ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.53 by jsr166, Sat Nov 13 05:59:25 2010 UTC vs.
Revision 1.75 by dl, Wed Sep 21 12:30:39 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82 > * Termination is triggered when an invocation of {@code onAdvance}
83 > * returns {@code true}. The default implementation returns {@code
84 > * true} if a deregistration has caused the number of registered
85 > * parties to become zero.  As illustrated below, when phasers control
86 > * actions with a fixed number of iterations, it is often convenient
87 > * to override this method to cause termination when the current phase
88 > * number reaches a threshold. Method {@link #forceTermination} is
89 > * also available to abruptly release waiting threads and allow them
90 > * to terminate.
91 > *
92 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 > * constructed in tree structures) to reduce contention. Phasers with
94 > * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
96   * groups of sub-phasers share a common parent.  This may greatly
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 117 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 181 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a phaser that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
202 < * // .. initially called, for n tasks via
203 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
# Line 224 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
228 <     * four values:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268 <    private static final int  MAX_COUNT      = 0xffff;
269 <    private static final int  MAX_PHASE      = 0x7fffffff;
270 <    private static final int  PARTIES_SHIFT  = 16;
271 <    private static final int  PHASE_SHIFT    = 32;
272 <    private static final long UNARRIVED_MASK = 0xffffL;
273 <    private static final long PARTIES_MASK   = 0xffff0000L;
274 <    private static final long ONE_ARRIVAL    = 1L;
275 <    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
276 <    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
268 >    private static final int  MAX_PARTIES     = 0xffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270 >    private static final int  PARTIES_SHIFT   = 16;
271 >    private static final int  PHASE_SHIFT     = 32;
272 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 >    private static final long TERMINATION_BIT = 1L << 63;
275 >
276 >    // some special values
277 >    private static final int  ONE_ARRIVAL     = 1;
278 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 >    private static final int  EMPTY           = 1;
280  
281      // The following unpacking methods are usually manually inlined
282  
283      private static int unarrivedOf(long s) {
284 <        return (int) (s & UNARRIVED_MASK);
284 >        int counts = (int)s;
285 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286      }
287  
288      private static int partiesOf(long s) {
289 <        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
289 >        return (int)s >>> PARTIES_SHIFT;
290      }
291  
292      private static int phaseOf(long s) {
293 <        return (int) (s >>> PHASE_SHIFT);
293 >        return (int)(s >>> PHASE_SHIFT);
294      }
295  
296      private static int arrivedOf(long s) {
297 <        return partiesOf(s) - unarrivedOf(s);
297 >        int counts = (int)s;
298 >        return (counts == EMPTY) ? 0 :
299 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300      }
301  
302      /**
# Line 274 | Line 305 | public class Phaser {
305      private final Phaser parent;
306  
307      /**
308 <     * The root of phaser tree. Equals this if not in a tree.  Used to
278 <     * support faster state push-down.
308 >     * The root of phaser tree. Equals this if not in a tree.
309       */
310      private final Phaser root;
311  
# Line 293 | Line 323 | public class Phaser {
323      }
324  
325      /**
326 +     * Returns message string for bounds exceptions on arrival.
327 +     */
328 +    private String badArrive(long s) {
329 +        return "Attempted arrival of unregistered party for " +
330 +            stateToString(s);
331 +    }
332 +
333 +    /**
334 +     * Returns message string for bounds exceptions on registration.
335 +     */
336 +    private String badRegister(long s) {
337 +        return "Attempt to register more than " +
338 +            MAX_PARTIES + " parties for " + stateToString(s);
339 +    }
340 +
341 +    /**
342       * Main implementation for methods arrive and arriveAndDeregister.
343       * Manually tuned to speed up and minimize race windows for the
344       * common case of just decrementing unarrived field.
345       *
346 <     * @param adj - adjustment to apply to state -- either
301 <     * ONE_ARRIVAL (for arrive) or
302 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
346 >     * @param deregister false for arrive, true for arriveAndDeregister
347       */
348 <    private int doArrive(long adj) {
349 <        long s;
350 <        int phase, unarrived;
351 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
352 <            if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
353 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
354 <                    if (unarrived == 1) {
355 <                        Phaser par;
356 <                        long p = s & PARTIES_MASK; // unshifted parties field
357 <                        long lu = p >>> PARTIES_SHIFT;
358 <                        int u = (int)lu;
359 <                        int nextPhase = (phase + 1) & MAX_PHASE;
360 <                        long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
361 <                        if ((par = parent) == null) {
362 <                            UNSAFE.compareAndSwapLong
363 <                                (this, stateOffset, s, onAdvance(phase, u)?
364 <                                 next | TERMINATION_PHASE : next);
365 <                            releaseWaiters(phase);
366 <                        }
367 <                        else {
368 <                            par.doArrive(u == 0?
369 <                                         ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
370 <                            if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
371 <                                ((int)(state >>> PHASE_SHIFT) != nextPhase &&
372 <                                 !UNSAFE.compareAndSwapLong(this, stateOffset,
373 <                                                            s, next)))
374 <                                reconcileState();
331 <                        }
348 >    private int doArrive(boolean deregister) {
349 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 >        final Phaser root = this.root;
351 >        for (;;) {
352 >            long s = (root == this) ? state : reconcileState();
353 >            int phase = (int)(s >>> PHASE_SHIFT);
354 >            int counts = (int)s;
355 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
356 >            if (phase < 0)
357 >                return phase;
358 >            else if (counts == EMPTY || unarrived < 0) {
359 >                if (root == this || reconcileState() == s)
360 >                    throw new IllegalStateException(badArrive(s));
361 >            }
362 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 >                long n = s & PARTIES_MASK;  // base of next state
364 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 >                if (unarrived == 0) {
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368 >                            n |= TERMINATION_BIT;
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371 >                        else
372 >                            n |= nextUnarrived;
373 >                        n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
374 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
375                      }
376 <                    break;
376 >                    else if (nextUnarrived == 0) { // propagate deregistration
377 >                        phase = parent.doArrive(true);
378 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
379 >                                                  s, s | EMPTY);
380 >                    }
381 >                    else
382 >                        phase = parent.doArrive(false);
383 >                    releaseWaiters(phase);
384                  }
385 +                return phase;
386              }
336            else if (state == s && reconcileState() == s) // recheck
337                throw new IllegalStateException(badArrive());
387          }
339        return phase;
340    }
341
342    /**
343     * Returns message string for bounds exceptions on arrival.
344     * Declared out of-line from doArrive to reduce string op bulk.
345     */
346    private String badArrive() {
347        return ("Attempted arrival of unregistered party for " +
348                this.toString());
388      }
389  
390      /**
391       * Implementation of register, bulkRegister
392       *
393 <     * @param registrations number to add to both parties and unarrived fields
393 >     * @param registrations number to add to both parties and
394 >     * unarrived fields. Must be greater than zero.
395       */
396      private int doRegister(int registrations) {
397 <        long adj = (long)registrations; // adjustment to state
398 <        adj |= adj << PARTIES_SHIFT;
399 <        Phaser par = parent;
360 <        long s;
397 >        // adjustment to state
398 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 >        final Phaser parent = this.parent;
400          int phase;
401 <        while ((phase = (int)((s = (par == null? state : reconcileState()))
402 <                              >>> PHASE_SHIFT)) >= 0) {
403 <            int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
404 <            if (parties != 0 && (s & UNARRIVED_MASK) == 0)
405 <                internalAwaitAdvance(phase, null); // wait for onAdvance
406 <            else if (parties + registrations > MAX_COUNT)
407 <                throw new IllegalStateException(badRegister());
408 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
401 >        for (;;) {
402 >            long s = (parent == null) ? state : reconcileState();
403 >            int counts = (int)s;
404 >            int parties = counts >>> PARTIES_SHIFT;
405 >            int unarrived = counts & UNARRIVED_MASK;
406 >            if (registrations > MAX_PARTIES - parties)
407 >                throw new IllegalStateException(badRegister(s));
408 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
409                  break;
410 +            else if (counts != EMPTY) {             // not 1st registration
411 +                if (parent == null || reconcileState() == s) {
412 +                    if (unarrived == 0)             // wait out advance
413 +                        root.internalAwaitAdvance(phase, null);
414 +                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
415 +                                                       s, s + adj))
416 +                        break;
417 +                }
418 +            }
419 +            else if (parent == null) {              // 1st root registration
420 +                long next = ((long)phase << PHASE_SHIFT) | adj;
421 +                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422 +                    break;
423 +            }
424 +            else {
425 +                synchronized (this) {               // 1st sub registration
426 +                    if (state == s) {               // recheck under lock
427 +                        parent.doRegister(1);
428 +                        do {                        // force current phase
429 +                            phase = (int)(root.state >>> PHASE_SHIFT);
430 +                            // assert phase < 0 || (int)state == EMPTY;
431 +                        } while (!UNSAFE.compareAndSwapLong
432 +                                 (this, stateOffset, state,
433 +                                  ((long)phase << PHASE_SHIFT) | adj));
434 +                        break;
435 +                    }
436 +                }
437 +            }
438          }
439          return phase;
440      }
441  
442      /**
443 <     * Returns message string for bounds exceptions on registration
444 <     */
445 <    private String badRegister() {
446 <        return ("Attempt to register more than " + MAX_COUNT + " parties for "+
447 <                this.toString());
448 <    }
449 <
450 <    /**
451 <     * Recursively resolves lagged phase propagation from root if
452 <     * necessary.
443 >     * Resolves lagged phase propagation from root if necessary.
444 >     * Reconciliation normally occurs when root has advanced but
445 >     * subphasers have not yet done so, in which case they must finish
446 >     * their own advance by setting unarrived to parties (or if
447 >     * parties is zero, resetting to unregistered EMPTY state).
448 >     * However, this method may also be called when "floating"
449 >     * subphasers with possibly some unarrived parties are merely
450 >     * catching up to current phase, in which case counts are
451 >     * unaffected.
452 >     *
453 >     * @return reconciled state
454       */
455      private long reconcileState() {
456 <        Phaser par = parent;
457 <        if (par == null)
458 <            return state;
459 <        Phaser rt = root;
460 <        long s;
461 <        int phase, rPhase;
462 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
463 <               (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
464 <            if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
465 <                long ps = par.parent == null? par.state : par.reconcileState();
466 <                int pPhase = (int)(ps >>> PHASE_SHIFT);
467 <                if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
468 <                    if (state != s)
469 <                        continue;
470 <                    long p = s & PARTIES_MASK;
403 <                    long next = ((((long) pPhase) << PHASE_SHIFT) |
404 <                                 (p >>> PARTIES_SHIFT) | p);
405 <                    if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406 <                        return next;
407 <                }
408 <            }
409 <            if (state == s)
410 <                releaseWaiters(phase); // help release others
456 >        final Phaser root = this.root;
457 >        long s = state;
458 >        if (root != this) {
459 >            int phase, u, p;
460 >            // CAS root phase with current parties; possibly trip unarrived
461 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462 >                   (int)(s >>> PHASE_SHIFT) &&
463 >                   !UNSAFE.compareAndSwapLong
464 >                   (this, stateOffset, s,
465 >                    s = (((long)phase << PHASE_SHIFT) |
466 >                         (s & PARTIES_MASK) |
467 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
468 >                          ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
469 >                          p : u))))
470 >                s = state;
471          }
472          return s;
473      }
474  
475      /**
476 <     * Creates a new phaser without any initially registered parties,
477 <     * initial phase number 0, and no parent. Any thread using this
476 >     * Creates a new phaser with no initially registered parties, no
477 >     * parent, and initial phase number 0. Any thread using this
478       * phaser will need to first register for it.
479       */
480      public Phaser() {
# Line 423 | Line 483 | public class Phaser {
483  
484      /**
485       * Creates a new phaser with the given number of registered
486 <     * unarrived parties, initial phase number 0, and no parent.
486 >     * unarrived parties, no parent, and initial phase number 0.
487       *
488 <     * @param parties the number of parties required to trip barrier
488 >     * @param parties the number of parties required to advance to the
489 >     * next phase
490       * @throws IllegalArgumentException if parties less than zero
491       * or greater than the maximum number of parties supported
492       */
# Line 434 | Line 495 | public class Phaser {
495      }
496  
497      /**
498 <     * Creates a new phaser with the given parent, without any
438 <     * initially registered parties. If parent is non-null this phaser
439 <     * is registered with the parent and its initial phase number is
440 <     * the same as that of parent phaser.
498 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
499       *
500       * @param parent the parent phaser
501       */
# Line 447 | Line 505 | public class Phaser {
505  
506      /**
507       * Creates a new phaser with the given parent and number of
508 <     * registered unarrived parties. If parent is non-null, this phaser
509 <     * is registered with the parent and its initial phase number is
510 <     * the same as that of parent phaser.
508 >     * registered unarrived parties.  When the given parent is non-null
509 >     * and the given number of parties is greater than zero, this
510 >     * child phaser is registered with its parent.
511       *
512       * @param parent the parent phaser
513 <     * @param parties the number of parties required to trip barrier
513 >     * @param parties the number of parties required to advance to the
514 >     * next phase
515       * @throws IllegalArgumentException if parties less than zero
516       * or greater than the maximum number of parties supported
517       */
518      public Phaser(Phaser parent, int parties) {
519 <        if (parties < 0 || parties > MAX_COUNT)
519 >        if (parties >>> PARTIES_SHIFT != 0)
520              throw new IllegalArgumentException("Illegal number of parties");
521 <        int phase;
521 >        int phase = 0;
522          this.parent = parent;
523          if (parent != null) {
524 <            Phaser r = parent.root;
525 <            this.root = r;
526 <            this.evenQ = r.evenQ;
527 <            this.oddQ = r.oddQ;
528 <            phase = parent.register();
524 >            final Phaser root = parent.root;
525 >            this.root = root;
526 >            this.evenQ = root.evenQ;
527 >            this.oddQ = root.oddQ;
528 >            if (parties != 0)
529 >                phase = parent.doRegister(1);
530          }
531          else {
532              this.root = this;
533              this.evenQ = new AtomicReference<QNode>();
534              this.oddQ = new AtomicReference<QNode>();
475            phase = 0;
535          }
536 <        long p = (long)parties;
537 <        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
536 >        this.state = (parties == 0) ? (long)EMPTY :
537 >            ((long)phase << PHASE_SHIFT) |
538 >            ((long)parties << PARTIES_SHIFT) |
539 >            ((long)parties);
540      }
541  
542      /**
543 <     * Adds a new unarrived party to this phaser.
544 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
545 <     * this method may wait until its completion before registering.
546 <     *
547 <     * @return the arrival phase number to which this registration applied
543 >     * Adds a new unarrived party to this phaser.  If an ongoing
544 >     * invocation of {@link #onAdvance} is in progress, this method
545 >     * may await its completion before returning.  If this phaser has
546 >     * a parent, and this phaser previously had no registered parties,
547 >     * this child phaser is also registered with its parent. If
548 >     * this phaser is terminated, the attempt to register has
549 >     * no effect, and a negative value is returned.
550 >     *
551 >     * @return the arrival phase number to which this registration
552 >     * applied.  If this value is negative, then this phaser has
553 >     * terminated, in which case registration has no effect.
554       * @throws IllegalStateException if attempting to register more
555       * than the maximum supported number of parties
556       */
# Line 494 | Line 561 | public class Phaser {
561      /**
562       * Adds the given number of new unarrived parties to this phaser.
563       * If an ongoing invocation of {@link #onAdvance} is in progress,
564 <     * this method may wait until its completion before registering.
565 <     *
566 <     * @param parties the number of additional parties required to trip barrier
567 <     * @return the arrival phase number to which this registration applied
564 >     * this method may await its completion before returning.  If this
565 >     * phaser has a parent, and the given number of parties is greater
566 >     * than zero, and this phaser previously had no registered
567 >     * parties, this child phaser is also registered with its parent.
568 >     * If this phaser is terminated, the attempt to register has no
569 >     * effect, and a negative value is returned.
570 >     *
571 >     * @param parties the number of additional parties required to
572 >     * advance to the next phase
573 >     * @return the arrival phase number to which this registration
574 >     * applied.  If this value is negative, then this phaser has
575 >     * terminated, in which case registration has no effect.
576       * @throws IllegalStateException if attempting to register more
577       * than the maximum supported number of parties
578       * @throws IllegalArgumentException if {@code parties < 0}
# Line 505 | Line 580 | public class Phaser {
580      public int bulkRegister(int parties) {
581          if (parties < 0)
582              throw new IllegalArgumentException();
508        if (parties > MAX_COUNT)
509            throw new IllegalStateException(badRegister());
583          if (parties == 0)
584              return getPhase();
585          return doRegister(parties);
586      }
587  
588      /**
589 <     * Arrives at the barrier, but does not wait for others.  (You can
590 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
591 <     * unenforced usage error for an unregistered party to invoke this
592 <     * method.
589 >     * Arrives at this phaser, without waiting for others to arrive.
590 >     *
591 >     * <p>It is a usage error for an unregistered party to invoke this
592 >     * method.  However, this error may result in an {@code
593 >     * IllegalStateException} only upon some subsequent operation on
594 >     * this phaser, if ever.
595       *
596       * @return the arrival phase number, or a negative value if terminated
597       * @throws IllegalStateException if not terminated and the number
598       * of unarrived parties would become negative
599       */
600      public int arrive() {
601 <        return doArrive(ONE_ARRIVAL);
601 >        return doArrive(false);
602      }
603  
604      /**
605 <     * Arrives at the barrier and deregisters from it without waiting
606 <     * for others. Deregistration reduces the number of parties
607 <     * required to trip the barrier in future phases.  If this phaser
605 >     * Arrives at this phaser and deregisters from it without waiting
606 >     * for others to arrive. Deregistration reduces the number of
607 >     * parties required to advance in future phases.  If this phaser
608       * has a parent, and deregistration causes this phaser to have
609 <     * zero parties, this phaser also arrives at and is deregistered
610 <     * from its parent.  It is an unenforced usage error for an
611 <     * unregistered party to invoke this method.
609 >     * zero parties, this phaser is also deregistered from its parent.
610 >     *
611 >     * <p>It is a usage error for an unregistered party to invoke this
612 >     * method.  However, this error may result in an {@code
613 >     * IllegalStateException} only upon some subsequent operation on
614 >     * this phaser, if ever.
615       *
616       * @return the arrival phase number, or a negative value if terminated
617       * @throws IllegalStateException if not terminated and the number
618       * of registered or unarrived parties would become negative
619       */
620      public int arriveAndDeregister() {
621 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
621 >        return doArrive(true);
622      }
623  
624      /**
625 <     * Arrives at the barrier and awaits others. Equivalent in effect
625 >     * Arrives at this phaser and awaits others. Equivalent in effect
626       * to {@code awaitAdvance(arrive())}.  If you need to await with
627       * interruption or timeout, you can arrange this with an analogous
628       * construction using one of the other forms of the {@code
629       * awaitAdvance} method.  If instead you need to deregister upon
630 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
631 <     * usage error for an unregistered party to invoke this method.
630 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
631 >     *
632 >     * <p>It is a usage error for an unregistered party to invoke this
633 >     * method.  However, this error may result in an {@code
634 >     * IllegalStateException} only upon some subsequent operation on
635 >     * this phaser, if ever.
636       *
637 <     * @return the arrival phase number, or a negative number if terminated
637 >     * @return the arrival phase number, or the (negative)
638 >     * {@linkplain #getPhase() current phase} if terminated
639       * @throws IllegalStateException if not terminated and the number
640       * of unarrived parties would become negative
641       */
642      public int arriveAndAwaitAdvance() {
643 <        return awaitAdvance(arrive());
643 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
644 >        final Phaser root = this.root;
645 >        for (;;) {
646 >            long s = (root == this) ? state : reconcileState();
647 >            int phase = (int)(s >>> PHASE_SHIFT);
648 >            int counts = (int)s;
649 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
650 >            if (phase < 0)
651 >                return phase;
652 >            else if (counts == EMPTY || unarrived < 0) {
653 >                if (reconcileState() == s)
654 >                    throw new IllegalStateException(badArrive(s));
655 >            }
656 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657 >                                               s -= ONE_ARRIVAL)) {
658 >                if (unarrived != 0)
659 >                    return root.internalAwaitAdvance(phase, null);
660 >                if (root != this)
661 >                    return parent.arriveAndAwaitAdvance();
662 >                long n = s & PARTIES_MASK;  // base of next state
663 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 >                if (onAdvance(phase, nextUnarrived))
665 >                    n |= TERMINATION_BIT;
666 >                else if (nextUnarrived == 0)
667 >                    n |= EMPTY;
668 >                else
669 >                    n |= nextUnarrived;
670 >                int nextPhase = (phase + 1) & MAX_PHASE;
671 >                n |= (long)nextPhase << PHASE_SHIFT;
672 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673 >                    return (int)(state >>> PHASE_SHIFT); // terminated
674 >                releaseWaiters(phase);
675 >                return nextPhase;
676 >            }
677 >        }
678      }
679  
680      /**
681 <     * Awaits the phase of the barrier to advance from the given phase
682 <     * value, returning immediately if the current phase of the
683 <     * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.
681 >     * Awaits the phase of this phaser to advance from the given phase
682 >     * value, returning immediately if the current phase is not equal
683 >     * to the given phase value or this phaser is terminated.
684       *
685       * @param phase an arrival phase number, or negative value if
686       * terminated; this argument is normally the value returned by a
687 <     * previous call to {@code arrive} or its variants
688 <     * @return the next arrival phase number, or a negative value
689 <     * if terminated or argument is negative
687 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 >     * @return the next arrival phase number, or the argument if it is
689 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
690 >     * if terminated
691       */
692      public int awaitAdvance(int phase) {
693 +        final Phaser root = this.root;
694 +        long s = (root == this) ? state : reconcileState();
695 +        int p = (int)(s >>> PHASE_SHIFT);
696          if (phase < 0)
697              return phase;
698 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
699 <        if (p != phase)
700 <            return p;
581 <        return internalAwaitAdvance(phase, null);
698 >        if (p == phase)
699 >            return root.internalAwaitAdvance(phase, null);
700 >        return p;
701      }
702  
703      /**
704 <     * Awaits the phase of the barrier to advance from the given phase
704 >     * Awaits the phase of this phaser to advance from the given phase
705       * value, throwing {@code InterruptedException} if interrupted
706 <     * while waiting, or returning immediately if the current phase of
707 <     * the barrier is not equal to the given phase value or this
708 <     * barrier is terminated.
706 >     * while waiting, or returning immediately if the current phase is
707 >     * not equal to the given phase value or this phaser is
708 >     * terminated.
709       *
710       * @param phase an arrival phase number, or negative value if
711       * terminated; this argument is normally the value returned by a
712 <     * previous call to {@code arrive} or its variants
713 <     * @return the next arrival phase number, or a negative value
714 <     * if terminated or argument is negative
712 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 >     * @return the next arrival phase number, or the argument if it is
714 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
715 >     * if terminated
716       * @throws InterruptedException if thread interrupted while waiting
717       */
718      public int awaitAdvanceInterruptibly(int phase)
719          throws InterruptedException {
720 +        final Phaser root = this.root;
721 +        long s = (root == this) ? state : reconcileState();
722 +        int p = (int)(s >>> PHASE_SHIFT);
723          if (phase < 0)
724              return phase;
725 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
726 <        if (p != phase)
727 <            return p;
728 <        QNode node = new QNode(this, phase, true, false, 0L);
729 <        p = internalAwaitAdvance(phase, node);
730 <        if (node.wasInterrupted)
731 <            throw new InterruptedException();
609 <        else
610 <            return p;
725 >        if (p == phase) {
726 >            QNode node = new QNode(this, phase, true, false, 0L);
727 >            p = root.internalAwaitAdvance(phase, node);
728 >            if (node.wasInterrupted)
729 >                throw new InterruptedException();
730 >        }
731 >        return p;
732      }
733  
734      /**
735 <     * Awaits the phase of the barrier to advance from the given phase
735 >     * Awaits the phase of this phaser to advance from the given phase
736       * value or the given timeout to elapse, throwing {@code
737       * InterruptedException} if interrupted while waiting, or
738 <     * returning immediately if the current phase of the barrier is
739 <     * not equal to the given phase value or this barrier is
619 <     * terminated.
738 >     * returning immediately if the current phase is not equal to the
739 >     * given phase value or this phaser is terminated.
740       *
741       * @param phase an arrival phase number, or negative value if
742       * terminated; this argument is normally the value returned by a
743 <     * previous call to {@code arrive} or its variants
743 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
744       * @param timeout how long to wait before giving up, in units of
745       *        {@code unit}
746       * @param unit a {@code TimeUnit} determining how to interpret the
747       *        {@code timeout} parameter
748 <     * @return the next arrival phase number, or a negative value
749 <     * if terminated or argument is negative
748 >     * @return the next arrival phase number, or the argument if it is
749 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
750 >     * if terminated
751       * @throws InterruptedException if thread interrupted while waiting
752       * @throws TimeoutException if timed out while waiting
753       */
# Line 634 | Line 755 | public class Phaser {
755                                           long timeout, TimeUnit unit)
756          throws InterruptedException, TimeoutException {
757          long nanos = unit.toNanos(timeout);
758 +        final Phaser root = this.root;
759 +        long s = (root == this) ? state : reconcileState();
760 +        int p = (int)(s >>> PHASE_SHIFT);
761          if (phase < 0)
762              return phase;
763 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
764 <        if (p != phase)
765 <            return p;
766 <        QNode node = new QNode(this, phase, true, true, nanos);
767 <        p = internalAwaitAdvance(phase, node);
768 <        if (node.wasInterrupted)
769 <            throw new InterruptedException();
770 <        else if (p == phase)
771 <            throw new TimeoutException();
648 <        else
649 <            return p;
763 >        if (p == phase) {
764 >            QNode node = new QNode(this, phase, true, true, nanos);
765 >            p = root.internalAwaitAdvance(phase, node);
766 >            if (node.wasInterrupted)
767 >                throw new InterruptedException();
768 >            else if (p == phase)
769 >                throw new TimeoutException();
770 >        }
771 >        return p;
772      }
773  
774      /**
775 <     * Forces this barrier to enter termination state. Counts of
776 <     * arrived and registered parties are unaffected. If this phaser
777 <     * has a parent, it too is terminated. This method may be useful
778 <     * for coordinating recovery after one or more tasks encounter
775 >     * Forces this phaser to enter termination state.  Counts of
776 >     * registered parties are unaffected.  If this phaser is a member
777 >     * of a tiered set of phasers, then all of the phasers in the set
778 >     * are terminated.  If this phaser is already terminated, this
779 >     * method has no effect.  This method may be useful for
780 >     * coordinating recovery after one or more tasks encounter
781       * unexpected exceptions.
782       */
783      public void forceTermination() {
784 <        Phaser r = root;    // force at root then reconcile
784 >        // Only need to change root state
785 >        final Phaser root = this.root;
786          long s;
787 <        while ((s = r.state) >= 0)
788 <            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
789 <        reconcileState();
790 <        releaseWaiters(0); // signal all threads
791 <        releaseWaiters(1);
787 >        while ((s = root.state) >= 0) {
788 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
789 >                                          s, s | TERMINATION_BIT)) {
790 >                // signal all threads
791 >                releaseWaiters(0);
792 >                releaseWaiters(1);
793 >                return;
794 >            }
795 >        }
796      }
797  
798      /**
799       * Returns the current phase number. The maximum phase number is
800       * {@code Integer.MAX_VALUE}, after which it restarts at
801 <     * zero. Upon termination, the phase number is negative.
801 >     * zero. Upon termination, the phase number is negative,
802 >     * in which case the prevailing phase prior to termination
803 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
804       *
805       * @return the phase number, or a negative value if terminated
806       */
807      public final int getPhase() {
808 <        return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
808 >        return (int)(root.state >>> PHASE_SHIFT);
809      }
810  
811      /**
812 <     * Returns the number of parties registered at this barrier.
812 >     * Returns the number of parties registered at this phaser.
813       *
814       * @return the number of parties
815       */
816      public int getRegisteredParties() {
817 <        return partiesOf(parent == null? state : reconcileState());
817 >        return partiesOf(state);
818      }
819  
820      /**
821       * Returns the number of registered parties that have arrived at
822 <     * the current phase of this barrier.
822 >     * the current phase of this phaser. If this phaser has terminated,
823 >     * the returned value is meaningless and arbitrary.
824       *
825       * @return the number of arrived parties
826       */
827      public int getArrivedParties() {
828 <        return arrivedOf(parent == null? state : reconcileState());
828 >        return arrivedOf(reconcileState());
829      }
830  
831      /**
832       * Returns the number of registered parties that have not yet
833 <     * arrived at the current phase of this barrier.
833 >     * arrived at the current phase of this phaser. If this phaser has
834 >     * terminated, the returned value is meaningless and arbitrary.
835       *
836       * @return the number of unarrived parties
837       */
838      public int getUnarrivedParties() {
839 <        return unarrivedOf(parent == null? state : reconcileState());
839 >        return unarrivedOf(reconcileState());
840      }
841  
842      /**
# Line 726 | Line 859 | public class Phaser {
859      }
860  
861      /**
862 <     * Returns {@code true} if this barrier has been terminated.
862 >     * Returns {@code true} if this phaser has been terminated.
863       *
864 <     * @return {@code true} if this barrier has been terminated
864 >     * @return {@code true} if this phaser has been terminated
865       */
866      public boolean isTerminated() {
867 <        return (parent == null? state : reconcileState()) < 0;
867 >        return root.state < 0L;
868      }
869  
870      /**
871       * Overridable method to perform an action upon impending phase
872       * advance, and to control termination. This method is invoked
873 <     * upon arrival of the party tripping the barrier (when all other
873 >     * upon arrival of the party advancing this phaser (when all other
874       * waiting parties are dormant).  If this method returns {@code
875 <     * true}, then, rather than advance the phase number, this barrier
876 <     * will be set to a final termination state, and subsequent calls
877 <     * to {@link #isTerminated} will return true. Any (unchecked)
878 <     * Exception or Error thrown by an invocation of this method is
879 <     * propagated to the party attempting to trip the barrier, in
880 <     * which case no advance occurs.
875 >     * true}, this phaser will be set to a final termination state
876 >     * upon advance, and subsequent calls to {@link #isTerminated}
877 >     * will return true. Any (unchecked) Exception or Error thrown by
878 >     * an invocation of this method is propagated to the party
879 >     * attempting to advance this phaser, in which case no advance
880 >     * occurs.
881       *
882       * <p>The arguments to this method provide the state of the phaser
883       * prevailing for the current transition.  The effects of invoking
884 <     * arrival, registration, and waiting methods on this Phaser from
884 >     * arrival, registration, and waiting methods on this phaser from
885       * within {@code onAdvance} are unspecified and should not be
886       * relied on.
887       *
888 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
889 <     * {@code onAdvance} is invoked only for its root Phaser on each
888 >     * <p>If this phaser is a member of a tiered set of phasers, then
889 >     * {@code onAdvance} is invoked only for its root phaser on each
890       * advance.
891       *
892 <     * <p>The default version returns {@code true} when the number of
893 <     * registered parties is zero. Normally, overrides that arrange
894 <     * termination for other reasons should also preserve this
895 <     * property.
892 >     * <p>To support the most common use cases, the default
893 >     * implementation of this method returns {@code true} when the
894 >     * number of registered parties has become zero as the result of a
895 >     * party invoking {@code arriveAndDeregister}.  You can disable
896 >     * this behavior, thus enabling continuation upon future
897 >     * registrations, by overriding this method to always return
898 >     * {@code false}:
899 >     *
900 >     * <pre> {@code
901 >     * Phaser phaser = new Phaser() {
902 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
903 >     * }}</pre>
904       *
905 <     * @param phase the phase number on entering the barrier
905 >     * @param phase the current phase number on entry to this method,
906 >     * before this phaser is advanced
907       * @param registeredParties the current number of registered parties
908 <     * @return {@code true} if this barrier should terminate
908 >     * @return {@code true} if this phaser should terminate
909       */
910      protected boolean onAdvance(int phase, int registeredParties) {
911 <        return registeredParties <= 0;
911 >        return registeredParties == 0;
912      }
913  
914      /**
# Line 776 | Line 918 | public class Phaser {
918       * followed by the number of registered parties, and {@code
919       * "arrived = "} followed by the number of arrived parties.
920       *
921 <     * @return a string identifying this barrier, as well as its state
921 >     * @return a string identifying this phaser, as well as its state
922       */
923      public String toString() {
924 <        long s = reconcileState();
924 >        return stateToString(reconcileState());
925 >    }
926 >
927 >    /**
928 >     * Implementation of toString and string-based error messages
929 >     */
930 >    private String stateToString(long s) {
931          return super.toString() +
932              "[phase = " + phaseOf(s) +
933              " parties = " + partiesOf(s) +
934              " arrived = " + arrivedOf(s) + "]";
935      }
936  
937 +    // Waiting mechanics
938 +
939      /**
940 <     * Removes and signals threads from queue for phase
940 >     * Removes and signals threads from queue for phase.
941       */
942      private void releaseWaiters(int phase) {
943 <        AtomicReference<QNode> head = queueFor(phase);
944 <        QNode q;
945 <        int p;
943 >        QNode q;   // first element of queue
944 >        Thread t;  // its thread
945 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
946          while ((q = head.get()) != null &&
947 <               ((p = q.phase) == phase ||
948 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
949 <            if (head.compareAndSet(q, q.next))
950 <                q.signal();
947 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
948 >            if (head.compareAndSet(q, q.next) &&
949 >                (t = q.thread) != null) {
950 >                q.thread = null;
951 >                LockSupport.unpark(t);
952 >            }
953          }
954      }
955  
956      /**
957 <     * Tries to enqueue given node in the appropriate wait queue.
958 <     *
959 <     * @return true if successful
960 <     */
961 <    private boolean tryEnqueue(int phase, QNode node) {
962 <        releaseWaiters(phase-1); // ensure old queue clean
963 <        AtomicReference<QNode> head = queueFor(phase);
964 <        QNode q = head.get();
965 <        return ((q == null || q.phase == phase) &&
966 <                (int)(root.state >>> PHASE_SHIFT) == phase &&
967 <                head.compareAndSet(node.next = q, node));
957 >     * Variant of releaseWaiters that additionally tries to remove any
958 >     * nodes no longer waiting for advance due to timeout or
959 >     * interrupt. Currently, nodes are removed only if they are at
960 >     * head of queue, which suffices to reduce memory footprint in
961 >     * most usages.
962 >     *
963 >     * @return current phase on exit
964 >     */
965 >    private int abortWait(int phase) {
966 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967 >        for (;;) {
968 >            Thread t;
969 >            QNode q = head.get();
970 >            int p = (int)(root.state >>> PHASE_SHIFT);
971 >            if (q == null || ((t = q.thread) != null && q.phase == p))
972 >                return p;
973 >            if (head.compareAndSet(q, q.next) && t != null) {
974 >                q.thread = null;
975 >                LockSupport.unpark(t);
976 >            }
977 >        }
978      }
979  
980      /** The number of CPUs, for spin control */
# Line 826 | Line 988 | public class Phaser {
988       * avoid it when threads regularly arrive: When a thread in
989       * internalAwaitAdvance notices another arrival before blocking,
990       * and there appear to be enough CPUs available, it spins
991 <     * SPINS_PER_ARRIVAL more times before continuing to try to
992 <     * block. The value trades off good-citizenship vs big unnecessary
831 <     * slowdowns.
991 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
992 >     * off good-citizenship vs big unnecessary slowdowns.
993       */
994 <    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
994 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
995  
996      /**
997       * Possibly blocks and waits for phase to advance unless aborted.
998 +     * Call only from root node.
999       *
1000       * @param phase current phase
1001       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 841 | Line 1003 | public class Phaser {
1003       * @return current phase
1004       */
1005      private int internalAwaitAdvance(int phase, QNode node) {
1006 <        Phaser current = this;       // to eventually wait at root if tiered
1007 <        Phaser par = parent;
1008 <        boolean queued = false;
1006 >        releaseWaiters(phase-1);          // ensure old queue clean
1007 >        boolean queued = false;           // true when node is enqueued
1008 >        int lastUnarrived = 0;            // to increase spins upon change
1009          int spins = SPINS_PER_ARRIVAL;
848        int lastUnarrived = -1;      // to increase spins upon change
1010          long s;
1011          int p;
1012 <        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
1013 <            int unarrived = (int)(s & UNARRIVED_MASK);
1014 <            if (unarrived != lastUnarrived) {
1015 <                if ((lastUnarrived = unarrived) < NCPU)
1012 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013 >            if (node == null) {           // spinning in noninterruptible mode
1014 >                int unarrived = (int)s & UNARRIVED_MASK;
1015 >                if (unarrived != lastUnarrived &&
1016 >                    (lastUnarrived = unarrived) < NCPU)
1017                      spins += SPINS_PER_ARRIVAL;
1018 +                boolean interrupted = Thread.interrupted();
1019 +                if (interrupted || --spins < 0) { // need node to record intr
1020 +                    node = new QNode(this, phase, false, false, 0L);
1021 +                    node.wasInterrupted = interrupted;
1022 +                }
1023              }
1024 <            else if (unarrived == 0 && par != null) {
858 <                current = par;       // if all arrived, use parent
859 <                par = par.parent;
860 <            }
861 <            else if (spins > 0)
862 <                --spins;
863 <            else if (node == null)
864 <                node = new QNode(this, phase, false, false, 0L);
865 <            else if (node.isReleasable())
1024 >            else if (node.isReleasable()) // done or aborted
1025                  break;
1026 <            else if (!queued)
1027 <                queued = tryEnqueue(phase, node);
1026 >            else if (!queued) {           // push onto queue
1027 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028 >                QNode q = node.next = head.get();
1029 >                if ((q == null || q.phase == phase) &&
1030 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031 >                    queued = head.compareAndSet(q, node);
1032 >            }
1033              else {
1034                  try {
1035                      ForkJoinPool.managedBlock(node);
# Line 874 | Line 1038 | public class Phaser {
1038                  }
1039              }
1040          }
1041 +
1042          if (node != null) {
1043              if (node.thread != null)
1044 <                node.thread = null;
1045 <            if (!node.interruptible && node.wasInterrupted)
1044 >                node.thread = null;       // avoid need for unpark()
1045 >            if (node.wasInterrupted && !node.interruptible)
1046                  Thread.currentThread().interrupt();
1047 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 +                return abortWait(phase); // possibly clean up on abort
1049          }
1050 <        if (p == phase)
884 <            p = (int)(reconcileState() >>> PHASE_SHIFT);
885 <        if (p != phase)
886 <            releaseWaiters(phase);
1050 >        releaseWaiters(phase);
1051          return p;
1052      }
1053  
# Line 908 | Line 1072 | public class Phaser {
1072              this.interruptible = interruptible;
1073              this.nanos = nanos;
1074              this.timed = timed;
1075 <            this.lastTime = timed? System.nanoTime() : 0L;
1075 >            this.lastTime = timed ? System.nanoTime() : 0L;
1076              thread = Thread.currentThread();
1077          }
1078  
1079          public boolean isReleasable() {
1080 <            Thread t = thread;
1081 <            if (t != null) {
1082 <                if (phaser.getPhase() != phase)
919 <                    t = null;
920 <                else {
921 <                    if (Thread.interrupted())
922 <                        wasInterrupted = true;
923 <                    if (interruptible && wasInterrupted)
924 <                        t = null;
925 <                    else if (timed) {
926 <                        if (nanos > 0) {
927 <                            long now = System.nanoTime();
928 <                            nanos -= now - lastTime;
929 <                            lastTime = now;
930 <                        }
931 <                        if (nanos <= 0)
932 <                            t = null;
933 <                    }
934 <                }
935 <                if (t != null)
936 <                    return false;
1080 >            if (thread == null)
1081 >                return true;
1082 >            if (phaser.getPhase() != phase) {
1083                  thread = null;
1084 +                return true;
1085              }
1086 <            return true;
1086 >            if (Thread.interrupted())
1087 >                wasInterrupted = true;
1088 >            if (wasInterrupted && interruptible) {
1089 >                thread = null;
1090 >                return true;
1091 >            }
1092 >            if (timed) {
1093 >                if (nanos > 0L) {
1094 >                    long now = System.nanoTime();
1095 >                    nanos -= now - lastTime;
1096 >                    lastTime = now;
1097 >                }
1098 >                if (nanos <= 0L) {
1099 >                    thread = null;
1100 >                    return true;
1101 >                }
1102 >            }
1103 >            return false;
1104          }
1105  
1106          public boolean block() {
# Line 948 | Line 1112 | public class Phaser {
1112                  LockSupport.parkNanos(this, nanos);
1113              return isReleasable();
1114          }
951
952        void signal() {
953            Thread t = thread;
954            if (t != null) {
955                thread = null;
956                LockSupport.unpark(t);
957            }
958        }
1115      }
1116  
1117      // Unsafe mechanics
1118  
1119 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1120 <    private static final long stateOffset =
1121 <        objectFieldOffset("state", Phaser.class);
966 <
967 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1119 >    private static final sun.misc.Unsafe UNSAFE;
1120 >    private static final long stateOffset;
1121 >    static {
1122          try {
1123 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1124 <        } catch (NoSuchFieldException e) {
1125 <            // Convert Exception to corresponding Error
1126 <            NoSuchFieldError error = new NoSuchFieldError(field);
1127 <            error.initCause(e);
1128 <            throw error;
1123 >            UNSAFE = getUnsafe();
1124 >            Class<?> k = Phaser.class;
1125 >            stateOffset = UNSAFE.objectFieldOffset
1126 >                (k.getDeclaredField("state"));
1127 >        } catch (Exception e) {
1128 >            throw new Error(e);
1129          }
1130      }
1131  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines