ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.64 by jsr166, Mon Nov 29 20:58:06 2010 UTC vs.
Revision 1.76 by jsr166, Sat Oct 15 21:46:25 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 75 | Line 75 | import java.util.concurrent.locks.LockSu
75   * </ul>
76   *
77   * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82   * Termination is triggered when an invocation of {@code onAdvance}
83   * returns {@code true}. The default implementation returns {@code
84   * true} if a deregistration has caused the number of registered
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 183 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a {@code Phaser} that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219   * expected synchronization rates. A value as low as four may
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Primary state representation, holding four fields:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268      private static final int  MAX_PARTIES     = 0xffff;
269 <    private static final int  MAX_PHASE       = 0x7fffffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
250    private static final long ONE_ARRIVAL     = 1L;
251    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
274      private static final long TERMINATION_BIT = 1L << 63;
275  
276 +    // some special values
277 +    private static final int  ONE_ARRIVAL     = 1;
278 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 +    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
280 +    private static final int  EMPTY           = 1;
281 +
282      // The following unpacking methods are usually manually inlined
283  
284      private static int unarrivedOf(long s) {
285 <        return (int)s & UNARRIVED_MASK;
285 >        int counts = (int)s;
286 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287      }
288  
289      private static int partiesOf(long s) {
# Line 262 | Line 291 | public class Phaser {
291      }
292  
293      private static int phaseOf(long s) {
294 <        return (int) (s >>> PHASE_SHIFT);
294 >        return (int)(s >>> PHASE_SHIFT);
295      }
296  
297      private static int arrivedOf(long s) {
298 <        return partiesOf(s) - unarrivedOf(s);
298 >        int counts = (int)s;
299 >        return (counts == EMPTY) ? 0 :
300 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301      }
302  
303      /**
# Line 275 | Line 306 | public class Phaser {
306      private final Phaser parent;
307  
308      /**
309 <     * The root of phaser tree. Equals this if not in a tree.  Used to
279 <     * support faster state push-down.
309 >     * The root of phaser tree. Equals this if not in a tree.
310       */
311      private final Phaser root;
312  
# Line 314 | Line 344 | public class Phaser {
344       * Manually tuned to speed up and minimize race windows for the
345       * common case of just decrementing unarrived field.
346       *
347 <     * @param adj - adjustment to apply to state -- either
348 <     * ONE_ARRIVAL (for arrive) or
349 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
347 >     * @param adjust value to subtract from state;
348 >     *               ONE_ARRIVAL for arrive,
349 >     *               ONE_DEREGISTER for arriveAndDeregister
350       */
351 <    private int doArrive(long adj) {
351 >    private int doArrive(int adjust) {
352 >        final Phaser root = this.root;
353          for (;;) {
354 <            long s = state;
324 <            int unarrived = (int)s & UNARRIVED_MASK;
354 >            long s = (root == this) ? state : reconcileState();
355              int phase = (int)(s >>> PHASE_SHIFT);
356              if (phase < 0)
357                  return phase;
358 <            else if (unarrived == 0) {
359 <                if (reconcileState() == s)     // recheck
360 <                    throw new IllegalStateException(badArrive(s));
361 <            }
362 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
358 >            int counts = (int)s;
359 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360 >            if (unarrived <= 0)
361 >                throw new IllegalStateException(badArrive(s));
362 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363                  if (unarrived == 1) {
364 <                    long p = s & PARTIES_MASK; // unshifted parties field
365 <                    long lu = p >>> PARTIES_SHIFT;
366 <                    int u = (int)lu;
367 <                    int nextPhase = (phase + 1) & MAX_PHASE;
368 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
369 <                    final Phaser parent = this.parent;
370 <                    if (parent == null) {
371 <                        if (onAdvance(phase, u))
372 <                            next |= TERMINATION_BIT;
373 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
364 >                    long n = s & PARTIES_MASK;  // base of next state
365 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368 >                            n |= TERMINATION_BIT;
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371 >                        else
372 >                            n |= nextUnarrived;
373 >                        int nextPhase = (phase + 1) & MAX_PHASE;
374 >                        n |= (long)nextPhase << PHASE_SHIFT;
375 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376                          releaseWaiters(phase);
377                      }
378 <                    else {
379 <                        parent.doArrive((u == 0) ?
380 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
381 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350 <                            reconcileState();
351 <                        else if (state == s)
352 <                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 <                                                      next);
378 >                    else if (nextUnarrived == 0) { // propagate deregistration
379 >                        phase = parent.doArrive(ONE_DEREGISTER);
380 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
381 >                                                  s, s | EMPTY);
382                      }
383 +                    else
384 +                        phase = parent.doArrive(ONE_ARRIVAL);
385                  }
386                  return phase;
387              }
# Line 366 | Line 396 | public class Phaser {
396       */
397      private int doRegister(int registrations) {
398          // adjustment to state
399 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400          final Phaser parent = this.parent;
401 +        int phase;
402          for (;;) {
403              long s = (parent == null) ? state : reconcileState();
404 <            int parties = (int)s >>> PARTIES_SHIFT;
405 <            int phase = (int)(s >>> PHASE_SHIFT);
406 <            if (phase < 0)
407 <                return phase;
377 <            else if (registrations > MAX_PARTIES - parties)
404 >            int counts = (int)s;
405 >            int parties = counts >>> PARTIES_SHIFT;
406 >            int unarrived = counts & UNARRIVED_MASK;
407 >            if (registrations > MAX_PARTIES - parties)
408                  throw new IllegalStateException(badRegister(s));
409 <            else if ((parties == 0 && parent == null) || // first reg of root
410 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
411 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
412 <                    return phase;
409 >            phase = (int)(s >>> PHASE_SHIFT);
410 >            if (phase < 0)
411 >                break;
412 >            if (counts != EMPTY) {                  // not 1st registration
413 >                if (parent == null || reconcileState() == s) {
414 >                    if (unarrived == 0)             // wait out advance
415 >                        root.internalAwaitAdvance(phase, null);
416 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 >                                                       s, s + adjust))
418 >                        break;
419 >                }
420 >            }
421 >            else if (parent == null) {              // 1st root registration
422 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
423 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424 >                    break;
425              }
426 <            else if (parties != 0)               // wait for onAdvance
427 <                root.internalAwaitAdvance(phase, null);
428 <            else {                               // 1st registration of child
429 <                synchronized (this) {            // register parent first
430 <                    if (reconcileState() == s) { // recheck under lock
431 <                        parent.doRegister(1);    // OK if throws IllegalState
432 <                        for (;;) {               // simpler form of outer loop
433 <                            s = reconcileState();
434 <                            phase = (int)(s >>> PHASE_SHIFT);
435 <                            if (phase < 0 ||
436 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
437 <                                                          s, s + adj))
438 <                                return phase;
426 >            else {
427 >                synchronized (this) {               // 1st sub registration
428 >                    if (state == s) {               // recheck under lock
429 >                        phase = parent.doRegister(1);
430 >                        if (phase < 0)
431 >                            break;
432 >                        // finish registration whenever parent registration
433 >                        // succeeded, even when racing with termination,
434 >                        // since these are part of the same "transaction".
435 >                        while (!UNSAFE.compareAndSwapLong
436 >                               (this, stateOffset, s,
437 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
438 >                            s = state;
439 >                            phase = (int)(root.state >>> PHASE_SHIFT);
440 >                            // assert (int)s == EMPTY;
441                          }
442 +                        break;
443                      }
444                  }
445              }
446          }
447 +        return phase;
448      }
449  
450      /**
451 <     * Recursively resolves lagged phase propagation from root if necessary.
451 >     * Resolves lagged phase propagation from root if necessary.
452 >     * Reconciliation normally occurs when root has advanced but
453 >     * subphasers have not yet done so, in which case they must finish
454 >     * their own advance by setting unarrived to parties (or if
455 >     * parties is zero, resetting to unregistered EMPTY state).
456 >     * However, this method may also be called when "floating"
457 >     * subphasers with possibly some unarrived parties are merely
458 >     * catching up to current phase, in which case counts are
459 >     * unaffected.
460 >     *
461 >     * @return reconciled state
462       */
463      private long reconcileState() {
464 <        Phaser par = parent;
464 >        final Phaser root = this.root;
465          long s = state;
466 <        if (par != null) {
467 <            Phaser rt = root;
468 <            int phase, rPhase;
469 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
470 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
471 <                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
472 <                    par.reconcileState();
473 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
474 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
475 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
476 <                                 (u >>> PARTIES_SHIFT));
477 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
422 <                }
466 >        if (root != this) {
467 >            int phase, u, p;
468 >            // CAS root phase with current parties; possibly trip unarrived
469 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
470 >                   (int)(s >>> PHASE_SHIFT) &&
471 >                   !UNSAFE.compareAndSwapLong
472 >                   (this, stateOffset, s,
473 >                    s = (((long)phase << PHASE_SHIFT) |
474 >                         (s & PARTIES_MASK) |
475 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
476 >                          ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
477 >                          p : u))))
478                  s = state;
424            }
479          }
480          return s;
481      }
# Line 459 | Line 513 | public class Phaser {
513  
514      /**
515       * Creates a new phaser with the given parent and number of
516 <     * registered unarrived parties. Registration and deregistration
517 <     * of this child phaser with its parent are managed automatically.
518 <     * If the given parent is non-null, whenever this child phaser has
465 <     * any registered parties (as established in this constructor,
466 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
467 <     * is registered with its parent. Whenever the number of
468 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child phaser is
470 <     * deregistered from its parent.
516 >     * registered unarrived parties.  When the given parent is non-null
517 >     * and the given number of parties is greater than zero, this
518 >     * child phaser is registered with its parent.
519       *
520       * @param parent the parent phaser
521       * @param parties the number of parties required to advance to the
# Line 478 | Line 526 | public class Phaser {
526      public Phaser(Phaser parent, int parties) {
527          if (parties >>> PARTIES_SHIFT != 0)
528              throw new IllegalArgumentException("Illegal number of parties");
529 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
529 >        int phase = 0;
530          this.parent = parent;
531          if (parent != null) {
532 <            Phaser r = parent.root;
533 <            this.root = r;
534 <            this.evenQ = r.evenQ;
535 <            this.oddQ = r.oddQ;
532 >            final Phaser root = parent.root;
533 >            this.root = root;
534 >            this.evenQ = root.evenQ;
535 >            this.oddQ = root.oddQ;
536              if (parties != 0)
537 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
537 >                phase = parent.doRegister(1);
538          }
539          else {
540              this.root = this;
541              this.evenQ = new AtomicReference<QNode>();
542              this.oddQ = new AtomicReference<QNode>();
543          }
544 <        this.state = s;
544 >        this.state = (parties == 0) ? (long)EMPTY :
545 >            ((long)phase << PHASE_SHIFT) |
546 >            ((long)parties << PARTIES_SHIFT) |
547 >            ((long)parties);
548      }
549  
550      /**
# Line 501 | Line 552 | public class Phaser {
552       * invocation of {@link #onAdvance} is in progress, this method
553       * may await its completion before returning.  If this phaser has
554       * a parent, and this phaser previously had no registered parties,
555 <     * this phaser is also registered with its parent.
556 <     *
557 <     * @return the arrival phase number to which this registration applied
555 >     * this child phaser is also registered with its parent. If
556 >     * this phaser is terminated, the attempt to register has
557 >     * no effect, and a negative value is returned.
558 >     *
559 >     * @return the arrival phase number to which this registration
560 >     * applied.  If this value is negative, then this phaser has
561 >     * terminated, in which case registration has no effect.
562       * @throws IllegalStateException if attempting to register more
563       * than the maximum supported number of parties
564       */
# Line 515 | Line 570 | public class Phaser {
570       * Adds the given number of new unarrived parties to this phaser.
571       * If an ongoing invocation of {@link #onAdvance} is in progress,
572       * this method may await its completion before returning.  If this
573 <     * phaser has a parent, and the given number of parities is
574 <     * greater than zero, and this phaser previously had no registered
575 <     * parties, this phaser is also registered with its parent.
573 >     * phaser has a parent, and the given number of parties is greater
574 >     * than zero, and this phaser previously had no registered
575 >     * parties, this child phaser is also registered with its parent.
576 >     * If this phaser is terminated, the attempt to register has no
577 >     * effect, and a negative value is returned.
578       *
579       * @param parties the number of additional parties required to
580       * advance to the next phase
581 <     * @return the arrival phase number to which this registration applied
581 >     * @return the arrival phase number to which this registration
582 >     * applied.  If this value is negative, then this phaser has
583 >     * terminated, in which case registration has no effect.
584       * @throws IllegalStateException if attempting to register more
585       * than the maximum supported number of parties
586       * @throws IllegalArgumentException if {@code parties < 0}
# Line 567 | Line 626 | public class Phaser {
626       * of registered or unarrived parties would become negative
627       */
628      public int arriveAndDeregister() {
629 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
629 >        return doArrive(ONE_DEREGISTER);
630      }
631  
632      /**
# Line 583 | Line 642 | public class Phaser {
642       * IllegalStateException} only upon some subsequent operation on
643       * this phaser, if ever.
644       *
645 <     * @return the arrival phase number, or a negative number if terminated
645 >     * @return the arrival phase number, or the (negative)
646 >     * {@linkplain #getPhase() current phase} if terminated
647       * @throws IllegalStateException if not terminated and the number
648       * of unarrived parties would become negative
649       */
650      public int arriveAndAwaitAdvance() {
651 <        return awaitAdvance(doArrive(ONE_ARRIVAL));
651 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
652 >        final Phaser root = this.root;
653 >        for (;;) {
654 >            long s = (root == this) ? state : reconcileState();
655 >            int phase = (int)(s >>> PHASE_SHIFT);
656 >            if (phase < 0)
657 >                return phase;
658 >            int counts = (int)s;
659 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
660 >            if (unarrived <= 0)
661 >                throw new IllegalStateException(badArrive(s));
662 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
663 >                                          s -= ONE_ARRIVAL)) {
664 >                if (unarrived > 1)
665 >                    return root.internalAwaitAdvance(phase, null);
666 >                if (root != this)
667 >                    return parent.arriveAndAwaitAdvance();
668 >                long n = s & PARTIES_MASK;  // base of next state
669 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
670 >                if (onAdvance(phase, nextUnarrived))
671 >                    n |= TERMINATION_BIT;
672 >                else if (nextUnarrived == 0)
673 >                    n |= EMPTY;
674 >                else
675 >                    n |= nextUnarrived;
676 >                int nextPhase = (phase + 1) & MAX_PHASE;
677 >                n |= (long)nextPhase << PHASE_SHIFT;
678 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
679 >                    return (int)(state >>> PHASE_SHIFT); // terminated
680 >                releaseWaiters(phase);
681 >                return nextPhase;
682 >            }
683 >        }
684      }
685  
686      /**
# Line 599 | Line 691 | public class Phaser {
691       * @param phase an arrival phase number, or negative value if
692       * terminated; this argument is normally the value returned by a
693       * previous call to {@code arrive} or {@code arriveAndDeregister}.
694 <     * @return the next arrival phase number, or a negative value
695 <     * if terminated or argument is negative
694 >     * @return the next arrival phase number, or the argument if it is
695 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
696 >     * if terminated
697       */
698      public int awaitAdvance(int phase) {
699 <        Phaser rt;
700 <        int p = (int)(state >>> PHASE_SHIFT);
699 >        final Phaser root = this.root;
700 >        long s = (root == this) ? state : reconcileState();
701 >        int p = (int)(s >>> PHASE_SHIFT);
702          if (phase < 0)
703              return phase;
704 <        if (p == phase &&
705 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 <            return rt.internalAwaitAdvance(phase, null);
704 >        if (p == phase)
705 >            return root.internalAwaitAdvance(phase, null);
706          return p;
707      }
708  
# Line 623 | Line 716 | public class Phaser {
716       * @param phase an arrival phase number, or negative value if
717       * terminated; this argument is normally the value returned by a
718       * previous call to {@code arrive} or {@code arriveAndDeregister}.
719 <     * @return the next arrival phase number, or a negative value
720 <     * if terminated or argument is negative
719 >     * @return the next arrival phase number, or the argument if it is
720 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
721 >     * if terminated
722       * @throws InterruptedException if thread interrupted while waiting
723       */
724      public int awaitAdvanceInterruptibly(int phase)
725          throws InterruptedException {
726 <        Phaser rt;
727 <        int p = (int)(state >>> PHASE_SHIFT);
726 >        final Phaser root = this.root;
727 >        long s = (root == this) ? state : reconcileState();
728 >        int p = (int)(s >>> PHASE_SHIFT);
729          if (phase < 0)
730              return phase;
731 <        if (p == phase &&
637 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
731 >        if (p == phase) {
732              QNode node = new QNode(this, phase, true, false, 0L);
733 <            p = rt.internalAwaitAdvance(phase, node);
733 >            p = root.internalAwaitAdvance(phase, node);
734              if (node.wasInterrupted)
735                  throw new InterruptedException();
736          }
# Line 657 | Line 751 | public class Phaser {
751       *        {@code unit}
752       * @param unit a {@code TimeUnit} determining how to interpret the
753       *        {@code timeout} parameter
754 <     * @return the next arrival phase number, or a negative value
755 <     * if terminated or argument is negative
754 >     * @return the next arrival phase number, or the argument if it is
755 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
756 >     * if terminated
757       * @throws InterruptedException if thread interrupted while waiting
758       * @throws TimeoutException if timed out while waiting
759       */
# Line 666 | Line 761 | public class Phaser {
761                                           long timeout, TimeUnit unit)
762          throws InterruptedException, TimeoutException {
763          long nanos = unit.toNanos(timeout);
764 <        Phaser rt;
765 <        int p = (int)(state >>> PHASE_SHIFT);
764 >        final Phaser root = this.root;
765 >        long s = (root == this) ? state : reconcileState();
766 >        int p = (int)(s >>> PHASE_SHIFT);
767          if (phase < 0)
768              return phase;
769 <        if (p == phase &&
674 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
769 >        if (p == phase) {
770              QNode node = new QNode(this, phase, true, true, nanos);
771 <            p = rt.internalAwaitAdvance(phase, node);
771 >            p = root.internalAwaitAdvance(phase, node);
772              if (node.wasInterrupted)
773                  throw new InterruptedException();
774              else if (p == phase)
# Line 684 | Line 779 | public class Phaser {
779  
780      /**
781       * Forces this phaser to enter termination state.  Counts of
782 <     * arrived and registered parties are unaffected.  If this phaser
783 <     * is a member of a tiered set of phasers, then all of the phasers
784 <     * in the set are terminated.  If this phaser is already
785 <     * terminated, this method has no effect.  This method may be
786 <     * useful for coordinating recovery after one or more tasks
787 <     * encounter unexpected exceptions.
782 >     * registered parties are unaffected.  If this phaser is a member
783 >     * of a tiered set of phasers, then all of the phasers in the set
784 >     * are terminated.  If this phaser is already terminated, this
785 >     * method has no effect.  This method may be useful for
786 >     * coordinating recovery after one or more tasks encounter
787 >     * unexpected exceptions.
788       */
789      public void forceTermination() {
790          // Only need to change root state
# Line 698 | Line 793 | public class Phaser {
793          while ((s = root.state) >= 0) {
794              if (UNSAFE.compareAndSwapLong(root, stateOffset,
795                                            s, s | TERMINATION_BIT)) {
796 <                releaseWaiters(0); // signal all threads
797 <                releaseWaiters(1);
796 >                // signal all threads
797 >                releaseWaiters(0); // Waiters on evenQ
798 >                releaseWaiters(1); // Waiters on oddQ
799                  return;
800              }
801          }
# Line 729 | Line 825 | public class Phaser {
825  
826      /**
827       * Returns the number of registered parties that have arrived at
828 <     * the current phase of this phaser.
828 >     * the current phase of this phaser. If this phaser has terminated,
829 >     * the returned value is meaningless and arbitrary.
830       *
831       * @return the number of arrived parties
832       */
833      public int getArrivedParties() {
834 <        long s = state;
738 <        int u = unarrivedOf(s); // only reconcile if possibly needed
739 <        return (u != 0 || parent == null) ?
740 <            partiesOf(s) - u :
741 <            arrivedOf(reconcileState());
834 >        return arrivedOf(reconcileState());
835      }
836  
837      /**
838       * Returns the number of registered parties that have not yet
839 <     * arrived at the current phase of this phaser.
839 >     * arrived at the current phase of this phaser. If this phaser has
840 >     * terminated, the returned value is meaningless and arbitrary.
841       *
842       * @return the number of unarrived parties
843       */
844      public int getUnarrivedParties() {
845 <        int u = unarrivedOf(state);
752 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
845 >        return unarrivedOf(reconcileState());
846      }
847  
848      /**
# Line 785 | Line 878 | public class Phaser {
878       * advance, and to control termination. This method is invoked
879       * upon arrival of the party advancing this phaser (when all other
880       * waiting parties are dormant).  If this method returns {@code
881 <     * true}, then, rather than advance the phase number, this phaser
882 <     * will be set to a final termination state, and subsequent calls
883 <     * to {@link #isTerminated} will return true. Any (unchecked)
884 <     * Exception or Error thrown by an invocation of this method is
885 <     * propagated to the party attempting to advance this phaser, in
886 <     * which case no advance occurs.
881 >     * true}, this phaser will be set to a final termination state
882 >     * upon advance, and subsequent calls to {@link #isTerminated}
883 >     * will return true. Any (unchecked) Exception or Error thrown by
884 >     * an invocation of this method is propagated to the party
885 >     * attempting to advance this phaser, in which case no advance
886 >     * occurs.
887       *
888       * <p>The arguments to this method provide the state of the phaser
889       * prevailing for the current transition.  The effects of invoking
# Line 854 | Line 947 | public class Phaser {
947       */
948      private void releaseWaiters(int phase) {
949          QNode q;   // first element of queue
857        int p;     // its phase
950          Thread t;  // its thread
951          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
952          while ((q = head.get()) != null &&
953 <               ((p = q.phase) == phase ||
862 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
953 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
954              if (head.compareAndSet(q, q.next) &&
955                  (t = q.thread) != null) {
956                  q.thread = null;
# Line 868 | Line 959 | public class Phaser {
959          }
960      }
961  
962 +    /**
963 +     * Variant of releaseWaiters that additionally tries to remove any
964 +     * nodes no longer waiting for advance due to timeout or
965 +     * interrupt. Currently, nodes are removed only if they are at
966 +     * head of queue, which suffices to reduce memory footprint in
967 +     * most usages.
968 +     *
969 +     * @return current phase on exit
970 +     */
971 +    private int abortWait(int phase) {
972 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
973 +        for (;;) {
974 +            Thread t;
975 +            QNode q = head.get();
976 +            int p = (int)(root.state >>> PHASE_SHIFT);
977 +            if (q == null || ((t = q.thread) != null && q.phase == p))
978 +                return p;
979 +            if (head.compareAndSet(q, q.next) && t != null) {
980 +                q.thread = null;
981 +                LockSupport.unpark(t);
982 +            }
983 +        }
984 +    }
985 +
986      /** The number of CPUs, for spin control */
987      private static final int NCPU = Runtime.getRuntime().availableProcessors();
988  
# Line 886 | Line 1001 | public class Phaser {
1001  
1002      /**
1003       * Possibly blocks and waits for phase to advance unless aborted.
1004 <     * Call only from root node.
1004 >     * Call only on root phaser.
1005       *
1006       * @param phase current phase
1007       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 894 | Line 1009 | public class Phaser {
1009       * @return current phase
1010       */
1011      private int internalAwaitAdvance(int phase, QNode node) {
1012 +        // assert root == this;
1013          releaseWaiters(phase-1);          // ensure old queue clean
1014          boolean queued = false;           // true when node is enqueued
1015          int lastUnarrived = 0;            // to increase spins upon change
# Line 935 | Line 1051 | public class Phaser {
1051                  node.thread = null;       // avoid need for unpark()
1052              if (node.wasInterrupted && !node.interruptible)
1053                  Thread.currentThread().interrupt();
1054 <            if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
1055 <                return p;                 // recheck abort
1054 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1055 >                return abortWait(phase); // possibly clean up on abort
1056          }
1057          releaseWaiters(phase);
1058          return p;
# Line 1007 | Line 1123 | public class Phaser {
1123  
1124      // Unsafe mechanics
1125  
1126 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1127 <    private static final long stateOffset =
1128 <        objectFieldOffset("state", Phaser.class);
1013 <
1014 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1126 >    private static final sun.misc.Unsafe UNSAFE;
1127 >    private static final long stateOffset;
1128 >    static {
1129          try {
1130 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1131 <        } catch (NoSuchFieldException e) {
1132 <            // Convert Exception to corresponding Error
1133 <            NoSuchFieldError error = new NoSuchFieldError(field);
1134 <            error.initCause(e);
1135 <            throw error;
1130 >            UNSAFE = getUnsafe();
1131 >            Class<?> k = Phaser.class;
1132 >            stateOffset = UNSAFE.objectFieldOffset
1133 >                (k.getDeclaredField("state"));
1134 >        } catch (Exception e) {
1135 >            throw new Error(e);
1136          }
1137      }
1138  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines