ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.61 by jsr166, Sun Nov 28 21:21:03 2010 UTC vs.
Revision 1.81 by jsr166, Fri Jul 15 18:49:12 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 17 | Line 17 | import java.util.concurrent.locks.LockSu
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 < * number of parties <em>registered</em> to synchronize on a Phaser
20 > * <p><b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
24   * constructors establishing initial numbers of parties), and
# Line 30 | Line 30 | import java.util.concurrent.locks.LockSu
30   * (However, you can introduce such bookkeeping by subclassing this
31   * class.)
32   *
33 < * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 > * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
47 > *   <li><b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60 < *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 > *   <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating Phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}. The default implementation returns
83 < * {@code true} if a deregistration has caused the number of
84 < * registered parties to become zero.  As illustrated below, when
85 < * Phasers control actions with a fixed number of iterations, it is
86 < * often convenient to override this method to cause termination when
87 < * the current phase number reaches a threshold. Method {@link
88 < * #forceTermination} is also available to abruptly release waiting
89 < * threads and allow them to terminate.
77 > * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82 > * Termination is triggered when an invocation of {@code onAdvance}
83 > * returns {@code true}. The default implementation returns {@code
84 > * true} if a deregistration has caused the number of registered
85 > * parties to become zero.  As illustrated below, when phasers control
86 > * actions with a fixed number of iterations, it is often convenient
87 > * to override this method to cause termination when the current phase
88 > * number reaches a threshold. Method {@link #forceTermination} is
89 > * also available to abruptly release waiting threads and allow them
90 > * to terminate.
91   *
92 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
94   * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 < * only by registered parties, the current state of a Phaser may be
111 > * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
113   * #getRegisteredParties} parties in total, of which {@link
114   * #getArrivedParties} have arrived at the current phase ({@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 182 | Line 193 | import java.util.concurrent.locks.LockSu
193   *   phaser.arriveAndDeregister();
194   * }}</pre>
195   *
196 < *
197 < * <p>To create a set of tasks using a tree of Phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a Phaser that
200 < * it registers with upon construction:
196 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
197 > * could use code of the following form, assuming a Task class with a
198 > * constructor accepting a {@code Phaser} that it registers with upon
199 > * construction. After invocation of {@code build(new Task[n], 0, n,
200 > * new Phaser())}, these tasks could then be started, for example by
201 > * submitting to a pool:
202   *
203   *  <pre> {@code
204 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
204 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
205   *   if (hi - lo > TASKS_PER_PHASER) {
206   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
207   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
208 < *       build(actions, i, j, new Phaser(ph));
208 > *       build(tasks, i, j, new Phaser(ph));
209   *     }
210   *   } else {
211   *     for (int i = lo; i < hi; ++i)
212 < *       actions[i] = new Task(ph);
212 > *       tasks[i] = new Task(ph);
213   *       // assumes new Task(ph) performs ph.register()
214   *   }
215 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
215 > * }}</pre>
216   *
217   * The best value of {@code TASKS_PER_PHASER} depends mainly on
218 < * expected barrier synchronization rates. A value as low as four may
219 < * be appropriate for extremely small per-barrier task bodies (thus
218 > * expected synchronization rates. A value as low as four may
219 > * be appropriate for extremely small per-phase task bodies (thus
220   * high rates), or up to hundreds for extremely large ones.
221   *
222   * <p><b>Implementation notes</b>: This implementation restricts the
223   * maximum number of parties to 65535. Attempts to register additional
224   * parties result in {@code IllegalStateException}. However, you can and
225 < * should create tiered Phasers to accommodate arbitrarily large sets
225 > * should create tiered phasers to accommodate arbitrarily large sets
226   * of participants.
227   *
228   * @since 1.7
# Line 226 | Line 236 | public class Phaser {
236       */
237  
238      /**
239 <     * Barrier state representation. Conceptually, a barrier contains
240 <     * four values:
239 >     * Primary state representation, holding four bit-fields:
240 >     *
241 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
242 >     * parties    -- the number of parties to wait            (bits 16-31)
243 >     * phase      -- the generation of the barrier            (bits 32-62)
244 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
245 >     *
246 >     * Except that a phaser with no registered parties is
247 >     * distinguished by the otherwise illegal state of having zero
248 >     * parties and one unarrived parties (encoded as EMPTY below).
249 >     *
250 >     * To efficiently maintain atomicity, these values are packed into
251 >     * a single (atomic) long. Good performance relies on keeping
252 >     * state decoding and encoding simple, and keeping race windows
253 >     * short.
254 >     *
255 >     * All state updates are performed via CAS except initial
256 >     * registration of a sub-phaser (i.e., one with a non-null
257 >     * parent).  In this (relatively rare) case, we use built-in
258 >     * synchronization to lock while first registering with its
259 >     * parent.
260       *
261 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
262 <     * * parties -- the number of parties to wait              (bits 16-31)
263 <     * * phase -- the generation of the barrier                (bits 32-62)
235 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
236 <     *
237 <     * However, to efficiently maintain atomicity, these values are
238 <     * packed into a single (atomic) long. Termination uses the sign
239 <     * bit of 32 bit representation of phase, so phase is set to -1 on
240 <     * termination. Good performance relies on keeping state decoding
241 <     * and encoding simple, and keeping race windows short.
261 >     * The phase of a subphaser is allowed to lag that of its
262 >     * ancestors until it is actually accessed -- see method
263 >     * reconcileState.
264       */
265      private volatile long state;
266  
267      private static final int  MAX_PARTIES     = 0xffff;
268 <    private static final int  MAX_PHASE       = 0x7fffffff;
268 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
269      private static final int  PARTIES_SHIFT   = 16;
270      private static final int  PHASE_SHIFT     = 32;
271      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
272      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
273 <    private static final long ONE_ARRIVAL     = 1L;
252 <    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
273 >    private static final long COUNTS_MASK     = 0xffffffffL;
274      private static final long TERMINATION_BIT = 1L << 63;
275  
276 +    // some special values
277 +    private static final int  ONE_ARRIVAL     = 1;
278 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 +    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
280 +    private static final int  EMPTY           = 1;
281 +
282      // The following unpacking methods are usually manually inlined
283  
284      private static int unarrivedOf(long s) {
285 <        return (int)s & UNARRIVED_MASK;
285 >        int counts = (int)s;
286 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287      }
288  
289      private static int partiesOf(long s) {
# Line 263 | Line 291 | public class Phaser {
291      }
292  
293      private static int phaseOf(long s) {
294 <        return (int) (s >>> PHASE_SHIFT);
294 >        return (int)(s >>> PHASE_SHIFT);
295      }
296  
297      private static int arrivedOf(long s) {
298 <        return partiesOf(s) - unarrivedOf(s);
298 >        int counts = (int)s;
299 >        return (counts == EMPTY) ? 0 :
300 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301      }
302  
303      /**
# Line 276 | Line 306 | public class Phaser {
306      private final Phaser parent;
307  
308      /**
309 <     * The root of phaser tree. Equals this if not in a tree.  Used to
280 <     * support faster state push-down.
309 >     * The root of phaser tree. Equals this if not in a tree.
310       */
311      private final Phaser root;
312  
# Line 315 | Line 344 | public class Phaser {
344       * Manually tuned to speed up and minimize race windows for the
345       * common case of just decrementing unarrived field.
346       *
347 <     * @param adj - adjustment to apply to state -- either
348 <     * ONE_ARRIVAL (for arrive) or
349 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
347 >     * @param adjust value to subtract from state;
348 >     *               ONE_ARRIVAL for arrive,
349 >     *               ONE_DEREGISTER for arriveAndDeregister
350       */
351 <    private int doArrive(long adj) {
351 >    private int doArrive(int adjust) {
352 >        final Phaser root = this.root;
353          for (;;) {
354 <            long s = state;
325 <            int unarrived = (int)s & UNARRIVED_MASK;
354 >            long s = (root == this) ? state : reconcileState();
355              int phase = (int)(s >>> PHASE_SHIFT);
356              if (phase < 0)
357                  return phase;
358 <            else if (unarrived == 0) {
359 <                if (reconcileState() == s)     // recheck
360 <                    throw new IllegalStateException(badArrive(s));
361 <            }
362 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
358 >            int counts = (int)s;
359 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360 >            if (unarrived <= 0)
361 >                throw new IllegalStateException(badArrive(s));
362 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363                  if (unarrived == 1) {
364 <                    long p = s & PARTIES_MASK; // unshifted parties field
365 <                    long lu = p >>> PARTIES_SHIFT;
366 <                    int u = (int)lu;
367 <                    int nextPhase = (phase + 1) & MAX_PHASE;
368 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
369 <                    final Phaser parent = this.parent;
370 <                    if (parent == null) {
371 <                        if (onAdvance(phase, u))
372 <                            next |= TERMINATION_BIT;
373 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
364 >                    long n = s & PARTIES_MASK;  // base of next state
365 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368 >                            n |= TERMINATION_BIT;
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371 >                        else
372 >                            n |= nextUnarrived;
373 >                        int nextPhase = (phase + 1) & MAX_PHASE;
374 >                        n |= (long)nextPhase << PHASE_SHIFT;
375 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376                          releaseWaiters(phase);
377                      }
378 <                    else {
379 <                        parent.doArrive((u == 0) ?
380 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
381 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 <                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352 <                             !UNSAFE.compareAndSwapLong(this, stateOffset,
353 <                                                        s, next)))
354 <                            reconcileState();
378 >                    else if (nextUnarrived == 0) { // propagate deregistration
379 >                        phase = parent.doArrive(ONE_DEREGISTER);
380 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
381 >                                                  s, s | EMPTY);
382                      }
383 +                    else
384 +                        phase = parent.doArrive(ONE_ARRIVAL);
385                  }
386                  return phase;
387              }
# Line 367 | Line 396 | public class Phaser {
396       */
397      private int doRegister(int registrations) {
398          // adjustment to state
399 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400          final Phaser parent = this.parent;
401 +        int phase;
402          for (;;) {
403              long s = (parent == null) ? state : reconcileState();
404 <            int parties = (int)s >>> PARTIES_SHIFT;
405 <            int phase = (int)(s >>> PHASE_SHIFT);
406 <            if (phase < 0)
407 <                return phase;
378 <            else if (registrations > MAX_PARTIES - parties)
404 >            int counts = (int)s;
405 >            int parties = counts >>> PARTIES_SHIFT;
406 >            int unarrived = counts & UNARRIVED_MASK;
407 >            if (registrations > MAX_PARTIES - parties)
408                  throw new IllegalStateException(badRegister(s));
409 <            else if ((parties == 0 && parent == null) || // first reg of root
410 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
411 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
412 <                    return phase;
409 >            phase = (int)(s >>> PHASE_SHIFT);
410 >            if (phase < 0)
411 >                break;
412 >            if (counts != EMPTY) {                  // not 1st registration
413 >                if (parent == null || reconcileState() == s) {
414 >                    if (unarrived == 0)             // wait out advance
415 >                        root.internalAwaitAdvance(phase, null);
416 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 >                                                       s, s + adjust))
418 >                        break;
419 >                }
420              }
421 <            else if (parties != 0)               // wait for onAdvance
422 <                root.internalAwaitAdvance(phase, null);
423 <            else {                               // 1st registration of child
424 <                synchronized (this) {            // register parent first
425 <                    if (reconcileState() == s) { // recheck under lock
426 <                        parent.doRegister(1);    // OK if throws IllegalState
427 <                        for (;;) {               // simpler form of outer loop
428 <                            s = reconcileState();
429 <                            phase = (int)(s >>> PHASE_SHIFT);
430 <                            if (phase < 0 ||
431 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
432 <                                                          s, s + adj))
433 <                                return phase;
421 >            else if (parent == null) {              // 1st root registration
422 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
423 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424 >                    break;
425 >            }
426 >            else {
427 >                synchronized (this) {               // 1st sub registration
428 >                    if (state == s) {               // recheck under lock
429 >                        phase = parent.doRegister(1);
430 >                        if (phase < 0)
431 >                            break;
432 >                        // finish registration whenever parent registration
433 >                        // succeeded, even when racing with termination,
434 >                        // since these are part of the same "transaction".
435 >                        while (!UNSAFE.compareAndSwapLong
436 >                               (this, stateOffset, s,
437 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
438 >                            s = state;
439 >                            phase = (int)(root.state >>> PHASE_SHIFT);
440 >                            // assert (int)s == EMPTY;
441                          }
442 +                        break;
443                      }
444                  }
445              }
446          }
447 +        return phase;
448      }
449  
450      /**
451 <     * Recursively resolves lagged phase propagation from root if necessary.
451 >     * Resolves lagged phase propagation from root if necessary.
452 >     * Reconciliation normally occurs when root has advanced but
453 >     * subphasers have not yet done so, in which case they must finish
454 >     * their own advance by setting unarrived to parties (or if
455 >     * parties is zero, resetting to unregistered EMPTY state).
456 >     *
457 >     * @return reconciled state
458       */
459      private long reconcileState() {
460 <        Phaser par = parent;
460 >        final Phaser root = this.root;
461          long s = state;
462 <        if (par != null) {
463 <            Phaser rt = root;
464 <            int phase, rPhase;
465 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
466 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
467 <                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
468 <                    par.reconcileState();
469 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
470 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
471 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
472 <                                 (u >>> PARTIES_SHIFT));
422 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 <                }
462 >        if (root != this) {
463 >            int phase, p;
464 >            // CAS to root phase with current parties, tripping unarrived
465 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
466 >                   (int)(s >>> PHASE_SHIFT) &&
467 >                   !UNSAFE.compareAndSwapLong
468 >                   (this, stateOffset, s,
469 >                    s = (((long)phase << PHASE_SHIFT) |
470 >                         ((phase < 0) ? (s & COUNTS_MASK) :
471 >                          (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
472 >                           ((s & PARTIES_MASK) | p))))))
473                  s = state;
425            }
474          }
475          return s;
476      }
477  
478      /**
479 <     * Creates a new Phaser without any initially registered parties,
480 <     * initial phase number 0, and no parent. Any thread using this
481 <     * Phaser will need to first register for it.
479 >     * Creates a new phaser with no initially registered parties, no
480 >     * parent, and initial phase number 0. Any thread using this
481 >     * phaser will need to first register for it.
482       */
483      public Phaser() {
484          this(null, 0);
485      }
486  
487      /**
488 <     * Creates a new Phaser with the given number of registered
489 <     * unarrived parties, initial phase number 0, and no parent.
488 >     * Creates a new phaser with the given number of registered
489 >     * unarrived parties, no parent, and initial phase number 0.
490       *
491 <     * @param parties the number of parties required to trip barrier
491 >     * @param parties the number of parties required to advance to the
492 >     * next phase
493       * @throws IllegalArgumentException if parties less than zero
494       * or greater than the maximum number of parties supported
495       */
# Line 451 | Line 500 | public class Phaser {
500      /**
501       * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
502       *
503 <     * @param parent the parent Phaser
503 >     * @param parent the parent phaser
504       */
505      public Phaser(Phaser parent) {
506          this(parent, 0);
507      }
508  
509      /**
510 <     * Creates a new Phaser with the given parent and number of
511 <     * registered unarrived parties. Registration and deregistration
512 <     * of this child Phaser with its parent are managed automatically.
513 <     * If the given parent is non-null, whenever this child Phaser has
514 <     * any registered parties (as established in this constructor,
515 <     * {@link #register}, or {@link #bulkRegister}), this child Phaser
516 <     * is registered with its parent. Whenever the number of
517 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child Phaser is
470 <     * deregistered from its parent.
471 <     *
472 <     * @param parent the parent Phaser
473 <     * @param parties the number of parties required to trip barrier
510 >     * Creates a new phaser with the given parent and number of
511 >     * registered unarrived parties.  When the given parent is non-null
512 >     * and the given number of parties is greater than zero, this
513 >     * child phaser is registered with its parent.
514 >     *
515 >     * @param parent the parent phaser
516 >     * @param parties the number of parties required to advance to the
517 >     * next phase
518       * @throws IllegalArgumentException if parties less than zero
519       * or greater than the maximum number of parties supported
520       */
521      public Phaser(Phaser parent, int parties) {
522          if (parties >>> PARTIES_SHIFT != 0)
523              throw new IllegalArgumentException("Illegal number of parties");
524 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
524 >        int phase = 0;
525          this.parent = parent;
526          if (parent != null) {
527 <            Phaser r = parent.root;
528 <            this.root = r;
529 <            this.evenQ = r.evenQ;
530 <            this.oddQ = r.oddQ;
527 >            final Phaser root = parent.root;
528 >            this.root = root;
529 >            this.evenQ = root.evenQ;
530 >            this.oddQ = root.oddQ;
531              if (parties != 0)
532 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
532 >                phase = parent.doRegister(1);
533          }
534          else {
535              this.root = this;
536              this.evenQ = new AtomicReference<QNode>();
537              this.oddQ = new AtomicReference<QNode>();
538          }
539 <        this.state = s;
539 >        this.state = (parties == 0) ? (long)EMPTY :
540 >            ((long)phase << PHASE_SHIFT) |
541 >            ((long)parties << PARTIES_SHIFT) |
542 >            ((long)parties);
543      }
544  
545      /**
546 <     * Adds a new unarrived party to this Phaser.  If an ongoing
546 >     * Adds a new unarrived party to this phaser.  If an ongoing
547       * invocation of {@link #onAdvance} is in progress, this method
548 <     * may await its completion before returning.  If this Phaser has
549 <     * a parent, and this Phaser previously had no registered parties,
550 <     * this Phaser is also registered with its parent.
551 <     *
552 <     * @return the arrival phase number to which this registration applied
548 >     * may await its completion before returning.  If this phaser has
549 >     * a parent, and this phaser previously had no registered parties,
550 >     * this child phaser is also registered with its parent. If
551 >     * this phaser is terminated, the attempt to register has
552 >     * no effect, and a negative value is returned.
553 >     *
554 >     * @return the arrival phase number to which this registration
555 >     * applied.  If this value is negative, then this phaser has
556 >     * terminated, in which case registration has no effect.
557       * @throws IllegalStateException if attempting to register more
558       * than the maximum supported number of parties
559       */
# Line 511 | Line 562 | public class Phaser {
562      }
563  
564      /**
565 <     * Adds the given number of new unarrived parties to this Phaser.
565 >     * Adds the given number of new unarrived parties to this phaser.
566       * If an ongoing invocation of {@link #onAdvance} is in progress,
567       * this method may await its completion before returning.  If this
568 <     * Phaser has a parent, and the given number of parities is
569 <     * greater than zero, and this Phaser previously had no registered
570 <     * parties, this Phaser is also registered with its parent.
571 <     *
572 <     * @param parties the number of additional parties required to trip barrier
573 <     * @return the arrival phase number to which this registration applied
568 >     * phaser has a parent, and the given number of parties is greater
569 >     * than zero, and this phaser previously had no registered
570 >     * parties, this child phaser is also registered with its parent.
571 >     * If this phaser is terminated, the attempt to register has no
572 >     * effect, and a negative value is returned.
573 >     *
574 >     * @param parties the number of additional parties required to
575 >     * advance to the next phase
576 >     * @return the arrival phase number to which this registration
577 >     * applied.  If this value is negative, then this phaser has
578 >     * terminated, in which case registration has no effect.
579       * @throws IllegalStateException if attempting to register more
580       * than the maximum supported number of parties
581       * @throws IllegalArgumentException if {@code parties < 0}
# Line 533 | Line 589 | public class Phaser {
589      }
590  
591      /**
592 <     * Arrives at the barrier, without waiting for others to arrive.
592 >     * Arrives at this phaser, without waiting for others to arrive.
593       *
594       * <p>It is a usage error for an unregistered party to invoke this
595       * method.  However, this error may result in an {@code
596       * IllegalStateException} only upon some subsequent operation on
597 <     * this Phaser, if ever.
597 >     * this phaser, if ever.
598       *
599       * @return the arrival phase number, or a negative value if terminated
600       * @throws IllegalStateException if not terminated and the number
# Line 549 | Line 605 | public class Phaser {
605      }
606  
607      /**
608 <     * Arrives at the barrier and deregisters from it without waiting
608 >     * Arrives at this phaser and deregisters from it without waiting
609       * for others to arrive. Deregistration reduces the number of
610 <     * parties required to trip the barrier in future phases.  If this
611 <     * Phaser has a parent, and deregistration causes this Phaser to
612 <     * have zero parties, this Phaser is also deregistered from its
557 <     * parent.
610 >     * parties required to advance in future phases.  If this phaser
611 >     * has a parent, and deregistration causes this phaser to have
612 >     * zero parties, this phaser is also deregistered from its parent.
613       *
614       * <p>It is a usage error for an unregistered party to invoke this
615       * method.  However, this error may result in an {@code
616       * IllegalStateException} only upon some subsequent operation on
617 <     * this Phaser, if ever.
617 >     * this phaser, if ever.
618       *
619       * @return the arrival phase number, or a negative value if terminated
620       * @throws IllegalStateException if not terminated and the number
621       * of registered or unarrived parties would become negative
622       */
623      public int arriveAndDeregister() {
624 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
624 >        return doArrive(ONE_DEREGISTER);
625      }
626  
627      /**
628 <     * Arrives at the barrier and awaits others. Equivalent in effect
628 >     * Arrives at this phaser and awaits others. Equivalent in effect
629       * to {@code awaitAdvance(arrive())}.  If you need to await with
630       * interruption or timeout, you can arrange this with an analogous
631       * construction using one of the other forms of the {@code
# Line 580 | Line 635 | public class Phaser {
635       * <p>It is a usage error for an unregistered party to invoke this
636       * method.  However, this error may result in an {@code
637       * IllegalStateException} only upon some subsequent operation on
638 <     * this Phaser, if ever.
638 >     * this phaser, if ever.
639       *
640 <     * @return the arrival phase number, or a negative number if terminated
640 >     * @return the arrival phase number, or the (negative)
641 >     * {@linkplain #getPhase() current phase} if terminated
642       * @throws IllegalStateException if not terminated and the number
643       * of unarrived parties would become negative
644       */
645      public int arriveAndAwaitAdvance() {
646 <        return awaitAdvance(arrive());
646 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
647 >        final Phaser root = this.root;
648 >        for (;;) {
649 >            long s = (root == this) ? state : reconcileState();
650 >            int phase = (int)(s >>> PHASE_SHIFT);
651 >            if (phase < 0)
652 >                return phase;
653 >            int counts = (int)s;
654 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
655 >            if (unarrived <= 0)
656 >                throw new IllegalStateException(badArrive(s));
657 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
658 >                                          s -= ONE_ARRIVAL)) {
659 >                if (unarrived > 1)
660 >                    return root.internalAwaitAdvance(phase, null);
661 >                if (root != this)
662 >                    return parent.arriveAndAwaitAdvance();
663 >                long n = s & PARTIES_MASK;  // base of next state
664 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
665 >                if (onAdvance(phase, nextUnarrived))
666 >                    n |= TERMINATION_BIT;
667 >                else if (nextUnarrived == 0)
668 >                    n |= EMPTY;
669 >                else
670 >                    n |= nextUnarrived;
671 >                int nextPhase = (phase + 1) & MAX_PHASE;
672 >                n |= (long)nextPhase << PHASE_SHIFT;
673 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
674 >                    return (int)(state >>> PHASE_SHIFT); // terminated
675 >                releaseWaiters(phase);
676 >                return nextPhase;
677 >            }
678 >        }
679      }
680  
681      /**
682 <     * Awaits the phase of the barrier to advance from the given phase
683 <     * value, returning immediately if the current phase of the
684 <     * barrier is not equal to the given phase value or this barrier
597 <     * is terminated.
682 >     * Awaits the phase of this phaser to advance from the given phase
683 >     * value, returning immediately if the current phase is not equal
684 >     * to the given phase value or this phaser is terminated.
685       *
686       * @param phase an arrival phase number, or negative value if
687       * terminated; this argument is normally the value returned by a
688 <     * previous call to {@code arrive} or its variants
689 <     * @return the next arrival phase number, or a negative value
690 <     * if terminated or argument is negative
688 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
689 >     * @return the next arrival phase number, or the argument if it is
690 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
691 >     * if terminated
692       */
693      public int awaitAdvance(int phase) {
694 <        Phaser r;
695 <        int p = (int)(state >>> PHASE_SHIFT);
694 >        final Phaser root = this.root;
695 >        long s = (root == this) ? state : reconcileState();
696 >        int p = (int)(s >>> PHASE_SHIFT);
697          if (phase < 0)
698              return phase;
699 <        if (p == phase &&
700 <            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase)
612 <            return r.internalAwaitAdvance(phase, null);
699 >        if (p == phase)
700 >            return root.internalAwaitAdvance(phase, null);
701          return p;
702      }
703  
704      /**
705 <     * Awaits the phase of the barrier to advance from the given phase
705 >     * Awaits the phase of this phaser to advance from the given phase
706       * value, throwing {@code InterruptedException} if interrupted
707 <     * while waiting, or returning immediately if the current phase of
708 <     * the barrier is not equal to the given phase value or this
709 <     * barrier is terminated.
707 >     * while waiting, or returning immediately if the current phase is
708 >     * not equal to the given phase value or this phaser is
709 >     * terminated.
710       *
711       * @param phase an arrival phase number, or negative value if
712       * terminated; this argument is normally the value returned by a
713 <     * previous call to {@code arrive} or its variants
714 <     * @return the next arrival phase number, or a negative value
715 <     * if terminated or argument is negative
713 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
714 >     * @return the next arrival phase number, or the argument if it is
715 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
716 >     * if terminated
717       * @throws InterruptedException if thread interrupted while waiting
718       */
719      public int awaitAdvanceInterruptibly(int phase)
720          throws InterruptedException {
721 <        Phaser r;
722 <        int p = (int)(state >>> PHASE_SHIFT);
721 >        final Phaser root = this.root;
722 >        long s = (root == this) ? state : reconcileState();
723 >        int p = (int)(s >>> PHASE_SHIFT);
724          if (phase < 0)
725              return phase;
726 <        if (p == phase &&
637 <            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase) {
726 >        if (p == phase) {
727              QNode node = new QNode(this, phase, true, false, 0L);
728 <            p = r.internalAwaitAdvance(phase, node);
728 >            p = root.internalAwaitAdvance(phase, node);
729              if (node.wasInterrupted)
730                  throw new InterruptedException();
731          }
# Line 644 | Line 733 | public class Phaser {
733      }
734  
735      /**
736 <     * Awaits the phase of the barrier to advance from the given phase
736 >     * Awaits the phase of this phaser to advance from the given phase
737       * value or the given timeout to elapse, throwing {@code
738       * InterruptedException} if interrupted while waiting, or
739 <     * returning immediately if the current phase of the barrier is
740 <     * not equal to the given phase value or this barrier is
652 <     * terminated.
739 >     * returning immediately if the current phase is not equal to the
740 >     * given phase value or this phaser is terminated.
741       *
742       * @param phase an arrival phase number, or negative value if
743       * terminated; this argument is normally the value returned by a
744 <     * previous call to {@code arrive} or its variants
744 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
745       * @param timeout how long to wait before giving up, in units of
746       *        {@code unit}
747       * @param unit a {@code TimeUnit} determining how to interpret the
748       *        {@code timeout} parameter
749 <     * @return the next arrival phase number, or a negative value
750 <     * if terminated or argument is negative
749 >     * @return the next arrival phase number, or the argument if it is
750 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
751 >     * if terminated
752       * @throws InterruptedException if thread interrupted while waiting
753       * @throws TimeoutException if timed out while waiting
754       */
# Line 667 | Line 756 | public class Phaser {
756                                           long timeout, TimeUnit unit)
757          throws InterruptedException, TimeoutException {
758          long nanos = unit.toNanos(timeout);
759 <        Phaser r;
760 <        int p = (int)(state >>> PHASE_SHIFT);
759 >        final Phaser root = this.root;
760 >        long s = (root == this) ? state : reconcileState();
761 >        int p = (int)(s >>> PHASE_SHIFT);
762          if (phase < 0)
763              return phase;
764 <        if (p == phase &&
675 <            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase) {
764 >        if (p == phase) {
765              QNode node = new QNode(this, phase, true, true, nanos);
766 <            p = r.internalAwaitAdvance(phase, node);
766 >            p = root.internalAwaitAdvance(phase, node);
767              if (node.wasInterrupted)
768                  throw new InterruptedException();
769              else if (p == phase)
# Line 684 | Line 773 | public class Phaser {
773      }
774  
775      /**
776 <     * Forces this barrier to enter termination state.  Counts of
777 <     * arrived and registered parties are unaffected.  If this Phaser
778 <     * is a member of a tiered set of Phasers, then all of the Phasers
779 <     * in the set are terminated.  If this Phaser is already
780 <     * terminated, this method has no effect.  This method may be
781 <     * useful for coordinating recovery after one or more tasks
782 <     * encounter unexpected exceptions.
776 >     * Forces this phaser to enter termination state.  Counts of
777 >     * registered parties are unaffected.  If this phaser is a member
778 >     * of a tiered set of phasers, then all of the phasers in the set
779 >     * are terminated.  If this phaser is already terminated, this
780 >     * method has no effect.  This method may be useful for
781 >     * coordinating recovery after one or more tasks encounter
782 >     * unexpected exceptions.
783       */
784      public void forceTermination() {
785          // Only need to change root state
# Line 699 | Line 788 | public class Phaser {
788          while ((s = root.state) >= 0) {
789              if (UNSAFE.compareAndSwapLong(root, stateOffset,
790                                            s, s | TERMINATION_BIT)) {
791 <                releaseWaiters(0); // signal all threads
792 <                releaseWaiters(1);
791 >                // signal all threads
792 >                releaseWaiters(0); // Waiters on evenQ
793 >                releaseWaiters(1); // Waiters on oddQ
794                  return;
795              }
796          }
# Line 709 | Line 799 | public class Phaser {
799      /**
800       * Returns the current phase number. The maximum phase number is
801       * {@code Integer.MAX_VALUE}, after which it restarts at
802 <     * zero. Upon termination, the phase number is negative.
802 >     * zero. Upon termination, the phase number is negative,
803 >     * in which case the prevailing phase prior to termination
804 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
805       *
806       * @return the phase number, or a negative value if terminated
807       */
# Line 718 | Line 810 | public class Phaser {
810      }
811  
812      /**
813 <     * Returns the number of parties registered at this barrier.
813 >     * Returns the number of parties registered at this phaser.
814       *
815       * @return the number of parties
816       */
# Line 728 | Line 820 | public class Phaser {
820  
821      /**
822       * Returns the number of registered parties that have arrived at
823 <     * the current phase of this barrier.
823 >     * the current phase of this phaser. If this phaser has terminated,
824 >     * the returned value is meaningless and arbitrary.
825       *
826       * @return the number of arrived parties
827       */
828      public int getArrivedParties() {
829 <        long s = state;
737 <        int u = unarrivedOf(s); // only reconcile if possibly needed
738 <        return (u != 0 || parent == null) ?
739 <            partiesOf(s) - u :
740 <            arrivedOf(reconcileState());
829 >        return arrivedOf(reconcileState());
830      }
831  
832      /**
833       * Returns the number of registered parties that have not yet
834 <     * arrived at the current phase of this barrier.
834 >     * arrived at the current phase of this phaser. If this phaser has
835 >     * terminated, the returned value is meaningless and arbitrary.
836       *
837       * @return the number of unarrived parties
838       */
839      public int getUnarrivedParties() {
840 <        int u = unarrivedOf(state);
751 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
840 >        return unarrivedOf(reconcileState());
841      }
842  
843      /**
844 <     * Returns the parent of this Phaser, or {@code null} if none.
844 >     * Returns the parent of this phaser, or {@code null} if none.
845       *
846 <     * @return the parent of this Phaser, or {@code null} if none
846 >     * @return the parent of this phaser, or {@code null} if none
847       */
848      public Phaser getParent() {
849          return parent;
850      }
851  
852      /**
853 <     * Returns the root ancestor of this Phaser, which is the same as
854 <     * this Phaser if it has no parent.
853 >     * Returns the root ancestor of this phaser, which is the same as
854 >     * this phaser if it has no parent.
855       *
856 <     * @return the root ancestor of this Phaser
856 >     * @return the root ancestor of this phaser
857       */
858      public Phaser getRoot() {
859          return root;
860      }
861  
862      /**
863 <     * Returns {@code true} if this barrier has been terminated.
863 >     * Returns {@code true} if this phaser has been terminated.
864       *
865 <     * @return {@code true} if this barrier has been terminated
865 >     * @return {@code true} if this phaser has been terminated
866       */
867      public boolean isTerminated() {
868          return root.state < 0L;
# Line 782 | Line 871 | public class Phaser {
871      /**
872       * Overridable method to perform an action upon impending phase
873       * advance, and to control termination. This method is invoked
874 <     * upon arrival of the party tripping the barrier (when all other
874 >     * upon arrival of the party advancing this phaser (when all other
875       * waiting parties are dormant).  If this method returns {@code
876 <     * true}, then, rather than advance the phase number, this barrier
877 <     * will be set to a final termination state, and subsequent calls
878 <     * to {@link #isTerminated} will return true. Any (unchecked)
879 <     * Exception or Error thrown by an invocation of this method is
880 <     * propagated to the party attempting to trip the barrier, in
881 <     * which case no advance occurs.
876 >     * true}, this phaser will be set to a final termination state
877 >     * upon advance, and subsequent calls to {@link #isTerminated}
878 >     * will return true. Any (unchecked) Exception or Error thrown by
879 >     * an invocation of this method is propagated to the party
880 >     * attempting to advance this phaser, in which case no advance
881 >     * occurs.
882       *
883 <     * <p>The arguments to this method provide the state of the Phaser
883 >     * <p>The arguments to this method provide the state of the phaser
884       * prevailing for the current transition.  The effects of invoking
885 <     * arrival, registration, and waiting methods on this Phaser from
885 >     * arrival, registration, and waiting methods on this phaser from
886       * within {@code onAdvance} are unspecified and should not be
887       * relied on.
888       *
889 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
890 <     * {@code onAdvance} is invoked only for its root Phaser on each
889 >     * <p>If this phaser is a member of a tiered set of phasers, then
890 >     * {@code onAdvance} is invoked only for its root phaser on each
891       * advance.
892       *
893       * <p>To support the most common use cases, the default
# Line 814 | Line 903 | public class Phaser {
903       *   protected boolean onAdvance(int phase, int parties) { return false; }
904       * }}</pre>
905       *
906 <     * @param phase the phase number on entering the barrier
906 >     * @param phase the current phase number on entry to this method,
907 >     * before this phaser is advanced
908       * @param registeredParties the current number of registered parties
909 <     * @return {@code true} if this barrier should terminate
909 >     * @return {@code true} if this phaser should terminate
910       */
911      protected boolean onAdvance(int phase, int registeredParties) {
912 <        return registeredParties <= 0;
912 >        return registeredParties == 0;
913      }
914  
915      /**
916 <     * Returns a string identifying this Phaser, as well as its
916 >     * Returns a string identifying this phaser, as well as its
917       * state.  The state, in brackets, includes the String {@code
918       * "phase = "} followed by the phase number, {@code "parties = "}
919       * followed by the number of registered parties, and {@code
920       * "arrived = "} followed by the number of arrived parties.
921       *
922 <     * @return a string identifying this barrier, as well as its state
922 >     * @return a string identifying this phaser, as well as its state
923       */
924      public String toString() {
925          return stateToString(reconcileState());
# Line 851 | Line 941 | public class Phaser {
941       * Removes and signals threads from queue for phase.
942       */
943      private void releaseWaiters(int phase) {
944 <        AtomicReference<QNode> head = queueFor(phase);
945 <        QNode q;
946 <        int p;
944 >        QNode q;   // first element of queue
945 >        Thread t;  // its thread
946 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
947          while ((q = head.get()) != null &&
948 <               ((p = q.phase) == phase ||
949 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
950 <            if (head.compareAndSet(q, q.next))
951 <                q.signal();
948 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
949 >            if (head.compareAndSet(q, q.next) &&
950 >                (t = q.thread) != null) {
951 >                q.thread = null;
952 >                LockSupport.unpark(t);
953 >            }
954 >        }
955 >    }
956 >
957 >    /**
958 >     * Variant of releaseWaiters that additionally tries to remove any
959 >     * nodes no longer waiting for advance due to timeout or
960 >     * interrupt. Currently, nodes are removed only if they are at
961 >     * head of queue, which suffices to reduce memory footprint in
962 >     * most usages.
963 >     *
964 >     * @return current phase on exit
965 >     */
966 >    private int abortWait(int phase) {
967 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
968 >        for (;;) {
969 >            Thread t;
970 >            QNode q = head.get();
971 >            int p = (int)(root.state >>> PHASE_SHIFT);
972 >            if (q == null || ((t = q.thread) != null && q.phase == p))
973 >                return p;
974 >            if (head.compareAndSet(q, q.next) && t != null) {
975 >                q.thread = null;
976 >                LockSupport.unpark(t);
977 >            }
978          }
979      }
980  
# Line 873 | Line 989 | public class Phaser {
989       * avoid it when threads regularly arrive: When a thread in
990       * internalAwaitAdvance notices another arrival before blocking,
991       * and there appear to be enough CPUs available, it spins
992 <     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
993 <     * uniprocessors, there is at least one intervening Thread.yield
878 <     * before blocking. The value trades off good-citizenship vs big
879 <     * unnecessary slowdowns.
992 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
993 >     * off good-citizenship vs big unnecessary slowdowns.
994       */
995      static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
996  
997      /**
998       * Possibly blocks and waits for phase to advance unless aborted.
999 <     * Call only from root node.
999 >     * Call only on root phaser.
1000       *
1001       * @param phase current phase
1002       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 890 | Line 1004 | public class Phaser {
1004       * @return current phase
1005       */
1006      private int internalAwaitAdvance(int phase, QNode node) {
1007 <        boolean queued = false;      // true when node is enqueued
1008 <        int lastUnarrived = -1;      // to increase spins upon change
1007 >        // assert root == this;
1008 >        releaseWaiters(phase-1);          // ensure old queue clean
1009 >        boolean queued = false;           // true when node is enqueued
1010 >        int lastUnarrived = 0;            // to increase spins upon change
1011          int spins = SPINS_PER_ARRIVAL;
1012          long s;
1013          int p;
1014          while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1015 <            int unarrived = (int)s & UNARRIVED_MASK;
1016 <            if (unarrived != lastUnarrived) {
1017 <                if (lastUnarrived == -1) // ensure old queue clean
1018 <                    releaseWaiters(phase-1);
903 <                if ((lastUnarrived = unarrived) < NCPU)
1015 >            if (node == null) {           // spinning in noninterruptible mode
1016 >                int unarrived = (int)s & UNARRIVED_MASK;
1017 >                if (unarrived != lastUnarrived &&
1018 >                    (lastUnarrived = unarrived) < NCPU)
1019                      spins += SPINS_PER_ARRIVAL;
1020 <            }
1021 <            else if (spins > 0) {
1022 <                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
1023 <                    Thread.yield();  // yield midway through spin
909 <            }
910 <            else if (node == null)   // must be noninterruptible
911 <                node = new QNode(this, phase, false, false, 0L);
912 <            else if (node.isReleasable()) {
913 <                p = (int)(state >>> PHASE_SHIFT);
914 <                break;               // aborted
915 <            }
916 <            else if (!queued) {      // push onto queue
917 <                AtomicReference<QNode> head = queueFor(phase);
918 <                QNode q = head.get();
919 <                if (q == null || q.phase == phase) {
920 <                    node.next = q;
921 <                    if ((p = (int)(state >>> PHASE_SHIFT)) != phase)
922 <                        break;       // recheck to avoid stale enqueue
923 <                    else
924 <                        queued = head.compareAndSet(q, node);
1020 >                boolean interrupted = Thread.interrupted();
1021 >                if (interrupted || --spins < 0) { // need node to record intr
1022 >                    node = new QNode(this, phase, false, false, 0L);
1023 >                    node.wasInterrupted = interrupted;
1024                  }
1025              }
1026 +            else if (node.isReleasable()) // done or aborted
1027 +                break;
1028 +            else if (!queued) {           // push onto queue
1029 +                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1030 +                QNode q = node.next = head.get();
1031 +                if ((q == null || q.phase == phase) &&
1032 +                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1033 +                    queued = head.compareAndSet(q, node);
1034 +            }
1035              else {
1036                  try {
1037                      ForkJoinPool.managedBlock(node);
# Line 935 | Line 1043 | public class Phaser {
1043  
1044          if (node != null) {
1045              if (node.thread != null)
1046 <                node.thread = null; // disable unpark() in node.signal
1047 <            if (!node.interruptible && node.wasInterrupted)
1046 >                node.thread = null;       // avoid need for unpark()
1047 >            if (node.wasInterrupted && !node.interruptible)
1048                  Thread.currentThread().interrupt();
1049 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1050 +                return abortWait(phase); // possibly clean up on abort
1051          }
1052 <        if (p != phase)
943 <            releaseWaiters(phase);
1052 >        releaseWaiters(phase);
1053          return p;
1054      }
1055  
# Line 965 | Line 1074 | public class Phaser {
1074              this.interruptible = interruptible;
1075              this.nanos = nanos;
1076              this.timed = timed;
1077 <            this.lastTime = timed? System.nanoTime() : 0L;
1077 >            this.lastTime = timed ? System.nanoTime() : 0L;
1078              thread = Thread.currentThread();
1079          }
1080  
1081          public boolean isReleasable() {
1082 <            Thread t = thread;
1083 <            if (t != null) {
1084 <                if (phaser.getPhase() != phase)
1085 <                    t = null;
1086 <                else {
1087 <                    if (Thread.interrupted())
1088 <                        wasInterrupted = true;
1089 <                    if (interruptible && wasInterrupted)
1090 <                        t = null;
982 <                    else if (timed) {
983 <                        if (nanos > 0) {
984 <                            long now = System.nanoTime();
985 <                            nanos -= now - lastTime;
986 <                            lastTime = now;
987 <                        }
988 <                        if (nanos <= 0)
989 <                            t = null;
990 <                    }
991 <                }
992 <                if (t != null)
993 <                    return false;
1082 >            if (thread == null)
1083 >                return true;
1084 >            if (phaser.getPhase() != phase) {
1085 >                thread = null;
1086 >                return true;
1087 >            }
1088 >            if (Thread.interrupted())
1089 >                wasInterrupted = true;
1090 >            if (wasInterrupted && interruptible) {
1091                  thread = null;
1092 +                return true;
1093 +            }
1094 +            if (timed) {
1095 +                if (nanos > 0L) {
1096 +                    long now = System.nanoTime();
1097 +                    nanos -= now - lastTime;
1098 +                    lastTime = now;
1099 +                }
1100 +                if (nanos <= 0L) {
1101 +                    thread = null;
1102 +                    return true;
1103 +                }
1104              }
1105 <            return true;
1105 >            return false;
1106          }
1107  
1108          public boolean block() {
# Line 1005 | Line 1114 | public class Phaser {
1114                  LockSupport.parkNanos(this, nanos);
1115              return isReleasable();
1116          }
1008
1009        void signal() {
1010            Thread t = thread;
1011            if (t != null) {
1012                thread = null;
1013                LockSupport.unpark(t);
1014            }
1015        }
1117      }
1118  
1119      // Unsafe mechanics
1120  
1121 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1122 <    private static final long stateOffset =
1123 <        objectFieldOffset("state", Phaser.class);
1023 <
1024 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1121 >    private static final sun.misc.Unsafe UNSAFE;
1122 >    private static final long stateOffset;
1123 >    static {
1124          try {
1125 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1126 <        } catch (NoSuchFieldException e) {
1127 <            // Convert Exception to corresponding Error
1128 <            NoSuchFieldError error = new NoSuchFieldError(field);
1129 <            error.initCause(e);
1130 <            throw error;
1125 >            UNSAFE = getUnsafe();
1126 >            Class<?> k = Phaser.class;
1127 >            stateOffset = UNSAFE.objectFieldOffset
1128 >                (k.getDeclaredField("state"));
1129 >        } catch (Exception e) {
1130 >            throw new Error(e);
1131          }
1132      }
1133  
# Line 1042 | Line 1141 | public class Phaser {
1141      private static sun.misc.Unsafe getUnsafe() {
1142          try {
1143              return sun.misc.Unsafe.getUnsafe();
1144 <        } catch (SecurityException se) {
1145 <            try {
1146 <                return java.security.AccessController.doPrivileged
1147 <                    (new java.security
1148 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1149 <                        public sun.misc.Unsafe run() throws Exception {
1150 <                            java.lang.reflect.Field f = sun.misc
1151 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1152 <                            f.setAccessible(true);
1153 <                            return (sun.misc.Unsafe) f.get(null);
1154 <                        }});
1155 <            } catch (java.security.PrivilegedActionException e) {
1156 <                throw new RuntimeException("Could not initialize intrinsics",
1157 <                                           e.getCause());
1158 <            }
1144 >        } catch (SecurityException tryReflectionInstead) {}
1145 >        try {
1146 >            return java.security.AccessController.doPrivileged
1147 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1148 >                public sun.misc.Unsafe run() throws Exception {
1149 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1150 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1151 >                        f.setAccessible(true);
1152 >                        Object x = f.get(null);
1153 >                        if (k.isInstance(x))
1154 >                            return k.cast(x);
1155 >                    }
1156 >                    throw new NoSuchFieldError("the Unsafe");
1157 >                }});
1158 >        } catch (java.security.PrivilegedActionException e) {
1159 >            throw new RuntimeException("Could not initialize intrinsics",
1160 >                                       e.getCause());
1161          }
1162      }
1163   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines