ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.27 by dl, Sat Aug 8 19:36:52 2009 UTC vs.
Revision 1.68 by dl, Sat Dec 4 15:25:08 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 < * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 < * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 < * CyclicBarrier.await}.  However, phasers separate two aspects of
39 < * coordination, which may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a phaser and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the phaser advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the phaser. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance, are arranged by overriding method {@link #onAdvance(int,
79 < * int)}, which also controls termination. Overriding this method is
80 < * similar to, but more flexible than, providing a barrier action to a
81 < * {@code CyclicBarrier}.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
84 < * actions immediately return without updating phaser state or waiting
85 < * for advance, and indicating (via a negative phase value) that
86 < * execution is complete.  Termination is triggered when an invocation
63 < * of {@code onAdvance} returns {@code true}.  When a phaser is
64 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return
81 > * value. Similarly, attempts to register upon termination have no
82 > * effect.  Termination is triggered when an invocation of {@code
83 > * onAdvance} returns {@code true}. The default implementation returns
84 > * {@code true} if a deregistration has caused the number of
85 > * registered parties to become zero.  As illustrated below, when
86 > * phasers control actions with a fixed number of iterations, it is
87   * often convenient to override this method to cause termination when
88   * the current phase number reaches a threshold. Method {@link
89   * #forceTermination} is also available to abruptly release waiting
90   * threads and allow them to terminate.
91   *
92 < * <li> Phasers may be tiered to reduce contention. Phasers with large
93 < * numbers of parties that would otherwise experience heavy
94 < * synchronization contention costs may instead be arranged in trees.
95 < * This will typically greatly increase throughput even though it
96 < * incurs somewhat greater per-operation overhead.
97 < *
98 < * <li> By default, {@code awaitAdvance} continues to wait even if
99 < * the waiting thread is interrupted. And unlike the case in
100 < * {@code CyclicBarrier}, exceptions encountered while tasks wait
101 < * interruptibly or with timeout do not change the state of the
102 < * barrier. If necessary, you can perform any associated recovery
103 < * within handlers of those exceptions, often after invoking
104 < * {@code forceTermination}.
105 < *
106 < * <li>Phasers may be used to coordinate tasks executing in a {@link
107 < * ForkJoinPool}, which will ensure sufficient parallelism to execute
108 < * tasks when others are blocked waiting for a phase to advance.
109 < *
110 < * </ul>
92 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 > * constructed in tree structures) to reduce contention. Phasers with
94 > * large numbers of parties that would otherwise experience heavy
95 > * synchronization contention costs may instead be set up so that
96 > * groups of sub-phasers share a common parent.  This may greatly
97 > * increase throughput even though it incurs greater per-operation
98 > * overhead.
99 > *
100 > * <p>In a tree of tiered phasers, registration and deregistration of
101 > * child phasers with their parent are managed automatically.
102 > * Whenever the number of registered parties of a child phaser becomes
103 > * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 > * constructor, {@link #register}, or {@link #bulkRegister}), the
105 > * child phaser is registered with its parent.  Whenever the number of
106 > * registered parties becomes zero as the result of an invocation of
107 > * {@link #arriveAndDeregister}, the child phaser is deregistered
108 > * from its parent.
109 > *
110 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 > * only by registered parties, the current state of a phaser may be
112 > * monitored by any caller.  At any given moment there are {@link
113 > * #getRegisteredParties} parties in total, of which {@link
114 > * #getArrivedParties} have arrived at the current phase ({@link
115 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
116 > * parties arrive, the phase advances.  The values returned by these
117 > * methods may reflect transient states and so are not in general
118 > * useful for synchronization control.  Method {@link #toString}
119 > * returns snapshots of these state queries in a form convenient for
120 > * informal monitoring.
121   *
122   * <p><b>Sample usages:</b>
123   *
124   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 < * to control a one-shot action serving a variable number of
126 < * parties. The typical idiom is for the method setting this up to
127 < * first register, then start the actions, then deregister, as in:
125 > * to control a one-shot action serving a variable number of parties.
126 > * The typical idiom is for the method setting this up to first
127 > * register, then start the actions, then deregister, as in:
128   *
129   *  <pre> {@code
130 < * void runTasks(List<Runnable> list) {
130 > * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable r : list) {
133 > *   for (Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
137   *         phaser.arriveAndAwaitAdvance(); // await all creation
138 < *         r.run();
138 > *         task.run();
139   *       }
140   *     }.start();
141   *   }
# Line 116 | Line 148 | import java.util.concurrent.locks.LockSu
148   * for a given number of iterations is to override {@code onAdvance}:
149   *
150   *  <pre> {@code
151 < * void startTasks(List<Runnable> list, final int iterations) {
151 > * void startTasks(List<Runnable> tasks, final int iterations) {
152   *   final Phaser phaser = new Phaser() {
153 < *     public boolean onAdvance(int phase, int registeredParties) {
153 > *     protected boolean onAdvance(int phase, int registeredParties) {
154   *       return phase >= iterations || registeredParties == 0;
155   *     }
156   *   };
157   *   phaser.register();
158 < *   for (Runnable r : list) {
158 > *   for (final Runnable task : tasks) {
159   *     phaser.register();
160   *     new Thread() {
161   *       public void run() {
162   *         do {
163 < *           r.run();
163 > *           task.run();
164   *           phaser.arriveAndAwaitAdvance();
165 < *         } while(!phaser.isTerminated();
165 > *         } while (!phaser.isTerminated());
166   *       }
167   *     }.start();
168   *   }
169   *   phaser.arriveAndDeregister(); // deregister self, don't wait
170   * }}</pre>
171   *
172 < * <p>To create a set of tasks using a tree of phasers,
173 < * you could use code of the following form, assuming a
174 < * Task class with a constructor accepting a phaser that
175 < * it registers for upon construction:
172 > * If the main task must later await termination, it
173 > * may re-register and then execute a similar loop:
174 > *  <pre> {@code
175 > *   // ...
176 > *   phaser.register();
177 > *   while (!phaser.isTerminated())
178 > *     phaser.arriveAndAwaitAdvance();}</pre>
179 > *
180 > * <p>Related constructions may be used to await particular phase numbers
181 > * in contexts where you are sure that the phase will never wrap around
182 > * {@code Integer.MAX_VALUE}. For example:
183 > *
184 > *  <pre> {@code
185 > * void awaitPhase(Phaser phaser, int phase) {
186 > *   int p = phaser.register(); // assumes caller not already registered
187 > *   while (p < phase) {
188 > *     if (phaser.isTerminated())
189 > *       // ... deal with unexpected termination
190 > *     else
191 > *       p = phaser.arriveAndAwaitAdvance();
192 > *   }
193 > *   phaser.arriveAndDeregister();
194 > * }}</pre>
195 > *
196 > *
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203 > *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser b) {
206 < *   int step = (hi - lo) / TASKS_PER_PHASER;
207 < *   if (step > 1) {
208 < *     int i = lo;
209 < *     while (i < hi) {
150 < *       int r = Math.min(i + step, hi);
151 < *       build(actions, i, r, new Phaser(b));
152 < *       i = r;
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 > *   if (hi - lo > TASKS_PER_PHASER) {
207 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(b);
214 < *       // assumes new Task(b) performs b.register()
213 > *       tasks[i] = new Task(ph);
214 > *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
160 < * // .. initially called, for n tasks via
161 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
168 * </pre>
169 *
223   * <p><b>Implementation notes</b>: This implementation restricts the
224   * maximum number of parties to 65535. Attempts to register additional
225 < * parties result in IllegalStateExceptions. However, you can and
225 > * parties result in {@code IllegalStateException}. However, you can and
226   * should create tiered phasers to accommodate arbitrarily large sets
227   * of participants.
228   *
# Line 184 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
188 <     * four values:
240 >     * Primary state representation, holding four fields:
241       *
242 <     * * parties -- the number of parties to wait (16 bits)
243 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
244 <     * * phase -- the generation of the barrier (31 bits)
245 <     * * terminated -- set if barrier is terminated (1 bit)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
252 <     *
253 <     * Note: there are some cheats in arrive() that rely on unarrived
254 <     * count being lowest 16 bits.
242 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 >     * * parties -- the number of parties to wait              (bits 16-31)
244 >     * * phase -- the generation of the barrier                (bits 32-62)
245 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished with the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed.  Method reconcileState
264 >     * is usually attempted only only when the number of unarrived
265 >     * parties appears to be zero, which indicates a potential lag in
266 >     * updating phase after the root advanced.
267       */
268      private volatile long state;
269  
270 <    private static final int ushortBits = 16;
271 <    private static final int ushortMask = 0xffff;
272 <    private static final int phaseMask  = 0x7fffffff;
270 >    private static final int  MAX_PARTIES     = 0xffff;
271 >    private static final int  MAX_PHASE       = 0x7fffffff;
272 >    private static final int  PARTIES_SHIFT   = 16;
273 >    private static final int  PHASE_SHIFT     = 32;
274 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
275 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
276 >    private static final long TERMINATION_BIT = 1L << 63;
277 >
278 >    // some special values
279 >    private static final int  ONE_ARRIVAL     = 1;
280 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
281 >    private static final int  EMPTY           = 1;
282 >
283 >    // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286 <        return (int) (s & ushortMask);
286 >        int counts = (int)s;
287 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
288      }
289  
290      private static int partiesOf(long s) {
291 <        return ((int) s) >>> 16;
291 >        return (int)s >>> PARTIES_SHIFT;
292      }
293  
294      private static int phaseOf(long s) {
295 <        return (int) (s >>> 32);
295 >        return (int) (s >>> PHASE_SHIFT);
296      }
297  
298      private static int arrivedOf(long s) {
299 <        return partiesOf(s) - unarrivedOf(s);
300 <    }
301 <
226 <    private static long stateFor(int phase, int parties, int unarrived) {
227 <        return ((((long) phase) << 32) | (((long) parties) << 16) |
228 <                (long) unarrived);
229 <    }
230 <
231 <    private static long trippedStateFor(int phase, int parties) {
232 <        long lp = (long) parties;
233 <        return (((long) phase) << 32) | (lp << 16) | lp;
234 <    }
235 <
236 <    /**
237 <     * Returns message string for bad bounds exceptions.
238 <     */
239 <    private static String badBounds(int parties, int unarrived) {
240 <        return ("Attempt to set " + unarrived +
241 <                " unarrived of " + parties + " parties");
299 >        int counts = (int)s;
300 >        return (counts == EMPTY) ? 0 :
301 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302      }
303  
304      /**
# Line 247 | Line 307 | public class Phaser {
307      private final Phaser parent;
308  
309      /**
310 <     * The root of phaser tree. Equals this if not in a tree.  Used to
251 <     * support faster state push-down.
310 >     * The root of phaser tree. Equals this if not in a tree.
311       */
312      private final Phaser root;
313  
255    // Wait queues
256
314      /**
315       * Heads of Treiber stacks for waiting threads. To eliminate
316 <     * contention while releasing some threads while adding others, we
316 >     * contention when releasing some threads while adding others, we
317       * use two of them, alternating across even and odd phases.
318 +     * Subphasers share queues with root to speed up releases.
319       */
320 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
321 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
320 >    private final AtomicReference<QNode> evenQ;
321 >    private final AtomicReference<QNode> oddQ;
322  
323      private AtomicReference<QNode> queueFor(int phase) {
324          return ((phase & 1) == 0) ? evenQ : oddQ;
325      }
326  
327      /**
328 <     * Returns current state, first resolving lagged propagation from
271 <     * root if necessary.
328 >     * Returns message string for bounds exceptions on arrival.
329       */
330 <    private long getReconciledState() {
331 <        return (parent == null) ? state : reconcileState();
330 >    private String badArrive(long s) {
331 >        return "Attempted arrival of unregistered party for " +
332 >            stateToString(s);
333 >    }
334 >
335 >    /**
336 >     * Returns message string for bounds exceptions on registration.
337 >     */
338 >    private String badRegister(long s) {
339 >        return "Attempt to register more than " +
340 >            MAX_PARTIES + " parties for " + stateToString(s);
341 >    }
342 >
343 >    /**
344 >     * Main implementation for methods arrive and arriveAndDeregister.
345 >     * Manually tuned to speed up and minimize race windows for the
346 >     * common case of just decrementing unarrived field.
347 >     *
348 >     * @param deregister false for arrive, true for arriveAndDeregister
349 >     */
350 >    private int doArrive(boolean deregister) {
351 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 >        final Phaser root = this.root;
353 >        for (;;) {
354 >            long s = (root == this) ? state : reconcileState();
355 >            int phase = (int)(s >>> PHASE_SHIFT);
356 >            int counts = (int)s;
357 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
358 >            if (phase < 0)
359 >                return phase;
360 >            else if (counts == EMPTY || unarrived < 0) {
361 >                if (root == this || reconcileState() == s)
362 >                    throw new IllegalStateException(badArrive(s));
363 >            }
364 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
365 >                if (unarrived == 0) {
366 >                    long n = s & PARTIES_MASK;  // base of next state
367 >                    int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
368 >                    if (root != this)
369 >                        return parent.doArrive(nextUnarrived == 0);
370 >                    if (onAdvance(phase, nextUnarrived))
371 >                        n |= TERMINATION_BIT;
372 >                    else if (nextUnarrived == 0)
373 >                        n |= EMPTY;
374 >                    else
375 >                        n |= nextUnarrived;
376 >                    n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
377 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
378 >                    releaseWaiters(phase);
379 >                }
380 >                return phase;
381 >            }
382 >        }
383 >    }
384 >
385 >    /**
386 >     * Implementation of register, bulkRegister
387 >     *
388 >     * @param registrations number to add to both parties and
389 >     * unarrived fields. Must be greater than zero.
390 >     */
391 >    private int doRegister(int registrations) {
392 >        // adjustment to state
393 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
394 >        Phaser par = parent;
395 >        int phase;
396 >        for (;;) {
397 >            long s = state;
398 >            int counts = (int)s;
399 >            int parties = counts >>> PARTIES_SHIFT;
400 >            int unarrived = counts & UNARRIVED_MASK;
401 >            if (registrations > MAX_PARTIES - parties)
402 >                throw new IllegalStateException(badRegister(s));
403 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
404 >                break;
405 >            else if (counts != EMPTY) {             // not 1st registration
406 >                if (par == null || reconcileState() == s) {
407 >                    if (unarrived == 0)             // wait out advance
408 >                        root.internalAwaitAdvance(phase, null);
409 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
410 >                                                       s, s + adj))
411 >                        break;
412 >                }
413 >            }
414 >            else if (par == null) {                 // 1st root registration
415 >                long next = (((long) phase) << PHASE_SHIFT) | adj;
416 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
417 >                    break;
418 >            }
419 >            else {
420 >                synchronized (this) {               // 1st sub registration
421 >                    if (state == s) {               // recheck under lock
422 >                        par.doRegister(1);
423 >                        do {                        // force current phase
424 >                            phase = (int)(root.state >>> PHASE_SHIFT);
425 >                            // assert phase < 0 || (int)state == EMPTY;
426 >                        } while (!UNSAFE.compareAndSwapLong
427 >                                 (this, stateOffset, state,
428 >                                  (((long) phase) << PHASE_SHIFT) | adj));
429 >                        break;
430 >                    }
431 >                }
432 >            }
433 >        }
434 >        return phase;
435      }
436  
437      /**
438 <     * Recursively resolves state.
438 >     * Resolves lagged phase propagation from root if necessary.
439       */
440      private long reconcileState() {
441 <        Phaser p = parent;
441 >        Phaser rt = root;
442          long s = state;
443 <        if (p != null) {
444 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
445 <                long parentState = p.getReconciledState();
446 <                int parentPhase = phaseOf(parentState);
447 <                int phase = phaseOf(s = state);
448 <                if (phase != parentPhase) {
449 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
450 <                    if (casState(s, next)) {
451 <                        releaseWaiters(phase);
452 <                        s = next;
453 <                    }
443 >        if (rt != this) {
444 >            int phase;
445 >            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
446 >                   (int)(s >>> PHASE_SHIFT)) {
447 >                // assert phase < 0 || unarrivedOf(s) == 0
448 >                long t;                             // to reread s
449 >                long p = s & PARTIES_MASK;          // unshifted parties field
450 >                long n = (((long) phase) << PHASE_SHIFT) | p;
451 >                if (phase >= 0) {
452 >                    if (p == 0L)
453 >                        n |= EMPTY;                 // reset to empty
454 >                    else
455 >                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
456                  }
457 +                if ((t = state) == s &&
458 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
459 +                    break;
460 +                s = t;
461              }
462          }
463          return s;
464      }
465  
466      /**
467 <     * Creates a new phaser without any initially registered parties,
468 <     * initial phase number 0, and no parent. Any thread using this
467 >     * Creates a new phaser with no initially registered parties, no
468 >     * parent, and initial phase number 0. Any thread using this
469       * phaser will need to first register for it.
470       */
471      public Phaser() {
472 <        this(null);
472 >        this(null, 0);
473      }
474  
475      /**
476 <     * Creates a new phaser with the given numbers of registered
477 <     * unarrived parties, initial phase number 0, and no parent.
476 >     * Creates a new phaser with the given number of registered
477 >     * unarrived parties, no parent, and initial phase number 0.
478       *
479 <     * @param parties the number of parties required to trip barrier
479 >     * @param parties the number of parties required to advance to the
480 >     * next phase
481       * @throws IllegalArgumentException if parties less than zero
482       * or greater than the maximum number of parties supported
483       */
# Line 319 | Line 486 | public class Phaser {
486      }
487  
488      /**
489 <     * Creates a new phaser with the given parent, without any
323 <     * initially registered parties. If parent is non-null this phaser
324 <     * is registered with the parent and its initial phase number is
325 <     * the same as that of parent phaser.
489 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
490       *
491       * @param parent the parent phaser
492       */
493      public Phaser(Phaser parent) {
494 <        int phase = 0;
331 <        this.parent = parent;
332 <        if (parent != null) {
333 <            this.root = parent.root;
334 <            phase = parent.register();
335 <        }
336 <        else
337 <            this.root = this;
338 <        this.state = trippedStateFor(phase, 0);
494 >        this(parent, 0);
495      }
496  
497      /**
498 <     * Creates a new phaser with the given parent and numbers of
499 <     * registered unarrived parties. If parent is non-null, this phaser
500 <     * is registered with the parent and its initial phase number is
501 <     * the same as that of parent phaser.
498 >     * Creates a new phaser with the given parent and number of
499 >     * registered unarrived parties.  When the given parent is non-null
500 >     * and the given number of parties is greater than zero, this
501 >     * child phaser is registered with its parent.
502       *
503       * @param parent the parent phaser
504 <     * @param parties the number of parties required to trip barrier
504 >     * @param parties the number of parties required to advance to the
505 >     * next phase
506       * @throws IllegalArgumentException if parties less than zero
507       * or greater than the maximum number of parties supported
508       */
509      public Phaser(Phaser parent, int parties) {
510 <        if (parties < 0 || parties > ushortMask)
510 >        if (parties >>> PARTIES_SHIFT != 0)
511              throw new IllegalArgumentException("Illegal number of parties");
512          int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515 <            this.root = parent.root;
516 <            phase = parent.register();
515 >            final Phaser root = parent.root;
516 >            this.root = root;
517 >            this.evenQ = root.evenQ;
518 >            this.oddQ = root.oddQ;
519 >            if (parties != 0)
520 >                phase = parent.doRegister(1);
521          }
522 <        else
522 >        else {
523              this.root = this;
524 <        this.state = trippedStateFor(phase, parties);
524 >            this.evenQ = new AtomicReference<QNode>();
525 >            this.oddQ = new AtomicReference<QNode>();
526 >        }
527 >        this.state = (parties == 0) ? (long) EMPTY :
528 >            ((((long) phase) << PHASE_SHIFT) |
529 >             (((long) parties) << PARTIES_SHIFT) |
530 >             ((long) parties));
531      }
532  
533      /**
534 <     * Adds a new unarrived party to this phaser.
535 <     *
536 <     * @return the current barrier phase number upon registration
534 >     * Adds a new unarrived party to this phaser.  If an ongoing
535 >     * invocation of {@link #onAdvance} is in progress, this method
536 >     * may await its completion before returning.  If this phaser has
537 >     * a parent, and this phaser previously had no registered parties,
538 >     * this child phaser is also registered with its parent. If
539 >     * this phaser is terminated, the attempt to register has
540 >     * no effect, and a negative value is returned.
541 >     *
542 >     * @return the arrival phase number to which this registration
543 >     * applied.  If this value is negative, then this phaser has
544 >     * terminated, in which casem registration has no effect.
545       * @throws IllegalStateException if attempting to register more
546       * than the maximum supported number of parties
547       */
# Line 376 | Line 551 | public class Phaser {
551  
552      /**
553       * Adds the given number of new unarrived parties to this phaser.
554 <     *
555 <     * @param parties the number of parties required to trip barrier
556 <     * @return the current barrier phase number upon registration
554 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
555 >     * this method may await its completion before returning.  If this
556 >     * phaser has a parent, and the given number of parties is greater
557 >     * than zero, and this phaser previously had no registered
558 >     * parties, this child phaser is also registered with its parent.
559 >     * If this phaser is terminated, the attempt to register has no
560 >     * effect, and a negative value is returned.
561 >     *
562 >     * @param parties the number of additional parties required to
563 >     * advance to the next phase
564 >     * @return the arrival phase number to which this registration
565 >     * applied.  If this value is negative, then this phaser has
566 >     * terminated, in which casem registration has no effect.
567       * @throws IllegalStateException if attempting to register more
568       * than the maximum supported number of parties
569 +     * @throws IllegalArgumentException if {@code parties < 0}
570       */
571      public int bulkRegister(int parties) {
572          if (parties < 0)
# Line 391 | Line 577 | public class Phaser {
577      }
578  
579      /**
580 <     * Shared code for register, bulkRegister
581 <     */
582 <    private int doRegister(int registrations) {
583 <        int phase;
584 <        for (;;) {
585 <            long s = getReconciledState();
400 <            phase = phaseOf(s);
401 <            int unarrived = unarrivedOf(s) + registrations;
402 <            int parties = partiesOf(s) + registrations;
403 <            if (phase < 0)
404 <                break;
405 <            if (parties > ushortMask || unarrived > ushortMask)
406 <                throw new IllegalStateException(badBounds(parties, unarrived));
407 <            if (phase == phaseOf(root.state) &&
408 <                casState(s, stateFor(phase, parties, unarrived)))
409 <                break;
410 <        }
411 <        return phase;
412 <    }
413 <
414 <    /**
415 <     * Arrives at the barrier, but does not wait for others.  (You can
416 <     * in turn wait for others via {@link #awaitAdvance}).
580 >     * Arrives at this phaser, without waiting for others to arrive.
581 >     *
582 >     * <p>It is a usage error for an unregistered party to invoke this
583 >     * method.  However, this error may result in an {@code
584 >     * IllegalStateException} only upon some subsequent operation on
585 >     * this phaser, if ever.
586       *
587 <     * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated
587 >     * @return the arrival phase number, or a negative value if terminated
588       * @throws IllegalStateException if not terminated and the number
589       * of unarrived parties would become negative
590       */
591      public int arrive() {
592 <        int phase;
425 <        for (;;) {
426 <            long s = state;
427 <            phase = phaseOf(s);
428 <            if (phase < 0)
429 <                break;
430 <            int parties = partiesOf(s);
431 <            int unarrived = unarrivedOf(s) - 1;
432 <            if (unarrived > 0) {        // Not the last arrival
433 <                if (casState(s, s - 1)) // s-1 adds one arrival
434 <                    break;
435 <            }
436 <            else if (unarrived == 0) {  // the last arrival
437 <                Phaser par = parent;
438 <                if (par == null) {      // directly trip
439 <                    if (casState
440 <                        (s,
441 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442 <                                         ((phase + 1) & phaseMask), parties))) {
443 <                        releaseWaiters(phase);
444 <                        break;
445 <                    }
446 <                }
447 <                else {                  // cascade to parent
448 <                    if (casState(s, s - 1)) { // zeroes unarrived
449 <                        par.arrive();
450 <                        reconcileState();
451 <                        break;
452 <                    }
453 <                }
454 <            }
455 <            else if (phase != phaseOf(root.state)) // or if unreconciled
456 <                reconcileState();
457 <            else
458 <                throw new IllegalStateException(badBounds(parties, unarrived));
459 <        }
460 <        return phase;
592 >        return doArrive(false);
593      }
594  
595      /**
596 <     * Arrives at the barrier and deregisters from it without waiting
597 <     * for others. Deregistration reduces the number of parties
598 <     * required to trip the barrier in future phases.  If this phaser
596 >     * Arrives at this phaser and deregisters from it without waiting
597 >     * for others to arrive. Deregistration reduces the number of
598 >     * parties required to advance in future phases.  If this phaser
599       * has a parent, and deregistration causes this phaser to have
600 <     * zero parties, this phaser also arrives at and is deregistered
469 <     * from its parent.
600 >     * zero parties, this phaser is also deregistered from its parent.
601       *
602 <     * @return the current barrier phase number upon entry to
603 <     * this method, or a negative value if terminated
602 >     * <p>It is a usage error for an unregistered party to invoke this
603 >     * method.  However, this error may result in an {@code
604 >     * IllegalStateException} only upon some subsequent operation on
605 >     * this phaser, if ever.
606 >     *
607 >     * @return the arrival phase number, or a negative value if terminated
608       * @throws IllegalStateException if not terminated and the number
609       * of registered or unarrived parties would become negative
610       */
611      public int arriveAndDeregister() {
612 <        // similar code to arrive, but too different to merge
478 <        Phaser par = parent;
479 <        int phase;
480 <        for (;;) {
481 <            long s = state;
482 <            phase = phaseOf(s);
483 <            if (phase < 0)
484 <                break;
485 <            int parties = partiesOf(s) - 1;
486 <            int unarrived = unarrivedOf(s) - 1;
487 <            if (parties >= 0) {
488 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 <                    if (casState
490 <                        (s,
491 <                         stateFor(phase, parties, unarrived))) {
492 <                        if (unarrived == 0) {
493 <                            par.arriveAndDeregister();
494 <                            reconcileState();
495 <                        }
496 <                        break;
497 <                    }
498 <                    continue;
499 <                }
500 <                if (unarrived == 0) {
501 <                    if (casState
502 <                        (s,
503 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504 <                                         ((phase + 1) & phaseMask), parties))) {
505 <                        releaseWaiters(phase);
506 <                        break;
507 <                    }
508 <                    continue;
509 <                }
510 <                if (par != null && phase != phaseOf(root.state)) {
511 <                    reconcileState();
512 <                    continue;
513 <                }
514 <            }
515 <            throw new IllegalStateException(badBounds(parties, unarrived));
516 <        }
517 <        return phase;
612 >        return doArrive(true);
613      }
614  
615      /**
616 <     * Arrives at the barrier and awaits others. Equivalent in effect
616 >     * Arrives at this phaser and awaits others. Equivalent in effect
617       * to {@code awaitAdvance(arrive())}.  If you need to await with
618       * interruption or timeout, you can arrange this with an analogous
619 <     * construction using one of the other forms of the awaitAdvance
620 <     * method.  If instead you need to deregister upon arrival use
621 <     * {@code arriveAndDeregister}.
619 >     * construction using one of the other forms of the {@code
620 >     * awaitAdvance} method.  If instead you need to deregister upon
621 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
622 >     *
623 >     * <p>It is a usage error for an unregistered party to invoke this
624 >     * method.  However, this error may result in an {@code
625 >     * IllegalStateException} only upon some subsequent operation on
626 >     * this phaser, if ever.
627       *
628 <     * @return the phase on entry to this method
628 >     * @return the arrival phase number, or the (negative)
629 >     * {@linkplain #getPhase() current phase} if terminated
630       * @throws IllegalStateException if not terminated and the number
631       * of unarrived parties would become negative
632       */
633      public int arriveAndAwaitAdvance() {
634 <        return awaitAdvance(arrive());
634 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
635 >        final Phaser root = this.root;
636 >        for (;;) {
637 >            long s = (root == this) ? state : reconcileState();
638 >            int phase = (int)(s >>> PHASE_SHIFT);
639 >            int counts = (int)s;
640 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
641 >            if (phase < 0)
642 >                return phase;
643 >            else if (counts == EMPTY || unarrived < 0) {
644 >                if (reconcileState() == s)
645 >                    throw new IllegalStateException(badArrive(s));
646 >            }
647 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
648 >                                               s -= ONE_ARRIVAL)) {
649 >                if (unarrived != 0)
650 >                    return root.internalAwaitAdvance(phase, null);
651 >                if (root != this)
652 >                    return parent.arriveAndAwaitAdvance();
653 >                long n = s & PARTIES_MASK;  // base of next state
654 >                int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
655 >                if (onAdvance(phase, nextUnarrived))
656 >                    n |= TERMINATION_BIT;
657 >                else if (nextUnarrived == 0)
658 >                    n |= EMPTY;
659 >                else
660 >                    n |= nextUnarrived;
661 >                int nextPhase = (phase + 1) & MAX_PHASE;
662 >                n |= (long)nextPhase << PHASE_SHIFT;
663 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
664 >                    return (int)(state >>> PHASE_SHIFT); // terminated
665 >                releaseWaiters(phase);
666 >                return nextPhase;
667 >            }
668 >        }
669      }
670  
671      /**
672 <     * Awaits the phase of the barrier to advance from the given phase
673 <     * value, or returns immediately if current phase of the barrier
674 <     * is not equal to the given phase value or this barrier is
675 <     * terminated.
676 <     *
677 <     * @param phase the phase on entry to this method
678 <     * @return the phase on exit from this method
672 >     * Awaits the phase of this phaser to advance from the given phase
673 >     * value, returning immediately if the current phase is not equal
674 >     * to the given phase value or this phaser is terminated.
675 >     *
676 >     * @param phase an arrival phase number, or negative value if
677 >     * terminated; this argument is normally the value returned by a
678 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
679 >     * @return the next arrival phase number, or the argument if it is
680 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
681 >     * if terminated
682       */
683      public int awaitAdvance(int phase) {
684 +        final Phaser root = this.root;
685 +        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
686          if (phase < 0)
687              return phase;
688 <        long s = getReconciledState();
689 <        int p = phaseOf(s);
690 <        if (p != phase)
551 <            return p;
552 <        if (unarrivedOf(s) == 0 && parent != null)
553 <            parent.awaitAdvance(phase);
554 <        // Fall here even if parent waited, to reconcile and help release
555 <        return untimedWait(phase);
688 >        if (p == phase)
689 >            return root.internalAwaitAdvance(phase, null);
690 >        return p;
691      }
692  
693      /**
694 <     * Awaits the phase of the barrier to advance from the given
695 <     * value, or returns immediately if argument is negative or this
696 <     * barrier is terminated, or throws InterruptedException if
697 <     * interrupted while waiting.
694 >     * Awaits the phase of this phaser to advance from the given phase
695 >     * value, throwing {@code InterruptedException} if interrupted
696 >     * while waiting, or returning immediately if the current phase is
697 >     * not equal to the given phase value or this phaser is
698 >     * terminated.
699       *
700 <     * @param phase the phase on entry to this method
701 <     * @return the phase on exit from this method
700 >     * @param phase an arrival phase number, or negative value if
701 >     * terminated; this argument is normally the value returned by a
702 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
703 >     * @return the next arrival phase number, or the argument if it is
704 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
705 >     * if terminated
706       * @throws InterruptedException if thread interrupted while waiting
707       */
708      public int awaitAdvanceInterruptibly(int phase)
709          throws InterruptedException {
710 +        final Phaser root = this.root;
711 +        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
712          if (phase < 0)
713              return phase;
714 <        long s = getReconciledState();
715 <        int p = phaseOf(s);
716 <        if (p != phase)
717 <            return p;
718 <        if (unarrivedOf(s) == 0 && parent != null)
719 <            parent.awaitAdvanceInterruptibly(phase);
720 <        return interruptibleWait(phase);
714 >        if (p == phase) {
715 >            QNode node = new QNode(this, phase, true, false, 0L);
716 >            p = root.internalAwaitAdvance(phase, node);
717 >            if (node.wasInterrupted)
718 >                throw new InterruptedException();
719 >        }
720 >        return p;
721      }
722  
723      /**
724 <     * Awaits the phase of the barrier to advance from the given value
725 <     * or the given timeout elapses, or returns immediately if
726 <     * argument is negative or this barrier is terminated.
727 <     *
728 <     * @param phase the phase on entry to this method
729 <     * @return the phase on exit from this method
724 >     * Awaits the phase of this phaser to advance from the given phase
725 >     * value or the given timeout to elapse, throwing {@code
726 >     * InterruptedException} if interrupted while waiting, or
727 >     * returning immediately if the current phase is not equal to the
728 >     * given phase value or this phaser is terminated.
729 >     *
730 >     * @param phase an arrival phase number, or negative value if
731 >     * terminated; this argument is normally the value returned by a
732 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
733 >     * @param timeout how long to wait before giving up, in units of
734 >     *        {@code unit}
735 >     * @param unit a {@code TimeUnit} determining how to interpret the
736 >     *        {@code timeout} parameter
737 >     * @return the next arrival phase number, or the argument if it is
738 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
739 >     * if terminated
740       * @throws InterruptedException if thread interrupted while waiting
741       * @throws TimeoutException if timed out while waiting
742       */
743      public int awaitAdvanceInterruptibly(int phase,
744                                           long timeout, TimeUnit unit)
745          throws InterruptedException, TimeoutException {
746 +        long nanos = unit.toNanos(timeout);
747 +        final Phaser root = this.root;
748 +        int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
749          if (phase < 0)
750              return phase;
751 <        long s = getReconciledState();
752 <        int p = phaseOf(s);
753 <        if (p != phase)
754 <            return p;
755 <        if (unarrivedOf(s) == 0 && parent != null)
756 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
757 <        return timedWait(phase, unit.toNanos(timeout));
751 >        if (p == phase) {
752 >            QNode node = new QNode(this, phase, true, true, nanos);
753 >            p = root.internalAwaitAdvance(phase, node);
754 >            if (node.wasInterrupted)
755 >                throw new InterruptedException();
756 >            else if (p == phase)
757 >                throw new TimeoutException();
758 >        }
759 >        return p;
760      }
761  
762      /**
763 <     * Forces this barrier to enter termination state. Counts of
764 <     * arrived and registered parties are unaffected. If this phaser
765 <     * has a parent, it too is terminated. This method may be useful
766 <     * for coordinating recovery after one or more tasks encounter
763 >     * Forces this phaser to enter termination state.  Counts of
764 >     * registered parties are unaffected.  If this phaser is a member
765 >     * of a tiered set of phasers, then all of the phasers in the set
766 >     * are terminated.  If this phaser is already terminated, this
767 >     * method has no effect.  This method may be useful for
768 >     * coordinating recovery after one or more tasks encounter
769       * unexpected exceptions.
770       */
771      public void forceTermination() {
772 <        for (;;) {
773 <            long s = getReconciledState();
774 <            int phase = phaseOf(s);
775 <            int parties = partiesOf(s);
776 <            int unarrived = unarrivedOf(s);
777 <            if (phase < 0 ||
778 <                casState(s, stateFor(-1, parties, unarrived))) {
772 >        // Only need to change root state
773 >        final Phaser root = this.root;
774 >        long s;
775 >        while ((s = root.state) >= 0) {
776 >            long next = (s & ~((long)UNARRIVED_MASK)) | TERMINATION_BIT;
777 >            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
778 >                // signal all threads
779                  releaseWaiters(0);
780                  releaseWaiters(1);
622                if (parent != null)
623                    parent.forceTermination();
781                  return;
782              }
783          }
# Line 629 | Line 786 | public class Phaser {
786      /**
787       * Returns the current phase number. The maximum phase number is
788       * {@code Integer.MAX_VALUE}, after which it restarts at
789 <     * zero. Upon termination, the phase number is negative.
789 >     * zero. Upon termination, the phase number is negative,
790 >     * in which case the prevailing phase prior to termination
791 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
792       *
793       * @return the phase number, or a negative value if terminated
794       */
795      public final int getPhase() {
796 <        return phaseOf(getReconciledState());
796 >        return (int)(root.state >>> PHASE_SHIFT);
797      }
798  
799      /**
800 <     * Returns the number of parties registered at this barrier.
800 >     * Returns the number of parties registered at this phaser.
801       *
802       * @return the number of parties
803       */
# Line 647 | Line 806 | public class Phaser {
806      }
807  
808      /**
809 <     * Returns the number of parties that have arrived at the current
810 <     * phase of this barrier.
809 >     * Returns the number of registered parties that have arrived at
810 >     * the current phase of this phaser.
811       *
812       * @return the number of arrived parties
813       */
814      public int getArrivedParties() {
815 <        return arrivedOf(state);
815 >        return arrivedOf(reconcileState());
816      }
817  
818      /**
819       * Returns the number of registered parties that have not yet
820 <     * arrived at the current phase of this barrier.
820 >     * arrived at the current phase of this phaser.
821       *
822       * @return the number of unarrived parties
823       */
824      public int getUnarrivedParties() {
825 <        return unarrivedOf(state);
825 >        return unarrivedOf(reconcileState());
826      }
827  
828      /**
# Line 686 | Line 845 | public class Phaser {
845      }
846  
847      /**
848 <     * Returns {@code true} if this barrier has been terminated.
848 >     * Returns {@code true} if this phaser has been terminated.
849       *
850 <     * @return {@code true} if this barrier has been terminated
850 >     * @return {@code true} if this phaser has been terminated
851       */
852      public boolean isTerminated() {
853 <        return getPhase() < 0;
853 >        return root.state < 0L;
854      }
855  
856      /**
857 <     * Overridable method to perform an action upon phase advance, and
858 <     * to control termination. This method is invoked whenever the
859 <     * barrier is tripped (and thus all other waiting parties are
860 <     * dormant). If it returns {@code true}, then, rather than advance
861 <     * the phase number, this barrier will be set to a final
862 <     * termination state, and subsequent calls to {@link #isTerminated}
863 <     * will return true.
864 <     *
865 <     * <p>The default version returns {@code true} when the number of
866 <     * registered parties is zero. Normally, overrides that arrange
867 <     * termination for other reasons should also preserve this
868 <     * property.
869 <     *
870 <     * <p>You may override this method to perform an action with side
871 <     * effects visible to participating tasks, but it is in general
872 <     * only sensible to do so in designs where all parties register
873 <     * before any arrive, and all {@link #awaitAdvance} at each phase.
874 <     * Otherwise, you cannot ensure lack of interference from other
875 <     * parties during the the invocation of this method.
857 >     * Overridable method to perform an action upon impending phase
858 >     * advance, and to control termination. This method is invoked
859 >     * upon arrival of the party advancing this phaser (when all other
860 >     * waiting parties are dormant).  If this method returns {@code
861 >     * true}, this phaser will be set to a final termination state
862 >     * upon advance, and subsequent calls to {@link #isTerminated}
863 >     * will return true. Any (unchecked) Exception or Error thrown by
864 >     * an invocation of this method is propagated to the party
865 >     * attempting to advance this phaser, in which case no advance
866 >     * occurs.
867 >     *
868 >     * <p>The arguments to this method provide the state of the phaser
869 >     * prevailing for the current transition.  The effects of invoking
870 >     * arrival, registration, and waiting methods on this phaser from
871 >     * within {@code onAdvance} are unspecified and should not be
872 >     * relied on.
873 >     *
874 >     * <p>If this phaser is a member of a tiered set of phasers, then
875 >     * {@code onAdvance} is invoked only for its root phaser on each
876 >     * advance.
877 >     *
878 >     * <p>To support the most common use cases, the default
879 >     * implementation of this method returns {@code true} when the
880 >     * number of registered parties has become zero as the result of a
881 >     * party invoking {@code arriveAndDeregister}.  You can disable
882 >     * this behavior, thus enabling continuation upon future
883 >     * registrations, by overriding this method to always return
884 >     * {@code false}:
885 >     *
886 >     * <pre> {@code
887 >     * Phaser phaser = new Phaser() {
888 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
889 >     * }}</pre>
890       *
891 <     * @param phase the phase number on entering the barrier
891 >     * @param phase the current phase number on entry to this method,
892 >     * before this phaser is advanced
893       * @param registeredParties the current number of registered parties
894 <     * @return {@code true} if this barrier should terminate
894 >     * @return {@code true} if this phaser should terminate
895       */
896      protected boolean onAdvance(int phase, int registeredParties) {
897 <        return registeredParties <= 0;
897 >        return registeredParties == 0;
898      }
899  
900      /**
# Line 730 | Line 904 | public class Phaser {
904       * followed by the number of registered parties, and {@code
905       * "arrived = "} followed by the number of arrived parties.
906       *
907 <     * @return a string identifying this barrier, as well as its state
907 >     * @return a string identifying this phaser, as well as its state
908       */
909      public String toString() {
910 <        long s = getReconciledState();
910 >        return stateToString(reconcileState());
911 >    }
912 >
913 >    /**
914 >     * Implementation of toString and string-based error messages
915 >     */
916 >    private String stateToString(long s) {
917          return super.toString() +
918              "[phase = " + phaseOf(s) +
919              " parties = " + partiesOf(s) +
920              " arrived = " + arrivedOf(s) + "]";
921      }
922  
923 <    // methods for waiting
923 >    // Waiting mechanics
924  
925      /**
926 <     * Wait nodes for Treiber stack representing wait queue
926 >     * Removes and signals threads from queue for phase.
927       */
928 <    static final class QNode implements ForkJoinPool.ManagedBlocker {
929 <        final Phaser phaser;
930 <        final int phase;
931 <        final long startTime;
932 <        final long nanos;
933 <        final boolean timed;
934 <        final boolean interruptible;
935 <        volatile boolean wasInterrupted = false;
936 <        volatile Thread thread; // nulled to cancel wait
757 <        QNode next;
758 <        QNode(Phaser phaser, int phase, boolean interruptible,
759 <              boolean timed, long startTime, long nanos) {
760 <            this.phaser = phaser;
761 <            this.phase = phase;
762 <            this.timed = timed;
763 <            this.interruptible = interruptible;
764 <            this.startTime = startTime;
765 <            this.nanos = nanos;
766 <            thread = Thread.currentThread();
767 <        }
768 <        public boolean isReleasable() {
769 <            return (thread == null ||
770 <                    phaser.getPhase() != phase ||
771 <                    (interruptible && wasInterrupted) ||
772 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
773 <        }
774 <        public boolean block() {
775 <            if (Thread.interrupted()) {
776 <                wasInterrupted = true;
777 <                if (interruptible)
778 <                    return true;
779 <            }
780 <            if (!timed)
781 <                LockSupport.park(this);
782 <            else {
783 <                long waitTime = nanos - (System.nanoTime() - startTime);
784 <                if (waitTime <= 0)
785 <                    return true;
786 <                LockSupport.parkNanos(this, waitTime);
787 <            }
788 <            return isReleasable();
789 <        }
790 <        void signal() {
791 <            Thread t = thread;
792 <            if (t != null) {
793 <                thread = null;
928 >    private void releaseWaiters(int phase) {
929 >        QNode q;   // first element of queue
930 >        Thread t;  // its thread
931 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
932 >        while ((q = head.get()) != null &&
933 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
934 >            if (head.compareAndSet(q, q.next) &&
935 >                (t = q.thread) != null) {
936 >                q.thread = null;
937                  LockSupport.unpark(t);
938              }
939          }
797        boolean doWait() {
798            if (thread != null) {
799                try {
800                    ForkJoinPool.managedBlock(this, false);
801                } catch (InterruptedException ie) {
802                }
803            }
804            return wasInterrupted;
805        }
806
940      }
941  
942      /**
943 <     * Removes and signals waiting threads from wait queue.
943 >     * Variant of releaseWaiters that additionally tries to remove any
944 >     * nodes no longer waiting for advance due to timeout or
945 >     * interrupt. Currently, nodes are removed only if they are at
946 >     * head of queue, which suffices to reduce memory footprint in
947 >     * most usages.
948 >     *
949 >     * @return current phase on exit
950       */
951 <    private void releaseWaiters(int phase) {
952 <        AtomicReference<QNode> head = queueFor(phase);
953 <        QNode q;
954 <        while ((q = head.get()) != null) {
955 <            if (head.compareAndSet(q, q.next))
956 <                q.signal();
951 >    private int abortWait(int phase) {
952 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
953 >        for (;;) {
954 >            Thread t;
955 >            QNode q = head.get();
956 >            int p = (int)(root.state >>> PHASE_SHIFT);
957 >            if (q == null || ((t = q.thread) != null && q.phase == p))
958 >                return p;
959 >            if (head.compareAndSet(q, q.next) && t != null) {
960 >                q.thread = null;
961 >                LockSupport.unpark(t);
962 >            }
963          }
964      }
965  
966 +    /** The number of CPUs, for spin control */
967 +    private static final int NCPU = Runtime.getRuntime().availableProcessors();
968 +
969      /**
970 <     * Tries to enqueue given node in the appropriate wait queue.
971 <     *
972 <     * @return true if successful
970 >     * The number of times to spin before blocking while waiting for
971 >     * advance, per arrival while waiting. On multiprocessors, fully
972 >     * blocking and waking up a large number of threads all at once is
973 >     * usually a very slow process, so we use rechargeable spins to
974 >     * avoid it when threads regularly arrive: When a thread in
975 >     * internalAwaitAdvance notices another arrival before blocking,
976 >     * and there appear to be enough CPUs available, it spins
977 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
978 >     * off good-citizenship vs big unnecessary slowdowns.
979       */
980 <    private boolean tryEnqueue(QNode node) {
827 <        AtomicReference<QNode> head = queueFor(node.phase);
828 <        return head.compareAndSet(node.next = head.get(), node);
829 <    }
980 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
981  
982      /**
983 <     * Enqueues node and waits unless aborted or signalled.
983 >     * Possibly blocks and waits for phase to advance unless aborted.
984 >     * Call only from root node.
985       *
986 +     * @param phase current phase
987 +     * @param node if non-null, the wait node to track interrupt and timeout;
988 +     * if null, denotes noninterruptible wait
989       * @return current phase
990       */
991 <    private int untimedWait(int phase) {
992 <        QNode node = null;
993 <        boolean queued = false;
994 <        boolean interrupted = false;
991 >    private int internalAwaitAdvance(int phase, QNode node) {
992 >        releaseWaiters(phase-1);          // ensure old queue clean
993 >        boolean queued = false;           // true when node is enqueued
994 >        int lastUnarrived = 0;            // to increase spins upon change
995 >        int spins = SPINS_PER_ARRIVAL;
996 >        long s;
997          int p;
998 <        while ((p = getPhase()) == phase) {
999 <            if (Thread.interrupted())
1000 <                interrupted = true;
1001 <            else if (node == null)
1002 <                node = new QNode(this, phase, false, false, 0, 0);
1003 <            else if (!queued)
1004 <                queued = tryEnqueue(node);
1005 <            else
1006 <                interrupted = node.doWait();
998 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
999 >            if (node == null) {           // spinning in noninterruptible mode
1000 >                int unarrived = (int)s & UNARRIVED_MASK;
1001 >                if (unarrived != lastUnarrived &&
1002 >                    (lastUnarrived = unarrived) < NCPU)
1003 >                    spins += SPINS_PER_ARRIVAL;
1004 >                boolean interrupted = Thread.interrupted();
1005 >                if (interrupted || --spins < 0) { // need node to record intr
1006 >                    node = new QNode(this, phase, false, false, 0L);
1007 >                    node.wasInterrupted = interrupted;
1008 >                }
1009 >            }
1010 >            else if (node.isReleasable()) // done or aborted
1011 >                break;
1012 >            else if (!queued) {           // push onto queue
1013 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1014 >                QNode q = node.next = head.get();
1015 >                if ((q == null || q.phase == phase) &&
1016 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1017 >                    queued = head.compareAndSet(q, node);
1018 >            }
1019 >            else {
1020 >                try {
1021 >                    ForkJoinPool.managedBlock(node);
1022 >                } catch (InterruptedException ie) {
1023 >                    node.wasInterrupted = true;
1024 >                }
1025 >            }
1026 >        }
1027 >
1028 >        if (node != null) {
1029 >            if (node.thread != null)
1030 >                node.thread = null;       // avoid need for unpark()
1031 >            if (node.wasInterrupted && !node.interruptible)
1032 >                Thread.currentThread().interrupt();
1033 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1034 >                return abortWait(phase); // possibly clean up on abort
1035          }
851        if (node != null)
852            node.thread = null;
1036          releaseWaiters(phase);
854        if (interrupted)
855            Thread.currentThread().interrupt();
1037          return p;
1038      }
1039  
1040      /**
1041 <     * Interruptible version
861 <     * @return current phase
1041 >     * Wait nodes for Treiber stack representing wait queue
1042       */
1043 <    private int interruptibleWait(int phase) throws InterruptedException {
1044 <        QNode node = null;
1045 <        boolean queued = false;
1046 <        boolean interrupted = false;
1047 <        int p;
1048 <        while ((p = getPhase()) == phase && !interrupted) {
1049 <            if (Thread.interrupted())
1050 <                interrupted = true;
1051 <            else if (node == null)
1052 <                node = new QNode(this, phase, true, false, 0, 0);
873 <            else if (!queued)
874 <                queued = tryEnqueue(node);
875 <            else
876 <                interrupted = node.doWait();
877 <        }
878 <        if (node != null)
879 <            node.thread = null;
880 <        if (p != phase || (p = getPhase()) != phase)
881 <            releaseWaiters(phase);
882 <        if (interrupted)
883 <            throw new InterruptedException();
884 <        return p;
885 <    }
1043 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
1044 >        final Phaser phaser;
1045 >        final int phase;
1046 >        final boolean interruptible;
1047 >        final boolean timed;
1048 >        boolean wasInterrupted;
1049 >        long nanos;
1050 >        long lastTime;
1051 >        volatile Thread thread; // nulled to cancel wait
1052 >        QNode next;
1053  
1054 <    /**
1055 <     * Timeout version.
1056 <     * @return current phase
1057 <     */
1058 <    private int timedWait(int phase, long nanos)
1059 <        throws InterruptedException, TimeoutException {
1060 <        long startTime = System.nanoTime();
1061 <        QNode node = null;
1062 <        boolean queued = false;
1063 <        boolean interrupted = false;
1064 <        int p;
1065 <        while ((p = getPhase()) == phase && !interrupted) {
1054 >        QNode(Phaser phaser, int phase, boolean interruptible,
1055 >              boolean timed, long nanos) {
1056 >            this.phaser = phaser;
1057 >            this.phase = phase;
1058 >            this.interruptible = interruptible;
1059 >            this.nanos = nanos;
1060 >            this.timed = timed;
1061 >            this.lastTime = timed ? System.nanoTime() : 0L;
1062 >            thread = Thread.currentThread();
1063 >        }
1064 >
1065 >        public boolean isReleasable() {
1066 >            if (thread == null)
1067 >                return true;
1068 >            if (phaser.getPhase() != phase) {
1069 >                thread = null;
1070 >                return true;
1071 >            }
1072              if (Thread.interrupted())
1073 <                interrupted = true;
1074 <            else if (nanos - (System.nanoTime() - startTime) <= 0)
1075 <                break;
1076 <            else if (node == null)
1077 <                node = new QNode(this, phase, true, true, startTime, nanos);
1078 <            else if (!queued)
1079 <                queued = tryEnqueue(node);
1080 <            else
1081 <                interrupted = node.doWait();
1082 <        }
1083 <        if (node != null)
1084 <            node.thread = null;
1085 <        if (p != phase || (p = getPhase()) != phase)
1086 <            releaseWaiters(phase);
1087 <        if (interrupted)
1088 <            throw new InterruptedException();
1089 <        if (p == phase)
1090 <            throw new TimeoutException();
1091 <        return p;
1073 >                wasInterrupted = true;
1074 >            if (wasInterrupted && interruptible) {
1075 >                thread = null;
1076 >                return true;
1077 >            }
1078 >            if (timed) {
1079 >                if (nanos > 0L) {
1080 >                    long now = System.nanoTime();
1081 >                    nanos -= now - lastTime;
1082 >                    lastTime = now;
1083 >                }
1084 >                if (nanos <= 0L) {
1085 >                    thread = null;
1086 >                    return true;
1087 >                }
1088 >            }
1089 >            return false;
1090 >        }
1091 >
1092 >        public boolean block() {
1093 >            if (isReleasable())
1094 >                return true;
1095 >            else if (!timed)
1096 >                LockSupport.park(this);
1097 >            else if (nanos > 0)
1098 >                LockSupport.parkNanos(this, nanos);
1099 >            return isReleasable();
1100 >        }
1101      }
1102  
1103      // Unsafe mechanics
# Line 924 | Line 1106 | public class Phaser {
1106      private static final long stateOffset =
1107          objectFieldOffset("state", Phaser.class);
1108  
927    private final boolean casState(long cmp, long val) {
928        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
929    }
930
1109      private static long objectFieldOffset(String field, Class<?> klazz) {
1110          try {
1111              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines