ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.65 by dl, Wed Dec 1 17:20:41 2010 UTC vs.
Revision 1.75 by dl, Wed Sep 21 12:30:39 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 75 | Line 75 | import java.util.concurrent.locks.LockSu
75   * </ul>
76   *
77   * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82   * Termination is triggered when an invocation of {@code onAdvance}
83   * returns {@code true}. The default implementation returns {@code
84   * true} if a deregistration has caused the number of registered
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Primary state representation, holding four fields:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246       *
247       * Except that a phaser with no registered parties is
248 <     * distinguished with the otherwise illegal state of having zero
248 >     * distinguished by the otherwise illegal state of having zero
249       * parties and one unarrived parties (encoded as EMPTY below).
250       *
251       * To efficiently maintain atomicity, these values are packed into
# Line 249 | Line 260 | public class Phaser {
260       * parent.
261       *
262       * The phase of a subphaser is allowed to lag that of its
263 <     * ancestors until it is actually accessed.  Method reconcileState
264 <     * is usually attempted only only when the number of unarrived
254 <     * parties appears to be zero, which indicates a potential lag in
255 <     * updating phase after the root advanced.
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268      private static final int  MAX_PARTIES     = 0xffff;
269 <    private static final int  MAX_PHASE       = 0x7fffffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
# Line 273 | Line 282 | public class Phaser {
282  
283      private static int unarrivedOf(long s) {
284          int counts = (int)s;
285 <        return (counts == EMPTY)? 0 : counts & UNARRIVED_MASK;
285 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286      }
287  
288      private static int partiesOf(long s) {
289 <        int counts = (int)s;
281 <        return (counts == EMPTY)? 0 : counts >>> PARTIES_SHIFT;
289 >        return (int)s >>> PARTIES_SHIFT;
290      }
291  
292      private static int phaseOf(long s) {
293 <        return (int) (s >>> PHASE_SHIFT);
293 >        return (int)(s >>> PHASE_SHIFT);
294      }
295  
296      private static int arrivedOf(long s) {
297          int counts = (int)s;
298 <        return (counts == EMPTY)? 0 :
298 >        return (counts == EMPTY) ? 0 :
299              (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300      }
301  
# Line 339 | Line 347 | public class Phaser {
347       */
348      private int doArrive(boolean deregister) {
349          int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 <        long s;
351 <        int phase;
352 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
350 >        final Phaser root = this.root;
351 >        for (;;) {
352 >            long s = (root == this) ? state : reconcileState();
353 >            int phase = (int)(s >>> PHASE_SHIFT);
354              int counts = (int)s;
355 <            int unarrived = counts & UNARRIVED_MASK;
356 <            if (counts == EMPTY || unarrived == 0) {
357 <                if (reconcileState() == s)
355 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
356 >            if (phase < 0)
357 >                return phase;
358 >            else if (counts == EMPTY || unarrived < 0) {
359 >                if (root == this || reconcileState() == s)
360                      throw new IllegalStateException(badArrive(s));
361              }
362              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 <                if (unarrived == 1) {
364 <                    long n = s & PARTIES_MASK;       // unshifted parties field
365 <                    int u = ((int)n) >>> PARTIES_SHIFT;
366 <                    Phaser par = parent;
367 <                    if (par != null) {
357 <                        par.doArrive(u == 0);
358 <                        reconcileState();
359 <                    }
360 <                    else {
361 <                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
362 <                        if (onAdvance(phase, u))
363 >                long n = s & PARTIES_MASK;  // base of next state
364 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 >                if (unarrived == 0) {
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368                              n |= TERMINATION_BIT;
369 <                        else if (u == 0)
370 <                            n |= EMPTY;             // reset to unregistered
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371                          else
372 <                            n |= (long)u;           // reset unarr to parties
373 <                        // assert state == s || isTerminated();
372 >                            n |= nextUnarrived;
373 >                        n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
374                          UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370                        releaseWaiters(phase);
375                      }
376 +                    else if (nextUnarrived == 0) { // propagate deregistration
377 +                        phase = parent.doArrive(true);
378 +                        UNSAFE.compareAndSwapLong(this, stateOffset,
379 +                                                  s, s | EMPTY);
380 +                    }
381 +                    else
382 +                        phase = parent.doArrive(false);
383 +                    releaseWaiters(phase);
384                  }
385 <                break;
385 >                return phase;
386              }
387          }
376        return phase;
388      }
389  
390      /**
# Line 385 | Line 396 | public class Phaser {
396      private int doRegister(int registrations) {
397          // adjustment to state
398          long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 <        Phaser par = parent;
399 >        final Phaser parent = this.parent;
400          int phase;
401          for (;;) {
402 <            long s = state;
402 >            long s = (parent == null) ? state : reconcileState();
403              int counts = (int)s;
404              int parties = counts >>> PARTIES_SHIFT;
405              int unarrived = counts & UNARRIVED_MASK;
# Line 397 | Line 408 | public class Phaser {
408              else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
409                  break;
410              else if (counts != EMPTY) {             // not 1st registration
411 <                if (par == null || reconcileState() == s) {
411 >                if (parent == null || reconcileState() == s) {
412                      if (unarrived == 0)             // wait out advance
413                          root.internalAwaitAdvance(phase, null);
414                      else if (UNSAFE.compareAndSwapLong(this, stateOffset,
# Line 405 | Line 416 | public class Phaser {
416                          break;
417                  }
418              }
419 <            else if (par == null) {                 // 1st root registration
420 <                long next = (((long) phase) << PHASE_SHIFT) | adj;
419 >            else if (parent == null) {              // 1st root registration
420 >                long next = ((long)phase << PHASE_SHIFT) | adj;
421                  if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422                      break;
423              }
424              else {
425 <                synchronized(this) {                // 1st sub registration
425 >                synchronized (this) {               // 1st sub registration
426                      if (state == s) {               // recheck under lock
427 <                        par.doRegister(1);
427 >                        parent.doRegister(1);
428                          do {                        // force current phase
429                              phase = (int)(root.state >>> PHASE_SHIFT);
430                              // assert phase < 0 || (int)state == EMPTY;
431                          } while (!UNSAFE.compareAndSwapLong
432                                   (this, stateOffset, state,
433 <                                  (((long) phase) << PHASE_SHIFT) | adj));
433 >                                  ((long)phase << PHASE_SHIFT) | adj));
434                          break;
435                      }
436                  }
# Line 430 | Line 441 | public class Phaser {
441  
442      /**
443       * Resolves lagged phase propagation from root if necessary.
444 +     * Reconciliation normally occurs when root has advanced but
445 +     * subphasers have not yet done so, in which case they must finish
446 +     * their own advance by setting unarrived to parties (or if
447 +     * parties is zero, resetting to unregistered EMPTY state).
448 +     * However, this method may also be called when "floating"
449 +     * subphasers with possibly some unarrived parties are merely
450 +     * catching up to current phase, in which case counts are
451 +     * unaffected.
452 +     *
453 +     * @return reconciled state
454       */
455      private long reconcileState() {
456 <        Phaser rt = root;
456 >        final Phaser root = this.root;
457          long s = state;
458 <        if (rt != this) {
459 <            int phase;
460 <            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
461 <                   (int)(s >>> PHASE_SHIFT)) {
462 <                // assert phase < 0 || unarrivedOf(s) == 0
463 <                long t;                             // to reread s
464 <                long p = s & PARTIES_MASK;          // unshifted parties field
465 <                long n = (((long) phase) << PHASE_SHIFT) | p;
466 <                if (phase >= 0) {
467 <                    if (p == 0L)
468 <                        n |= EMPTY;                 // reset to empty
469 <                    else
470 <                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
450 <                }
451 <                if ((t = state) == s &&
452 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 <                    break;
454 <                s = t;
455 <            }
458 >        if (root != this) {
459 >            int phase, u, p;
460 >            // CAS root phase with current parties; possibly trip unarrived
461 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462 >                   (int)(s >>> PHASE_SHIFT) &&
463 >                   !UNSAFE.compareAndSwapLong
464 >                   (this, stateOffset, s,
465 >                    s = (((long)phase << PHASE_SHIFT) |
466 >                         (s & PARTIES_MASK) |
467 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
468 >                          ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
469 >                          p : u))))
470 >                s = state;
471          }
472          return s;
473      }
# Line 490 | Line 505 | public class Phaser {
505  
506      /**
507       * Creates a new phaser with the given parent and number of
508 <     * registered unarrived parties. Registration and deregistration
509 <     * of this child phaser with its parent are managed automatically.
510 <     * If the given parent is non-null, whenever this child phaser has
496 <     * any registered parties (as established in this constructor,
497 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 <     * is registered with its parent. Whenever the number of
499 <     * registered parties becomes zero as the result of an invocation
500 <     * of {@link #arriveAndDeregister}, this child phaser is
501 <     * deregistered from its parent.
508 >     * registered unarrived parties.  When the given parent is non-null
509 >     * and the given number of parties is greater than zero, this
510 >     * child phaser is registered with its parent.
511       *
512       * @param parent the parent phaser
513       * @param parties the number of parties required to advance to the
# Line 512 | Line 521 | public class Phaser {
521          int phase = 0;
522          this.parent = parent;
523          if (parent != null) {
524 <            Phaser r = parent.root;
525 <            this.root = r;
526 <            this.evenQ = r.evenQ;
527 <            this.oddQ = r.oddQ;
524 >            final Phaser root = parent.root;
525 >            this.root = root;
526 >            this.evenQ = root.evenQ;
527 >            this.oddQ = root.oddQ;
528              if (parties != 0)
529                  phase = parent.doRegister(1);
530          }
# Line 524 | Line 533 | public class Phaser {
533              this.evenQ = new AtomicReference<QNode>();
534              this.oddQ = new AtomicReference<QNode>();
535          }
536 <        this.state = (parties == 0)? ((long) EMPTY) :
537 <            ((((long) phase) << PHASE_SHIFT) |
538 <             (((long) parties) << PARTIES_SHIFT) |
539 <             ((long) parties));
536 >        this.state = (parties == 0) ? (long)EMPTY :
537 >            ((long)phase << PHASE_SHIFT) |
538 >            ((long)parties << PARTIES_SHIFT) |
539 >            ((long)parties);
540      }
541  
542      /**
# Line 535 | Line 544 | public class Phaser {
544       * invocation of {@link #onAdvance} is in progress, this method
545       * may await its completion before returning.  If this phaser has
546       * a parent, and this phaser previously had no registered parties,
547 <     * this phaser is also registered with its parent.
548 <     *
549 <     * @return the arrival phase number to which this registration applied
547 >     * this child phaser is also registered with its parent. If
548 >     * this phaser is terminated, the attempt to register has
549 >     * no effect, and a negative value is returned.
550 >     *
551 >     * @return the arrival phase number to which this registration
552 >     * applied.  If this value is negative, then this phaser has
553 >     * terminated, in which case registration has no effect.
554       * @throws IllegalStateException if attempting to register more
555       * than the maximum supported number of parties
556       */
# Line 549 | Line 562 | public class Phaser {
562       * Adds the given number of new unarrived parties to this phaser.
563       * If an ongoing invocation of {@link #onAdvance} is in progress,
564       * this method may await its completion before returning.  If this
565 <     * phaser has a parent, and the given number of parities is
566 <     * greater than zero, and this phaser previously had no registered
567 <     * parties, this phaser is also registered with its parent.
565 >     * phaser has a parent, and the given number of parties is greater
566 >     * than zero, and this phaser previously had no registered
567 >     * parties, this child phaser is also registered with its parent.
568 >     * If this phaser is terminated, the attempt to register has no
569 >     * effect, and a negative value is returned.
570       *
571       * @param parties the number of additional parties required to
572       * advance to the next phase
573 <     * @return the arrival phase number to which this registration applied
573 >     * @return the arrival phase number to which this registration
574 >     * applied.  If this value is negative, then this phaser has
575 >     * terminated, in which case registration has no effect.
576       * @throws IllegalStateException if attempting to register more
577       * than the maximum supported number of parties
578       * @throws IllegalArgumentException if {@code parties < 0}
# Line 617 | Line 634 | public class Phaser {
634       * IllegalStateException} only upon some subsequent operation on
635       * this phaser, if ever.
636       *
637 <     * @return the arrival phase number, or a negative number if terminated
637 >     * @return the arrival phase number, or the (negative)
638 >     * {@linkplain #getPhase() current phase} if terminated
639       * @throws IllegalStateException if not terminated and the number
640       * of unarrived parties would become negative
641       */
642      public int arriveAndAwaitAdvance() {
643 <        return awaitAdvance(doArrive(false));
643 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
644 >        final Phaser root = this.root;
645 >        for (;;) {
646 >            long s = (root == this) ? state : reconcileState();
647 >            int phase = (int)(s >>> PHASE_SHIFT);
648 >            int counts = (int)s;
649 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
650 >            if (phase < 0)
651 >                return phase;
652 >            else if (counts == EMPTY || unarrived < 0) {
653 >                if (reconcileState() == s)
654 >                    throw new IllegalStateException(badArrive(s));
655 >            }
656 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657 >                                               s -= ONE_ARRIVAL)) {
658 >                if (unarrived != 0)
659 >                    return root.internalAwaitAdvance(phase, null);
660 >                if (root != this)
661 >                    return parent.arriveAndAwaitAdvance();
662 >                long n = s & PARTIES_MASK;  // base of next state
663 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 >                if (onAdvance(phase, nextUnarrived))
665 >                    n |= TERMINATION_BIT;
666 >                else if (nextUnarrived == 0)
667 >                    n |= EMPTY;
668 >                else
669 >                    n |= nextUnarrived;
670 >                int nextPhase = (phase + 1) & MAX_PHASE;
671 >                n |= (long)nextPhase << PHASE_SHIFT;
672 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673 >                    return (int)(state >>> PHASE_SHIFT); // terminated
674 >                releaseWaiters(phase);
675 >                return nextPhase;
676 >            }
677 >        }
678      }
679  
680      /**
# Line 633 | Line 685 | public class Phaser {
685       * @param phase an arrival phase number, or negative value if
686       * terminated; this argument is normally the value returned by a
687       * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 <     * @return the next arrival phase number, or a negative value
689 <     * if terminated or argument is negative
688 >     * @return the next arrival phase number, or the argument if it is
689 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
690 >     * if terminated
691       */
692      public int awaitAdvance(int phase) {
693 <        Phaser rt;
694 <        int p = (int)(state >>> PHASE_SHIFT);
693 >        final Phaser root = this.root;
694 >        long s = (root == this) ? state : reconcileState();
695 >        int p = (int)(s >>> PHASE_SHIFT);
696          if (phase < 0)
697              return phase;
698 <        if (p == phase) {
699 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 <                return rt.internalAwaitAdvance(phase, null);
647 <            reconcileState();
648 <        }
698 >        if (p == phase)
699 >            return root.internalAwaitAdvance(phase, null);
700          return p;
701      }
702  
# Line 659 | Line 710 | public class Phaser {
710       * @param phase an arrival phase number, or negative value if
711       * terminated; this argument is normally the value returned by a
712       * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 <     * @return the next arrival phase number, or a negative value
714 <     * if terminated or argument is negative
713 >     * @return the next arrival phase number, or the argument if it is
714 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
715 >     * if terminated
716       * @throws InterruptedException if thread interrupted while waiting
717       */
718      public int awaitAdvanceInterruptibly(int phase)
719          throws InterruptedException {
720 <        Phaser rt;
721 <        int p = (int)(state >>> PHASE_SHIFT);
720 >        final Phaser root = this.root;
721 >        long s = (root == this) ? state : reconcileState();
722 >        int p = (int)(s >>> PHASE_SHIFT);
723          if (phase < 0)
724              return phase;
725          if (p == phase) {
726 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
727 <                QNode node = new QNode(this, phase, true, false, 0L);
728 <                p = rt.internalAwaitAdvance(phase, node);
729 <                if (node.wasInterrupted)
677 <                    throw new InterruptedException();
678 <            }
679 <            else
680 <                reconcileState();
726 >            QNode node = new QNode(this, phase, true, false, 0L);
727 >            p = root.internalAwaitAdvance(phase, node);
728 >            if (node.wasInterrupted)
729 >                throw new InterruptedException();
730          }
731          return p;
732      }
# Line 696 | Line 745 | public class Phaser {
745       *        {@code unit}
746       * @param unit a {@code TimeUnit} determining how to interpret the
747       *        {@code timeout} parameter
748 <     * @return the next arrival phase number, or a negative value
749 <     * if terminated or argument is negative
748 >     * @return the next arrival phase number, or the argument if it is
749 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
750 >     * if terminated
751       * @throws InterruptedException if thread interrupted while waiting
752       * @throws TimeoutException if timed out while waiting
753       */
# Line 705 | Line 755 | public class Phaser {
755                                           long timeout, TimeUnit unit)
756          throws InterruptedException, TimeoutException {
757          long nanos = unit.toNanos(timeout);
758 <        Phaser rt;
759 <        int p = (int)(state >>> PHASE_SHIFT);
758 >        final Phaser root = this.root;
759 >        long s = (root == this) ? state : reconcileState();
760 >        int p = (int)(s >>> PHASE_SHIFT);
761          if (phase < 0)
762              return phase;
763          if (p == phase) {
764 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
765 <                QNode node = new QNode(this, phase, true, true, nanos);
766 <                p = rt.internalAwaitAdvance(phase, node);
767 <                if (node.wasInterrupted)
768 <                    throw new InterruptedException();
769 <                else if (p == phase)
719 <                    throw new TimeoutException();
720 <            }
721 <            else
722 <                reconcileState();
764 >            QNode node = new QNode(this, phase, true, true, nanos);
765 >            p = root.internalAwaitAdvance(phase, node);
766 >            if (node.wasInterrupted)
767 >                throw new InterruptedException();
768 >            else if (p == phase)
769 >                throw new TimeoutException();
770          }
771          return p;
772      }
# Line 738 | Line 785 | public class Phaser {
785          final Phaser root = this.root;
786          long s;
787          while ((s = root.state) >= 0) {
788 <            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
789 <            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
790 <                releaseWaiters(0); // signal all threads
788 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
789 >                                          s, s | TERMINATION_BIT)) {
790 >                // signal all threads
791 >                releaseWaiters(0);
792                  releaseWaiters(1);
793                  return;
794              }
# Line 771 | Line 819 | public class Phaser {
819  
820      /**
821       * Returns the number of registered parties that have arrived at
822 <     * the current phase of this phaser.
822 >     * the current phase of this phaser. If this phaser has terminated,
823 >     * the returned value is meaningless and arbitrary.
824       *
825       * @return the number of arrived parties
826       */
# Line 781 | Line 830 | public class Phaser {
830  
831      /**
832       * Returns the number of registered parties that have not yet
833 <     * arrived at the current phase of this phaser.
833 >     * arrived at the current phase of this phaser. If this phaser has
834 >     * terminated, the returned value is meaningless and arbitrary.
835       *
836       * @return the number of unarrived parties
837       */
# Line 891 | Line 941 | public class Phaser {
941       */
942      private void releaseWaiters(int phase) {
943          QNode q;   // first element of queue
894        int p;     // its phase
944          Thread t;  // its thread
896        //        assert phase != phaseOf(root.state);
945          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
946          while ((q = head.get()) != null &&
947                 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
# Line 905 | Line 953 | public class Phaser {
953          }
954      }
955  
956 +    /**
957 +     * Variant of releaseWaiters that additionally tries to remove any
958 +     * nodes no longer waiting for advance due to timeout or
959 +     * interrupt. Currently, nodes are removed only if they are at
960 +     * head of queue, which suffices to reduce memory footprint in
961 +     * most usages.
962 +     *
963 +     * @return current phase on exit
964 +     */
965 +    private int abortWait(int phase) {
966 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967 +        for (;;) {
968 +            Thread t;
969 +            QNode q = head.get();
970 +            int p = (int)(root.state >>> PHASE_SHIFT);
971 +            if (q == null || ((t = q.thread) != null && q.phase == p))
972 +                return p;
973 +            if (head.compareAndSet(q, q.next) && t != null) {
974 +                q.thread = null;
975 +                LockSupport.unpark(t);
976 +            }
977 +        }
978 +    }
979 +
980      /** The number of CPUs, for spin control */
981      private static final int NCPU = Runtime.getRuntime().availableProcessors();
982  
# Line 973 | Line 1045 | public class Phaser {
1045              if (node.wasInterrupted && !node.interruptible)
1046                  Thread.currentThread().interrupt();
1047              if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 <                return p;                 // recheck abort
1048 >                return abortWait(phase); // possibly clean up on abort
1049          }
1050          releaseWaiters(phase);
1051          return p;
# Line 1044 | Line 1116 | public class Phaser {
1116  
1117      // Unsafe mechanics
1118  
1119 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1120 <    private static final long stateOffset =
1121 <        objectFieldOffset("state", Phaser.class);
1050 <
1051 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1119 >    private static final sun.misc.Unsafe UNSAFE;
1120 >    private static final long stateOffset;
1121 >    static {
1122          try {
1123 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1124 <        } catch (NoSuchFieldException e) {
1125 <            // Convert Exception to corresponding Error
1126 <            NoSuchFieldError error = new NoSuchFieldError(field);
1127 <            error.initCause(e);
1128 <            throw error;
1123 >            UNSAFE = getUnsafe();
1124 >            Class<?> k = Phaser.class;
1125 >            stateOffset = UNSAFE.objectFieldOffset
1126 >                (k.getDeclaredField("state"));
1127 >        } catch (Exception e) {
1128 >            throw new Error(e);
1129          }
1130      }
1131  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines