ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.63 by dl, Mon Nov 29 15:47:19 2010 UTC vs.
Revision 1.81 by jsr166, Fri Jul 15 18:49:12 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 17 | Line 17 | import java.util.concurrent.locks.LockSu
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 > * <p><b>Registration.</b> Unlike the case for other barriers, the
21   * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
# Line 30 | Line 30 | import java.util.concurrent.locks.LockSu
30   * (However, you can introduce such bookkeeping by subclassing this
31   * class.)
32   *
33 < * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 > * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
# Line 44 | Line 44 | import java.util.concurrent.locks.LockSu
44   *
45   * <ul>
46   *
47 < *   <li> <b>Arrival.</b> Methods {@link #arrive} and
47 > *   <li><b>Arrival.</b> Methods {@link #arrive} and
48   *       {@link #arriveAndDeregister} record arrival.  These methods
49   *       do not block, but return an associated <em>arrival phase
50   *       number</em>; that is, the phase number of the phaser to which
# Line 57 | Line 57 | import java.util.concurrent.locks.LockSu
57   *       flexible than, providing a barrier action to a {@code
58   *       CyclicBarrier}.
59   *
60 < *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 > *   <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62   *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
77 > * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82   * Termination is triggered when an invocation of {@code onAdvance}
83   * returns {@code true}. The default implementation returns {@code
84   * true} if a deregistration has caused the number of registered
# Line 88 | Line 89 | import java.util.concurrent.locks.LockSu
89   * also available to abruptly release waiting threads and allow them
90   * to terminate.
91   *
92 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
94   * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 182 | Line 193 | import java.util.concurrent.locks.LockSu
193   *   phaser.arriveAndDeregister();
194   * }}</pre>
195   *
196 < *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a {@code Phaser} that
200 < * it registers with upon construction:
196 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
197 > * could use code of the following form, assuming a Task class with a
198 > * constructor accepting a {@code Phaser} that it registers with upon
199 > * construction. After invocation of {@code build(new Task[n], 0, n,
200 > * new Phaser())}, these tasks could then be started, for example by
201 > * submitting to a pool:
202   *
203   *  <pre> {@code
204 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
204 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
205   *   if (hi - lo > TASKS_PER_PHASER) {
206   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
207   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
208 < *       build(actions, i, j, new Phaser(ph));
208 > *       build(tasks, i, j, new Phaser(ph));
209   *     }
210   *   } else {
211   *     for (int i = lo; i < hi; ++i)
212 < *       actions[i] = new Task(ph);
212 > *       tasks[i] = new Task(ph);
213   *       // assumes new Task(ph) performs ph.register()
214   *   }
215 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
215 > * }}</pre>
216   *
217   * The best value of {@code TASKS_PER_PHASER} depends mainly on
218   * expected synchronization rates. A value as low as four may
# Line 226 | Line 236 | public class Phaser {
236       */
237  
238      /**
239 <     * Primary state representation, holding four fields:
239 >     * Primary state representation, holding four bit-fields:
240       *
241 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
242 <     * * parties -- the number of parties to wait              (bits 16-31)
243 <     * * phase -- the generation of the barrier                (bits 32-62)
244 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
245 <     *
246 <     * However, to efficiently maintain atomicity, these values are
247 <     * packed into a single (atomic) long. Termination uses the sign
248 <     * bit of 32 bit representation of phase, so phase is set to -1 on
249 <     * termination. Good performance relies on keeping state decoding
250 <     * and encoding simple, and keeping race windows short.
241 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
242 >     * parties    -- the number of parties to wait            (bits 16-31)
243 >     * phase      -- the generation of the barrier            (bits 32-62)
244 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
245 >     *
246 >     * Except that a phaser with no registered parties is
247 >     * distinguished by the otherwise illegal state of having zero
248 >     * parties and one unarrived parties (encoded as EMPTY below).
249 >     *
250 >     * To efficiently maintain atomicity, these values are packed into
251 >     * a single (atomic) long. Good performance relies on keeping
252 >     * state decoding and encoding simple, and keeping race windows
253 >     * short.
254 >     *
255 >     * All state updates are performed via CAS except initial
256 >     * registration of a sub-phaser (i.e., one with a non-null
257 >     * parent).  In this (relatively rare) case, we use built-in
258 >     * synchronization to lock while first registering with its
259 >     * parent.
260 >     *
261 >     * The phase of a subphaser is allowed to lag that of its
262 >     * ancestors until it is actually accessed -- see method
263 >     * reconcileState.
264       */
265      private volatile long state;
266  
267      private static final int  MAX_PARTIES     = 0xffff;
268 <    private static final int  MAX_PHASE       = 0x7fffffff;
268 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
269      private static final int  PARTIES_SHIFT   = 16;
270      private static final int  PHASE_SHIFT     = 32;
271      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
272      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
273 <    private static final long ONE_ARRIVAL     = 1L;
251 <    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
273 >    private static final long COUNTS_MASK     = 0xffffffffL;
274      private static final long TERMINATION_BIT = 1L << 63;
275  
276 +    // some special values
277 +    private static final int  ONE_ARRIVAL     = 1;
278 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 +    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
280 +    private static final int  EMPTY           = 1;
281 +
282      // The following unpacking methods are usually manually inlined
283  
284      private static int unarrivedOf(long s) {
285 <        return (int)s & UNARRIVED_MASK;
285 >        int counts = (int)s;
286 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287      }
288  
289      private static int partiesOf(long s) {
# Line 262 | Line 291 | public class Phaser {
291      }
292  
293      private static int phaseOf(long s) {
294 <        return (int) (s >>> PHASE_SHIFT);
294 >        return (int)(s >>> PHASE_SHIFT);
295      }
296  
297      private static int arrivedOf(long s) {
298 <        return partiesOf(s) - unarrivedOf(s);
298 >        int counts = (int)s;
299 >        return (counts == EMPTY) ? 0 :
300 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301      }
302  
303      /**
# Line 275 | Line 306 | public class Phaser {
306      private final Phaser parent;
307  
308      /**
309 <     * The root of phaser tree. Equals this if not in a tree.  Used to
279 <     * support faster state push-down.
309 >     * The root of phaser tree. Equals this if not in a tree.
310       */
311      private final Phaser root;
312  
# Line 314 | Line 344 | public class Phaser {
344       * Manually tuned to speed up and minimize race windows for the
345       * common case of just decrementing unarrived field.
346       *
347 <     * @param adj - adjustment to apply to state -- either
348 <     * ONE_ARRIVAL (for arrive) or
349 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
347 >     * @param adjust value to subtract from state;
348 >     *               ONE_ARRIVAL for arrive,
349 >     *               ONE_DEREGISTER for arriveAndDeregister
350       */
351 <    private int doArrive(long adj) {
351 >    private int doArrive(int adjust) {
352 >        final Phaser root = this.root;
353          for (;;) {
354 <            long s = state;
324 <            int unarrived = (int)s & UNARRIVED_MASK;
354 >            long s = (root == this) ? state : reconcileState();
355              int phase = (int)(s >>> PHASE_SHIFT);
356              if (phase < 0)
357                  return phase;
358 <            else if (unarrived == 0) {
359 <                if (reconcileState() == s)     // recheck
360 <                    throw new IllegalStateException(badArrive(s));
361 <            }
362 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
358 >            int counts = (int)s;
359 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360 >            if (unarrived <= 0)
361 >                throw new IllegalStateException(badArrive(s));
362 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363                  if (unarrived == 1) {
364 <                    long p = s & PARTIES_MASK; // unshifted parties field
365 <                    long lu = p >>> PARTIES_SHIFT;
366 <                    int u = (int)lu;
367 <                    int nextPhase = (phase + 1) & MAX_PHASE;
368 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
369 <                    final Phaser parent = this.parent;
370 <                    if (parent == null) {
371 <                        if (onAdvance(phase, u))
372 <                            next |= TERMINATION_BIT;
373 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
364 >                    long n = s & PARTIES_MASK;  // base of next state
365 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368 >                            n |= TERMINATION_BIT;
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371 >                        else
372 >                            n |= nextUnarrived;
373 >                        int nextPhase = (phase + 1) & MAX_PHASE;
374 >                        n |= (long)nextPhase << PHASE_SHIFT;
375 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376                          releaseWaiters(phase);
377                      }
378 <                    else {
379 <                        parent.doArrive((u == 0) ?
380 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
381 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350 <                            reconcileState();
351 <                        else if (state == s)
352 <                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 <                                                      next);
378 >                    else if (nextUnarrived == 0) { // propagate deregistration
379 >                        phase = parent.doArrive(ONE_DEREGISTER);
380 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
381 >                                                  s, s | EMPTY);
382                      }
383 +                    else
384 +                        phase = parent.doArrive(ONE_ARRIVAL);
385                  }
386                  return phase;
387              }
# Line 366 | Line 396 | public class Phaser {
396       */
397      private int doRegister(int registrations) {
398          // adjustment to state
399 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400          final Phaser parent = this.parent;
401 +        int phase;
402          for (;;) {
403              long s = (parent == null) ? state : reconcileState();
404 <            int parties = (int)s >>> PARTIES_SHIFT;
405 <            int phase = (int)(s >>> PHASE_SHIFT);
406 <            if (phase < 0)
407 <                return phase;
377 <            else if (registrations > MAX_PARTIES - parties)
404 >            int counts = (int)s;
405 >            int parties = counts >>> PARTIES_SHIFT;
406 >            int unarrived = counts & UNARRIVED_MASK;
407 >            if (registrations > MAX_PARTIES - parties)
408                  throw new IllegalStateException(badRegister(s));
409 <            else if ((parties == 0 && parent == null) || // first reg of root
410 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
411 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
412 <                    return phase;
409 >            phase = (int)(s >>> PHASE_SHIFT);
410 >            if (phase < 0)
411 >                break;
412 >            if (counts != EMPTY) {                  // not 1st registration
413 >                if (parent == null || reconcileState() == s) {
414 >                    if (unarrived == 0)             // wait out advance
415 >                        root.internalAwaitAdvance(phase, null);
416 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 >                                                       s, s + adjust))
418 >                        break;
419 >                }
420 >            }
421 >            else if (parent == null) {              // 1st root registration
422 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
423 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424 >                    break;
425              }
426 <            else if (parties != 0)               // wait for onAdvance
427 <                root.internalAwaitAdvance(phase, null);
428 <            else {                               // 1st registration of child
429 <                synchronized (this) {            // register parent first
430 <                    if (reconcileState() == s) { // recheck under lock
431 <                        parent.doRegister(1);    // OK if throws IllegalState
432 <                        for (;;) {               // simpler form of outer loop
433 <                            s = reconcileState();
434 <                            phase = (int)(s >>> PHASE_SHIFT);
435 <                            if (phase < 0 ||
436 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
437 <                                                          s, s + adj))
438 <                                return phase;
426 >            else {
427 >                synchronized (this) {               // 1st sub registration
428 >                    if (state == s) {               // recheck under lock
429 >                        phase = parent.doRegister(1);
430 >                        if (phase < 0)
431 >                            break;
432 >                        // finish registration whenever parent registration
433 >                        // succeeded, even when racing with termination,
434 >                        // since these are part of the same "transaction".
435 >                        while (!UNSAFE.compareAndSwapLong
436 >                               (this, stateOffset, s,
437 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
438 >                            s = state;
439 >                            phase = (int)(root.state >>> PHASE_SHIFT);
440 >                            // assert (int)s == EMPTY;
441                          }
442 +                        break;
443                      }
444                  }
445              }
446          }
447 +        return phase;
448      }
449  
450      /**
451 <     * Recursively resolves lagged phase propagation from root if necessary.
451 >     * Resolves lagged phase propagation from root if necessary.
452 >     * Reconciliation normally occurs when root has advanced but
453 >     * subphasers have not yet done so, in which case they must finish
454 >     * their own advance by setting unarrived to parties (or if
455 >     * parties is zero, resetting to unregistered EMPTY state).
456 >     *
457 >     * @return reconciled state
458       */
459      private long reconcileState() {
460 <        Phaser par = parent;
460 >        final Phaser root = this.root;
461          long s = state;
462 <        if (par != null) {
463 <            Phaser rt = root;
464 <            int phase, rPhase;
465 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
466 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
467 <                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
468 <                    par.reconcileState();
469 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
470 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
471 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
472 <                                 (u >>> PARTIES_SHIFT));
421 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
422 <                }
462 >        if (root != this) {
463 >            int phase, p;
464 >            // CAS to root phase with current parties, tripping unarrived
465 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
466 >                   (int)(s >>> PHASE_SHIFT) &&
467 >                   !UNSAFE.compareAndSwapLong
468 >                   (this, stateOffset, s,
469 >                    s = (((long)phase << PHASE_SHIFT) |
470 >                         ((phase < 0) ? (s & COUNTS_MASK) :
471 >                          (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
472 >                           ((s & PARTIES_MASK) | p))))))
473                  s = state;
424            }
474          }
475          return s;
476      }
# Line 459 | Line 508 | public class Phaser {
508  
509      /**
510       * Creates a new phaser with the given parent and number of
511 <     * registered unarrived parties. Registration and deregistration
512 <     * of this child phaser with its parent are managed automatically.
513 <     * If the given parent is non-null, whenever this child phaser has
465 <     * any registered parties (as established in this constructor,
466 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
467 <     * is registered with its parent. Whenever the number of
468 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child phaser is
470 <     * deregistered from its parent.
511 >     * registered unarrived parties.  When the given parent is non-null
512 >     * and the given number of parties is greater than zero, this
513 >     * child phaser is registered with its parent.
514       *
515       * @param parent the parent phaser
516       * @param parties the number of parties required to advance to the
# Line 478 | Line 521 | public class Phaser {
521      public Phaser(Phaser parent, int parties) {
522          if (parties >>> PARTIES_SHIFT != 0)
523              throw new IllegalArgumentException("Illegal number of parties");
524 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
524 >        int phase = 0;
525          this.parent = parent;
526          if (parent != null) {
527 <            Phaser r = parent.root;
528 <            this.root = r;
529 <            this.evenQ = r.evenQ;
530 <            this.oddQ = r.oddQ;
527 >            final Phaser root = parent.root;
528 >            this.root = root;
529 >            this.evenQ = root.evenQ;
530 >            this.oddQ = root.oddQ;
531              if (parties != 0)
532 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
532 >                phase = parent.doRegister(1);
533          }
534          else {
535              this.root = this;
536              this.evenQ = new AtomicReference<QNode>();
537              this.oddQ = new AtomicReference<QNode>();
538          }
539 <        this.state = s;
539 >        this.state = (parties == 0) ? (long)EMPTY :
540 >            ((long)phase << PHASE_SHIFT) |
541 >            ((long)parties << PARTIES_SHIFT) |
542 >            ((long)parties);
543      }
544  
545      /**
# Line 501 | Line 547 | public class Phaser {
547       * invocation of {@link #onAdvance} is in progress, this method
548       * may await its completion before returning.  If this phaser has
549       * a parent, and this phaser previously had no registered parties,
550 <     * this phaser is also registered with its parent.
551 <     *
552 <     * @return the arrival phase number to which this registration applied
550 >     * this child phaser is also registered with its parent. If
551 >     * this phaser is terminated, the attempt to register has
552 >     * no effect, and a negative value is returned.
553 >     *
554 >     * @return the arrival phase number to which this registration
555 >     * applied.  If this value is negative, then this phaser has
556 >     * terminated, in which case registration has no effect.
557       * @throws IllegalStateException if attempting to register more
558       * than the maximum supported number of parties
559       */
# Line 515 | Line 565 | public class Phaser {
565       * Adds the given number of new unarrived parties to this phaser.
566       * If an ongoing invocation of {@link #onAdvance} is in progress,
567       * this method may await its completion before returning.  If this
568 <     * phaser has a parent, and the given number of parities is
569 <     * greater than zero, and this phaser previously had no registered
570 <     * parties, this phaser is also registered with its parent.
568 >     * phaser has a parent, and the given number of parties is greater
569 >     * than zero, and this phaser previously had no registered
570 >     * parties, this child phaser is also registered with its parent.
571 >     * If this phaser is terminated, the attempt to register has no
572 >     * effect, and a negative value is returned.
573       *
574       * @param parties the number of additional parties required to
575       * advance to the next phase
576 <     * @return the arrival phase number to which this registration applied
576 >     * @return the arrival phase number to which this registration
577 >     * applied.  If this value is negative, then this phaser has
578 >     * terminated, in which case registration has no effect.
579       * @throws IllegalStateException if attempting to register more
580       * than the maximum supported number of parties
581       * @throws IllegalArgumentException if {@code parties < 0}
# Line 567 | Line 621 | public class Phaser {
621       * of registered or unarrived parties would become negative
622       */
623      public int arriveAndDeregister() {
624 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
624 >        return doArrive(ONE_DEREGISTER);
625      }
626  
627      /**
# Line 583 | Line 637 | public class Phaser {
637       * IllegalStateException} only upon some subsequent operation on
638       * this phaser, if ever.
639       *
640 <     * @return the arrival phase number, or a negative number if terminated
640 >     * @return the arrival phase number, or the (negative)
641 >     * {@linkplain #getPhase() current phase} if terminated
642       * @throws IllegalStateException if not terminated and the number
643       * of unarrived parties would become negative
644       */
645      public int arriveAndAwaitAdvance() {
646 <        return awaitAdvance(doArrive(ONE_ARRIVAL));
646 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
647 >        final Phaser root = this.root;
648 >        for (;;) {
649 >            long s = (root == this) ? state : reconcileState();
650 >            int phase = (int)(s >>> PHASE_SHIFT);
651 >            if (phase < 0)
652 >                return phase;
653 >            int counts = (int)s;
654 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
655 >            if (unarrived <= 0)
656 >                throw new IllegalStateException(badArrive(s));
657 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
658 >                                          s -= ONE_ARRIVAL)) {
659 >                if (unarrived > 1)
660 >                    return root.internalAwaitAdvance(phase, null);
661 >                if (root != this)
662 >                    return parent.arriveAndAwaitAdvance();
663 >                long n = s & PARTIES_MASK;  // base of next state
664 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
665 >                if (onAdvance(phase, nextUnarrived))
666 >                    n |= TERMINATION_BIT;
667 >                else if (nextUnarrived == 0)
668 >                    n |= EMPTY;
669 >                else
670 >                    n |= nextUnarrived;
671 >                int nextPhase = (phase + 1) & MAX_PHASE;
672 >                n |= (long)nextPhase << PHASE_SHIFT;
673 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
674 >                    return (int)(state >>> PHASE_SHIFT); // terminated
675 >                releaseWaiters(phase);
676 >                return nextPhase;
677 >            }
678 >        }
679      }
680  
681      /**
# Line 599 | Line 686 | public class Phaser {
686       * @param phase an arrival phase number, or negative value if
687       * terminated; this argument is normally the value returned by a
688       * previous call to {@code arrive} or {@code arriveAndDeregister}.
689 <     * @return the next arrival phase number, or a negative value
690 <     * if terminated or argument is negative
689 >     * @return the next arrival phase number, or the argument if it is
690 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
691 >     * if terminated
692       */
693      public int awaitAdvance(int phase) {
694 <        Phaser rt;
695 <        int p = (int)(state >>> PHASE_SHIFT);
694 >        final Phaser root = this.root;
695 >        long s = (root == this) ? state : reconcileState();
696 >        int p = (int)(s >>> PHASE_SHIFT);
697          if (phase < 0)
698              return phase;
699 <        if (p == phase &&
700 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 <            return rt.internalAwaitAdvance(phase, null);
699 >        if (p == phase)
700 >            return root.internalAwaitAdvance(phase, null);
701          return p;
702      }
703  
# Line 623 | Line 711 | public class Phaser {
711       * @param phase an arrival phase number, or negative value if
712       * terminated; this argument is normally the value returned by a
713       * previous call to {@code arrive} or {@code arriveAndDeregister}.
714 <     * @return the next arrival phase number, or a negative value
715 <     * if terminated or argument is negative
714 >     * @return the next arrival phase number, or the argument if it is
715 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
716 >     * if terminated
717       * @throws InterruptedException if thread interrupted while waiting
718       */
719      public int awaitAdvanceInterruptibly(int phase)
720          throws InterruptedException {
721 <        Phaser rt;
722 <        int p = (int)(state >>> PHASE_SHIFT);
721 >        final Phaser root = this.root;
722 >        long s = (root == this) ? state : reconcileState();
723 >        int p = (int)(s >>> PHASE_SHIFT);
724          if (phase < 0)
725              return phase;
726 <        if (p == phase &&
637 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
726 >        if (p == phase) {
727              QNode node = new QNode(this, phase, true, false, 0L);
728 <            p = rt.internalAwaitAdvance(phase, node);
728 >            p = root.internalAwaitAdvance(phase, node);
729              if (node.wasInterrupted)
730                  throw new InterruptedException();
731          }
# Line 657 | Line 746 | public class Phaser {
746       *        {@code unit}
747       * @param unit a {@code TimeUnit} determining how to interpret the
748       *        {@code timeout} parameter
749 <     * @return the next arrival phase number, or a negative value
750 <     * if terminated or argument is negative
749 >     * @return the next arrival phase number, or the argument if it is
750 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
751 >     * if terminated
752       * @throws InterruptedException if thread interrupted while waiting
753       * @throws TimeoutException if timed out while waiting
754       */
# Line 666 | Line 756 | public class Phaser {
756                                           long timeout, TimeUnit unit)
757          throws InterruptedException, TimeoutException {
758          long nanos = unit.toNanos(timeout);
759 <        Phaser rt;
760 <        int p = (int)(state >>> PHASE_SHIFT);
759 >        final Phaser root = this.root;
760 >        long s = (root == this) ? state : reconcileState();
761 >        int p = (int)(s >>> PHASE_SHIFT);
762          if (phase < 0)
763              return phase;
764 <        if (p == phase &&
674 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
764 >        if (p == phase) {
765              QNode node = new QNode(this, phase, true, true, nanos);
766 <            p = rt.internalAwaitAdvance(phase, node);
766 >            p = root.internalAwaitAdvance(phase, node);
767              if (node.wasInterrupted)
768                  throw new InterruptedException();
769              else if (p == phase)
# Line 684 | Line 774 | public class Phaser {
774  
775      /**
776       * Forces this phaser to enter termination state.  Counts of
777 <     * arrived and registered parties are unaffected.  If this phaser
778 <     * is a member of a tiered set of phasers, then all of the phasers
779 <     * in the set are terminated.  If this phaser is already
780 <     * terminated, this method has no effect.  This method may be
781 <     * useful for coordinating recovery after one or more tasks
782 <     * encounter unexpected exceptions.
777 >     * registered parties are unaffected.  If this phaser is a member
778 >     * of a tiered set of phasers, then all of the phasers in the set
779 >     * are terminated.  If this phaser is already terminated, this
780 >     * method has no effect.  This method may be useful for
781 >     * coordinating recovery after one or more tasks encounter
782 >     * unexpected exceptions.
783       */
784      public void forceTermination() {
785          // Only need to change root state
# Line 698 | Line 788 | public class Phaser {
788          while ((s = root.state) >= 0) {
789              if (UNSAFE.compareAndSwapLong(root, stateOffset,
790                                            s, s | TERMINATION_BIT)) {
791 <                releaseWaiters(0); // signal all threads
792 <                releaseWaiters(1);
791 >                // signal all threads
792 >                releaseWaiters(0); // Waiters on evenQ
793 >                releaseWaiters(1); // Waiters on oddQ
794                  return;
795              }
796          }
# Line 729 | Line 820 | public class Phaser {
820  
821      /**
822       * Returns the number of registered parties that have arrived at
823 <     * the current phase of this phaser.
823 >     * the current phase of this phaser. If this phaser has terminated,
824 >     * the returned value is meaningless and arbitrary.
825       *
826       * @return the number of arrived parties
827       */
828      public int getArrivedParties() {
829 <        long s = state;
738 <        int u = unarrivedOf(s); // only reconcile if possibly needed
739 <        return (u != 0 || parent == null) ?
740 <            partiesOf(s) - u :
741 <            arrivedOf(reconcileState());
829 >        return arrivedOf(reconcileState());
830      }
831  
832      /**
833       * Returns the number of registered parties that have not yet
834 <     * arrived at the current phase of this phaser.
834 >     * arrived at the current phase of this phaser. If this phaser has
835 >     * terminated, the returned value is meaningless and arbitrary.
836       *
837       * @return the number of unarrived parties
838       */
839      public int getUnarrivedParties() {
840 <        int u = unarrivedOf(state);
752 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
840 >        return unarrivedOf(reconcileState());
841      }
842  
843      /**
# Line 785 | Line 873 | public class Phaser {
873       * advance, and to control termination. This method is invoked
874       * upon arrival of the party advancing this phaser (when all other
875       * waiting parties are dormant).  If this method returns {@code
876 <     * true}, then, rather than advance the phase number, this phaser
877 <     * will be set to a final termination state, and subsequent calls
878 <     * to {@link #isTerminated} will return true. Any (unchecked)
879 <     * Exception or Error thrown by an invocation of this method is
880 <     * propagated to the party attempting to advance this phaser, in
881 <     * which case no advance occurs.
876 >     * true}, this phaser will be set to a final termination state
877 >     * upon advance, and subsequent calls to {@link #isTerminated}
878 >     * will return true. Any (unchecked) Exception or Error thrown by
879 >     * an invocation of this method is propagated to the party
880 >     * attempting to advance this phaser, in which case no advance
881 >     * occurs.
882       *
883       * <p>The arguments to this method provide the state of the phaser
884       * prevailing for the current transition.  The effects of invoking
# Line 854 | Line 942 | public class Phaser {
942       */
943      private void releaseWaiters(int phase) {
944          QNode q;   // first element of queue
857        int p;     // its phase
945          Thread t;  // its thread
946          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
947          while ((q = head.get()) != null &&
948 <               ((p = q.phase) == phase ||
862 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
948 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
949              if (head.compareAndSet(q, q.next) &&
950                  (t = q.thread) != null) {
951                  q.thread = null;
# Line 868 | Line 954 | public class Phaser {
954          }
955      }
956  
957 +    /**
958 +     * Variant of releaseWaiters that additionally tries to remove any
959 +     * nodes no longer waiting for advance due to timeout or
960 +     * interrupt. Currently, nodes are removed only if they are at
961 +     * head of queue, which suffices to reduce memory footprint in
962 +     * most usages.
963 +     *
964 +     * @return current phase on exit
965 +     */
966 +    private int abortWait(int phase) {
967 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
968 +        for (;;) {
969 +            Thread t;
970 +            QNode q = head.get();
971 +            int p = (int)(root.state >>> PHASE_SHIFT);
972 +            if (q == null || ((t = q.thread) != null && q.phase == p))
973 +                return p;
974 +            if (head.compareAndSet(q, q.next) && t != null) {
975 +                q.thread = null;
976 +                LockSupport.unpark(t);
977 +            }
978 +        }
979 +    }
980 +
981      /** The number of CPUs, for spin control */
982      private static final int NCPU = Runtime.getRuntime().availableProcessors();
983  
# Line 886 | Line 996 | public class Phaser {
996  
997      /**
998       * Possibly blocks and waits for phase to advance unless aborted.
999 <     * Call only from root node.
999 >     * Call only on root phaser.
1000       *
1001       * @param phase current phase
1002       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 894 | Line 1004 | public class Phaser {
1004       * @return current phase
1005       */
1006      private int internalAwaitAdvance(int phase, QNode node) {
1007 +        // assert root == this;
1008          releaseWaiters(phase-1);          // ensure old queue clean
1009          boolean queued = false;           // true when node is enqueued
1010          int lastUnarrived = 0;            // to increase spins upon change
# Line 935 | Line 1046 | public class Phaser {
1046                  node.thread = null;       // avoid need for unpark()
1047              if (node.wasInterrupted && !node.interruptible)
1048                  Thread.currentThread().interrupt();
1049 <            if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
1050 <                return p;                 // recheck abort
1049 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1050 >                return abortWait(phase); // possibly clean up on abort
1051          }
1052          releaseWaiters(phase);
1053          return p;
# Line 963 | Line 1074 | public class Phaser {
1074              this.interruptible = interruptible;
1075              this.nanos = nanos;
1076              this.timed = timed;
1077 <            this.lastTime = timed? System.nanoTime() : 0L;
1077 >            this.lastTime = timed ? System.nanoTime() : 0L;
1078              thread = Thread.currentThread();
1079          }
1080  
# Line 1007 | Line 1118 | public class Phaser {
1118  
1119      // Unsafe mechanics
1120  
1121 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1122 <    private static final long stateOffset =
1123 <        objectFieldOffset("state", Phaser.class);
1013 <
1014 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1121 >    private static final sun.misc.Unsafe UNSAFE;
1122 >    private static final long stateOffset;
1123 >    static {
1124          try {
1125 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1126 <        } catch (NoSuchFieldException e) {
1127 <            // Convert Exception to corresponding Error
1128 <            NoSuchFieldError error = new NoSuchFieldError(field);
1129 <            error.initCause(e);
1130 <            throw error;
1125 >            UNSAFE = getUnsafe();
1126 >            Class<?> k = Phaser.class;
1127 >            stateOffset = UNSAFE.objectFieldOffset
1128 >                (k.getDeclaredField("state"));
1129 >        } catch (Exception e) {
1130 >            throw new Error(e);
1131          }
1132      }
1133  
# Line 1032 | Line 1141 | public class Phaser {
1141      private static sun.misc.Unsafe getUnsafe() {
1142          try {
1143              return sun.misc.Unsafe.getUnsafe();
1144 <        } catch (SecurityException se) {
1145 <            try {
1146 <                return java.security.AccessController.doPrivileged
1147 <                    (new java.security
1148 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1149 <                        public sun.misc.Unsafe run() throws Exception {
1150 <                            java.lang.reflect.Field f = sun.misc
1151 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1152 <                            f.setAccessible(true);
1153 <                            return (sun.misc.Unsafe) f.get(null);
1154 <                        }});
1155 <            } catch (java.security.PrivilegedActionException e) {
1156 <                throw new RuntimeException("Could not initialize intrinsics",
1157 <                                           e.getCause());
1158 <            }
1144 >        } catch (SecurityException tryReflectionInstead) {}
1145 >        try {
1146 >            return java.security.AccessController.doPrivileged
1147 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1148 >                public sun.misc.Unsafe run() throws Exception {
1149 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1150 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1151 >                        f.setAccessible(true);
1152 >                        Object x = f.get(null);
1153 >                        if (k.isInstance(x))
1154 >                            return k.cast(x);
1155 >                    }
1156 >                    throw new NoSuchFieldError("the Unsafe");
1157 >                }});
1158 >        } catch (java.security.PrivilegedActionException e) {
1159 >            throw new RuntimeException("Could not initialize intrinsics",
1160 >                                       e.getCause());
1161          }
1162      }
1163   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines