces this phaser to enter termination state.  Counts of
764 <     * arrived and registered parties are unaffected.  If this phaser
765 <     * is a member of a tiered set of phasers, then all of the phasers
766 <     * in the set are terminated.  If this phaser is already
767 <     * terminated, this method has no effect.  This method may be
768 <     * useful for coordinating recovery after one or more tasks
769 <     * encounter unexpected exceptions.
764 >     * registered parties are unaffected.  If this phaser is a member
765 >     * of a tiered set of phasers, then all of the phasers in the set
766 >     * are terminated.  If this phaser is already terminated, this
767 >     * method has no effect.  This method may be useful for
768 >     * coordinating recovery after one or more tasks encounter
769 >     * unexpected exceptions.
770       */
771      public void forceTermination() {
772          // Only need to change root state
773          final Phaser root = this.root;
774          long s;
775          while ((s = root.state) >= 0) {
776 <            if (UNSAFE.compareAndSwapLong(root, stateOffset,
777 <                                          s, s | TERMINATION_BIT)) {
778 <                releaseWaiters(0); // signal all threads
776 >            long next = (s & ~((long)UNARRIVED_MASK)) | TERMINATION_BIT;
777 >            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
778 >                // signal all threads
779 >                releaseWaiters(0);
780                  releaseWaiters(1);
781                  return;
782              }
# Line 734 | Line 812 | public class Phaser {
812       * @return the number of arrived parties
813       */
814      public int getArrivedParties() {
815 <        long s = state;
738 <        int u = unarrivedOf(s); // only reconcile if possibly needed
739 <        return (u != 0 || parent == null) ?
740 <            partiesOf(s) - u :
741 <            arrivedOf(reconcileState());
815 >        return arrivedOf(reconcileState());
816      }
817  
818      /**
# Line 748 | Line 822 | public class Phaser {
822       * @return the number of unarrived parties
823       */
824      public int getUnarrivedParties() {
825 <        int u = unarrivedOf(state);
752 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
825 >        return unarrivedOf(reconcileState());
826      }
827  
828      /**
# Line 785 | Line 858 | public class Phaser {
858       * advance, and to control termination. This method is invoked
859       * upon arrival of the party advancing this phaser (when all other
860       * waiting parties are dormant).  If this method returns {@code
861 <     * true}, then, rather than advance the phase number, this phaser
862 <     * will be set to a final termination state, and subsequent calls
863 <     * to {@link #isTerminated} will return true. Any (unchecked)
864 <     * Exception or Error thrown by an invocation of this method is
865 <     * propagated to the party attempting to advance this phaser, in
866 <     * which case no advance occurs.
861 >     * true}, this phaser will be set to a final termination state
862 >     * upon advance, and subsequent calls to {@link #isTerminated}
863 >     * will return true. Any (unchecked) Exception or Error thrown by
864 >     * an invocation of this method is propagated to the party
865 >     * attempting to advance this phaser, in which case no advance
866 >     * occurs.
867       *
868       * <p>The arguments to this method provide the state of the phaser
869       * prevailing for the current transition.  The effects of invoking
# Line 854 | Line 927 | public class Phaser {
927       */
928      private void releaseWaiters(int phase) {
929          QNode q;   // first element of queue
857        int p;     // its phase
930          Thread t;  // its thread
931          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
932          while ((q = head.get()) != null &&
933 <               ((p = q.phase) == phase ||
862 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
933 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
934              if (head.compareAndSet(q, q.next) &&
935                  (t = q.thread) != null) {
936                  q.thread = null;
# Line 868 | Line 939 | public class Phaser {
939          }
940      }
941  
942 +    /**
943 +     * Variant of releaseWaiters that additionally tries to remove any
944 +     * nodes no longer waiting for advance due to timeout or
945 +     * interrupt. Currently, nodes are removed only if they are at
946 +     * head of queue, which suffices to reduce memory footprint in
947 +     * most usages.
948 +     *
949 +     * @return current phase on exit
950 +     */
951 +    private int abortWait(int phase) {
952 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
953 +        for (;;) {
954 +            Thread t;
955 +            QNode q = head.get();
956 +            int p = (int)(root.state >>> PHASE_SHIFT);
957 +            if (q == null || ((t = q.thread) != null && q.phase == p))
958 +                return p;
959 +            if (head.compareAndSet(q, q.next) && t != null) {
960 +                q.thread = null;
961 +                LockSupport.unpark(t);
962 +            }
963 +        }
964 +    }
965 +
966      /** The number of CPUs, for spin control */
967      private static final int NCPU = Runtime.getRuntime().availableProcessors();
968  
# Line 935 | Line 1030 | public class Phaser {
1030                  node.thread = null;       // avoid need for unpark()
1031              if (node.wasInterrupted && !node.interruptible)
1032                  Thread.currentThread().interrupt();
1033 <            if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
1034 <                return p;                 // recheck abort
1033 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1034 >                return abortWait(phase); // possibly clean up on abort
1035          }
1036          releaseWaiters(phase);
1037          return p;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines