ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.67 by jsr166, Fri Dec 3 21:29:34 2010 UTC vs.
Revision 1.68 by dl, Sat Dec 4 15:25:08 2010 UTC

# Line 75 | Line 75 | import java.util.concurrent.locks.LockSu
75   * </ul>
76   *
77   * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
81 < * Termination is triggered when an invocation of {@code onAdvance}
82 < * returns {@code true}. The default implementation returns {@code
83 < * true} if a deregistration has caused the number of registered
84 < * parties to become zero.  As illustrated below, when phasers control
85 < * actions with a fixed number of iterations, it is often convenient
86 < * to override this method to cause termination when the current phase
87 < * number reaches a threshold. Method {@link #forceTermination} is
88 < * also available to abruptly release waiting threads and allow them
89 < * to terminate.
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return
81 > * value. Similarly, attempts to register upon termination have no
82 > * effect.  Termination is triggered when an invocation of {@code
83 > * onAdvance} returns {@code true}. The default implementation returns
84 > * {@code true} if a deregistration has caused the number of
85 > * registered parties to become zero.  As illustrated below, when
86 > * phasers control actions with a fixed number of iterations, it is
87 > * often convenient to override this method to cause termination when
88 > * the current phase number reaches a threshold. Method {@link
89 > * #forceTermination} is also available to abruptly release waiting
90 > * threads and allow them to terminate.
91   *
92   * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 277 | Line 288 | public class Phaser {
288      }
289  
290      private static int partiesOf(long s) {
291 <        int counts = (int)s;
281 <        return (counts == EMPTY) ? 0 : counts >>> PARTIES_SHIFT;
291 >        return (int)s >>> PARTIES_SHIFT;
292      }
293  
294      private static int phaseOf(long s) {
# Line 339 | Line 349 | public class Phaser {
349       */
350      private int doArrive(boolean deregister) {
351          int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 <        long s;
353 <        int phase;
354 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
352 >        final Phaser root = this.root;
353 >        for (;;) {
354 >            long s = (root == this) ? state : reconcileState();
355 >            int phase = (int)(s >>> PHASE_SHIFT);
356              int counts = (int)s;
357 <            int unarrived = counts & UNARRIVED_MASK;
358 <            if (counts == EMPTY || unarrived == 0) {
359 <                if (reconcileState() == s)
357 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
358 >            if (phase < 0)
359 >                return phase;
360 >            else if (counts == EMPTY || unarrived < 0) {
361 >                if (root == this || reconcileState() == s)
362                      throw new IllegalStateException(badArrive(s));
363              }
364              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
365 <                if (unarrived == 1) {
366 <                    long n = s & PARTIES_MASK;       // unshifted parties field
367 <                    int u = ((int)n) >>> PARTIES_SHIFT;
368 <                    Phaser par = parent;
369 <                    if (par != null) {
370 <                        par.doArrive(u == 0);
371 <                        reconcileState();
372 <                    }
373 <                    else {
374 <                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
375 <                        if (onAdvance(phase, u))
376 <                            n |= TERMINATION_BIT;
377 <                        else if (u == 0)
378 <                            n |= EMPTY;             // reset to unregistered
366 <                        else
367 <                            n |= (long)u;           // reset unarr to parties
368 <                        // assert state == s || isTerminated();
369 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370 <                        releaseWaiters(phase);
371 <                    }
365 >                if (unarrived == 0) {
366 >                    long n = s & PARTIES_MASK;  // base of next state
367 >                    int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
368 >                    if (root != this)
369 >                        return parent.doArrive(nextUnarrived == 0);
370 >                    if (onAdvance(phase, nextUnarrived))
371 >                        n |= TERMINATION_BIT;
372 >                    else if (nextUnarrived == 0)
373 >                        n |= EMPTY;
374 >                    else
375 >                        n |= nextUnarrived;
376 >                    n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
377 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
378 >                    releaseWaiters(phase);
379                  }
380 <                break;
380 >                return phase;
381              }
382          }
376        return phase;
383      }
384  
385      /**
# Line 490 | Line 496 | public class Phaser {
496  
497      /**
498       * Creates a new phaser with the given parent and number of
499 <     * registered unarrived parties. Registration and deregistration
500 <     * of this child phaser with its parent are managed automatically.
501 <     * If the given parent is non-null, whenever this child phaser has
496 <     * any registered parties (as established in this constructor,
497 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 <     * is registered with its parent. Whenever the number of
499 <     * registered parties becomes zero as the result of an invocation
500 <     * of {@link #arriveAndDeregister}, this child phaser is
501 <     * deregistered from its parent.
499 >     * registered unarrived parties.  When the given parent is non-null
500 >     * and the given number of parties is greater than zero, this
501 >     * child phaser is registered with its parent.
502       *
503       * @param parent the parent phaser
504       * @param parties the number of parties required to advance to the
# Line 512 | Line 512 | public class Phaser {
512          int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515 <            Phaser r = parent.root;
516 <            this.root = r;
517 <            this.evenQ = r.evenQ;
518 <            this.oddQ = r.oddQ;
515 >            final Phaser root = parent.root;
516 >            this.root = root;
517 >            this.evenQ = root.evenQ;
518 >            this.oddQ = root.oddQ;
519              if (parties != 0)
520                  phase = parent.doRegister(1);
521          }
# Line 524 | Line 524 | public class Phaser {
524              this.evenQ = new AtomicReference<QNode>();
525              this.oddQ = new AtomicReference<QNode>();
526          }
527 <        this.state = (parties == 0) ? ((long) EMPTY) :
527 >        this.state = (parties == 0) ? (long) EMPTY :
528              ((((long) phase) << PHASE_SHIFT) |
529               (((long) parties) << PARTIES_SHIFT) |
530               ((long) parties));
# Line 535 | Line 535 | public class Phaser {
535       * invocation of {@link #onAdvance} is in progress, this method
536       * may await its completion before returning.  If this phaser has
537       * a parent, and this phaser previously had no registered parties,
538 <     * this phaser is also registered with its parent.
539 <     *
540 <     * @return the arrival phase number to which this registration applied
538 >     * this child phaser is also registered with its parent. If
539 >     * this phaser is terminated, the attempt to register has
540 >     * no effect, and a negative value is returned.
541 >     *
542 >     * @return the arrival phase number to which this registration
543 >     * applied.  If this value is negative, then this phaser has
544 >     * terminated, in which casem registration has no effect.
545       * @throws IllegalStateException if attempting to register more
546       * than the maximum supported number of parties
547       */
# Line 549 | Line 553 | public class Phaser {
553       * Adds the given number of new unarrived parties to this phaser.
554       * If an ongoing invocation of {@link #onAdvance} is in progress,
555       * this method may await its completion before returning.  If this
556 <     * phaser has a parent, and the given number of parties is
557 <     * greater than zero, and this phaser previously had no registered
558 <     * parties, this phaser is also registered with its parent.
556 >     * phaser has a parent, and the given number of parties is greater
557 >     * than zero, and this phaser previously had no registered
558 >     * parties, this child phaser is also registered with its parent.
559 >     * If this phaser is terminated, the attempt to register has no
560 >     * effect, and a negative value is returned.
561       *
562       * @param parties the number of additional parties required to
563       * advance to the next phase
564 <     * @return the arrival phase number to which this registration applied
564 >     * @return the arrival phase number to which this registration
565 >     * applied.  If this value is negative, then this phaser has
566 >     * terminated, in which casem registration has no effect.
567       * @throws IllegalStateException if attempting to register more
568       * than the maximum supported number of parties
569       * @throws IllegalArgumentException if {@code parties < 0}
# Line 617 | Line 625 | public class Phaser {
625       * IllegalStateException} only upon some subsequent operation on
626       * this phaser, if ever.
627       *
628 <     * @return the arrival phase number, or a negative number if terminated
628 >     * @return the arrival phase number, or the (negative)
629 >     * {@linkplain #getPhase() current phase} if terminated
630       * @throws IllegalStateException if not terminated and the number
631       * of unarrived parties would become negative
632       */
633      public int arriveAndAwaitAdvance() {
634 <        return awaitAdvance(doArrive(false));
634 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
635 >        final Phaser root = this.root;
636 >        for (;;) {
637 >            long s = (root == this) ? state : reconcileState();
638 >            int phase = (int)(s >>> PHASE_SHIFT);
639 >            int counts = (int)s;
640 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
641 >            if (phase < 0)
642 >                return phase;
643 >            else if (counts == EMPTY || unarrived < 0) {
644 >                if (reconcileState() == s)
645 >                    throw new IllegalStateException(badArrive(s));
646 >            }
647 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
648 >                                               s -= ONE_ARRIVAL)) {
649 >                if (unarrived != 0)
650 >                    return root.internalAwaitAdvance(phase, null);
651 >                if (root != this)
652 >                    return parent.arriveAndAwaitAdvance();
653 >                long n = s & PARTIES_MASK;  // base of next state
654 >                int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
655 >                if (onAdvance(phase, nextUnarrived))
656 >                    n |= TERMINATION_BIT;
657 >                else if (nextUnarrived == 0)
658 >                    n |= EMPTY;
659 >                else
660 >                    n |= nextUnarrived;
661 >                int nextPhase = (phase + 1) & MAX_PHASE;
662 >                n |= (long)nextPhase << PHASE_SHIFT;
663 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
664 >                    return (int)(state >>> PHASE_SHIFT); // terminated
665 >                releaseWaiters(phase);
666 >                return nextPhase;
667 >            }
668 >        }
669      }
670  
671      /**
# Line 633 | Line 676 | public class Phaser {
676       * @param phase an arrival phase number, or negative value if
677       * terminated; this argument is normally the value returned by a
678       * previous call to {@code arrive} or {@code arriveAndDeregister}.
679 <     * @return the next arrival phase number, or a negative value
680 <     * if terminated or argument is negative
679 >     * @return the next arrival phase number, or the argument if it is
680 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
681 >     * if terminated
682       */
683      public int awaitAdvance(int phase) {
684 <        Phaser rt;
685 <        int p = (int)(state >>> PHASE_SHIFT);
684 >        final Phaser root = this.root;
685 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
686          if (phase < 0)
687              return phase;
688 <        if (p == phase) {
689 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 <                return rt.internalAwaitAdvance(phase, null);
647 <            reconcileState();
648 <        }
688 >        if (p == phase)
689 >            return root.internalAwaitAdvance(phase, null);
690          return p;
691      }
692  
# Line 659 | Line 700 | public class Phaser {
700       * @param phase an arrival phase number, or negative value if
701       * terminated; this argument is normally the value returned by a
702       * previous call to {@code arrive} or {@code arriveAndDeregister}.
703 <     * @return the next arrival phase number, or a negative value
704 <     * if terminated or argument is negative
703 >     * @return the next arrival phase number, or the argument if it is
704 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
705 >     * if terminated
706       * @throws InterruptedException if thread interrupted while waiting
707       */
708      public int awaitAdvanceInterruptibly(int phase)
709          throws InterruptedException {
710 <        Phaser rt;
711 <        int p = (int)(state >>> PHASE_SHIFT);
710 >        final Phaser root = this.root;
711 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
712          if (phase < 0)
713              return phase;
714          if (p == phase) {
715 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
716 <                QNode node = new QNode(this, phase, true, false, 0L);
717 <                p = rt.internalAwaitAdvance(phase, node);
718 <                if (node.wasInterrupted)
677 <                    throw new InterruptedException();
678 <            }
679 <            else
680 <                reconcileState();
715 >            QNode node = new QNode(this, phase, true, false, 0L);
716 >            p = root.internalAwaitAdvance(phase, node);
717 >            if (node.wasInterrupted)
718 >                throw new InterruptedException();
719          }
720          return p;
721      }
# Line 696 | Line 734 | public class Phaser {
734       *        {@code unit}
735       * @param unit a {@code TimeUnit} determining how to interpret the
736       *        {@code timeout} parameter
737 <     * @return the next arrival phase number, or a negative value
738 <     * if terminated or argument is negative
737 >     * @return the next arrival phase number, or the argument if it is
738 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
739 >     * if terminated
740       * @throws InterruptedException if thread interrupted while waiting
741       * @throws TimeoutException if timed out while waiting
742       */
# Line 705 | Line 744 | public class Phaser {
744                                           long timeout, TimeUnit unit)
745          throws InterruptedException, TimeoutException {
746          long nanos = unit.toNanos(timeout);
747 <        Phaser rt;
748 <        int p = (int)(state >>> PHASE_SHIFT);
747 >        final Phaser root = this.root;
748 >        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
749          if (phase < 0)
750              return phase;
751          if (p == phase) {
752 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
753 <                QNode node = new QNode(this, phase, true, true, nanos);
754 <                p = rt.internalAwaitAdvance(phase, node);
755 <                if (node.wasInterrupted)
756 <                    throw new InterruptedException();
757 <                else if (p == phase)
719 <                    throw new TimeoutException();
720 <            }
721 <            else
722 <                reconcileState();
752 >            QNode node = new QNode(this, phase, true, true, nanos);
753 >            p = root.internalAwaitAdvance(phase, node);
754 >            if (node.wasInterrupted)
755 >                throw new InterruptedException();
756 >            else if (p == phase)
757 >                throw new TimeoutException();
758          }
759          return p;
760      }
# Line 738 | Line 773 | public class Phaser {
773          final Phaser root = this.root;
774          long s;
775          while ((s = root.state) >= 0) {
776 <            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
776 >            long next = (s & ~((long)UNARRIVED_MASK)) | TERMINATION_BIT;
777              if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
778 <                releaseWaiters(0); // signal all threads
778 >                // signal all threads
779 >                releaseWaiters(0);
780                  releaseWaiters(1);
781                  return;
782              }
# Line 891 | Line 927 | public class Phaser {
927       */
928      private void releaseWaiters(int phase) {
929          QNode q;   // first element of queue
894        int p;     // its phase
930          Thread t;  // its thread
896        //        assert phase != phaseOf(root.state);
931          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
932          while ((q = head.get()) != null &&
933                 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
# Line 905 | Line 939 | public class Phaser {
939          }
940      }
941  
942 +    /**
943 +     * Variant of releaseWaiters that additionally tries to remove any
944 +     * nodes no longer waiting for advance due to timeout or
945 +     * interrupt. Currently, nodes are removed only if they are at
946 +     * head of queue, which suffices to reduce memory footprint in
947 +     * most usages.
948 +     *
949 +     * @return current phase on exit
950 +     */
951 +    private int abortWait(int phase) {
952 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
953 +        for (;;) {
954 +            Thread t;
955 +            QNode q = head.get();
956 +            int p = (int)(root.state >>> PHASE_SHIFT);
957 +            if (q == null || ((t = q.thread) != null && q.phase == p))
958 +                return p;
959 +            if (head.compareAndSet(q, q.next) && t != null) {
960 +                q.thread = null;
961 +                LockSupport.unpark(t);
962 +            }
963 +        }
964 +    }
965 +
966      /** The number of CPUs, for spin control */
967      private static final int NCPU = Runtime.getRuntime().availableProcessors();
968  
# Line 973 | Line 1031 | public class Phaser {
1031              if (node.wasInterrupted && !node.interruptible)
1032                  Thread.currentThread().interrupt();
1033              if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1034 <                return p;                 // recheck abort
1034 >                return abortWait(phase); // possibly clean up on abort
1035          }
1036          releaseWaiters(phase);
1037          return p;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines