ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.9 by jsr166, Mon Jan 5 09:11:26 2009 UTC vs.
Revision 1.55 by dl, Mon Nov 15 12:51:54 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 < * {@code CyclicBarrier.await}.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@code arrive} and
48 < *       {@code arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@code awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance while others may be waiting, are arranged by overriding
79 < * method {@code onAdvance}, that also controls termination.
80 < * Overriding this method may be used to similar but more flexible
81 < * effect as providing a barrier action to a CyclicBarrier.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
60 < * await actions immediately return, indicating (via a negative phase
61 < * value) that execution is complete.  Termination is triggered by
62 < * executing the overridable {@code onAdvance} method that is invoked
63 < * each time the barrier is about to be tripped. When a Phaser is
64 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84   * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method
86 < * {@code forceTermination} is also available to abruptly release
87 < * waiting threads and allow them to terminate.
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
112 < * a one-shot action serving a variable number of parties. The typical
113 < * idiom is for the method setting this up to first register, then
114 < * start the actions, then deregister, as in:
115 < *
116 < * <pre>
117 < *  void runTasks(List&lt;Runnable&gt; list) {
118 < *    final Phaser phaser = new Phaser(1); // "1" to register self
119 < *    for (Runnable r : list) {
120 < *      phaser.register();
121 < *      new Thread() {
122 < *        public void run() {
123 < *          phaser.arriveAndAwaitAdvance(); // await all creation
124 < *          r.run();
125 < *          phaser.arriveAndDeregister();   // signal completion
126 < *        }
127 < *      }.start();
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115 > *
116 > *  <pre> {@code
117 > * void runTasks(List<Runnable> tasks) {
118 > *   final Phaser phaser = new Phaser(1); // "1" to register self
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121 > *     phaser.register();
122 > *     new Thread() {
123 > *       public void run() {
124 > *         phaser.arriveAndAwaitAdvance(); // await all creation
125 > *         task.run();
126 > *       }
127 > *     }.start();
128   *   }
129   *
130 < *   doSomethingOnBehalfOfWorkers();
131 < *   phaser.arrive(); // allow threads to start
132 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
110 < *   p = phaser.awaitAdvance(p); // ... and await arrival
111 < *   otherActions(); // do other things while tasks execute
112 < *   phaser.awaitAdvance(p); // await final completion
113 < * }
114 < * </pre>
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133   *
134   * <p>One way to cause a set of threads to repeatedly perform actions
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137 < * <pre>
138 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
139 < *    final Phaser phaser = new Phaser() {
140 < *       public boolean onAdvance(int phase, int registeredParties) {
141 < *         return phase &gt;= iterations || registeredParties == 0;
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (final Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while (!phaser.isTerminated());
153   *       }
154 < *    };
126 < *    phaser.register();
127 < *    for (Runnable r : list) {
128 < *      phaser.register();
129 < *      new Thread() {
130 < *        public void run() {
131 < *           do {
132 < *             r.run();
133 < *             phaser.arriveAndAwaitAdvance();
134 < *           } while(!phaser.isTerminated();
135 < *        }
136 < *      }.start();
154 > *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 < * }
158 < * </pre>
157 > * }}</pre>
158 > *
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166 > *
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170 > *
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179 > *   }
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182 > *
183   *
184 < * <p> To create a set of tasks using a tree of Phasers,
184 > * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186 < * Task class with a constructor accepting a Phaser that
187 < * it registers for upon construction:
188 < * <pre>
189 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
190 < *    int step = (hi - lo) / TASKS_PER_PHASER;
191 < *    if (step &gt; 1) {
192 < *       int i = lo;
193 < *       while (i &lt; hi) {
194 < *         int r = Math.min(i + step, hi);
195 < *         build(actions, i, r, new Phaser(b));
196 < *         i = r;
197 < *       }
198 < *    }
199 < *    else {
200 < *      for (int i = lo; i &lt; hi; ++i)
201 < *        actions[i] = new Task(b);
202 < *        // assumes new Task(b) performs b.register()
203 < *    }
162 < *  }
163 < *  // .. initially called, for n tasks via
164 < *  build(new Task[n], 0, n, new Phaser());
165 < * </pre>
186 > * Task class with a constructor accepting a phaser that
187 > * it registers with upon construction:
188 > *
189 > *  <pre> {@code
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195 > *     }
196 > *   } else {
197 > *     for (int i = lo; i < hi; ++i)
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200 > *   }
201 > * }
202 > * // .. initially called, for n tasks via
203 > * build(new Task[n], 0, n, new Phaser());}</pre>
204   *
205   * The best value of {@code TASKS_PER_PHASER} depends mainly on
206   * expected barrier synchronization rates. A value as low as four may
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
172 * </pre>
173 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212 < * parties result in IllegalStateExceptions. However, you can and
212 > * parties result in {@code IllegalStateException}. However, you can and
213   * should create tiered phasers to accommodate arbitrarily large sets
214   * of participants.
215 + *
216 + * @since 1.7
217 + * @author Doug Lea
218   */
219   public class Phaser {
220      /*
# Line 188 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
201     *
202     * Note: there are some cheats in arrive() that rely on unarrived
203     * being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask =  (1 << ushortBits) - 1;
245 <    private static final int phaseMask = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final int  PARTIES_MASK   = 0xffff0000;
249 >    private static final long LPARTIES_MASK  = 0xffff0000L; // long version
250 >    private static final long ONE_ARRIVAL    = 1L;
251 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
252 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
253 >
254 >    // The following unpacking methods are usually manually inlined
255  
256      private static int unarrivedOf(long s) {
257 <        return (int)(s & ushortMask);
257 >        return ((int) s) & UNARRIVED_MASK;
258      }
259  
260      private static int partiesOf(long s) {
261 <        return (int)(s & (ushortMask << 16)) >>> 16;
261 >        return (((int) s) & PARTIES_MASK) >>> PARTIES_SHIFT;
262      }
263  
264      private static int phaseOf(long s) {
265 <        return (int)(s >>> 32);
265 >        return (int) (s >>> PHASE_SHIFT);
266      }
267  
268      private static int arrivedOf(long s) {
269          return partiesOf(s) - unarrivedOf(s);
270      }
271  
227    private static long stateFor(int phase, int parties, int unarrived) {
228        return (((long)phase) << 32) | ((parties << 16) | unarrived);
229    }
230
231    private static long trippedStateFor(int phase, int parties) {
232        return (((long)phase) << 32) | ((parties << 16) | parties);
233    }
234
235    private static IllegalStateException badBounds(int parties, int unarrived) {
236        return new IllegalStateException
237            ("Attempt to set " + unarrived +
238             " unarrived of " + parties + " parties");
239    }
240
272      /**
273       * The parent of this phaser, or null if none
274       */
275      private final Phaser parent;
276  
277      /**
278 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
278 >     * The root of phaser tree. Equals this if not in a tree.  Used to
279       * support faster state push-down.
280       */
281      private final Phaser root;
282  
252    // Wait queues
253
283      /**
284 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
285 <     * contention while releasing some threads while adding others, we
284 >     * Heads of Treiber stacks for waiting threads. To eliminate
285 >     * contention when releasing some threads while adding others, we
286       * use two of them, alternating across even and odd phases.
287 +     * Subphasers share queues with root to speed up releases.
288       */
289 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
290 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
289 >    private final AtomicReference<QNode> evenQ;
290 >    private final AtomicReference<QNode> oddQ;
291  
292      private AtomicReference<QNode> queueFor(int phase) {
293 <        return (phase & 1) == 0? evenQ : oddQ;
293 >        return ((phase & 1) == 0) ? evenQ : oddQ;
294      }
295  
296      /**
297 <     * Returns current state, first resolving lagged propagation from
298 <     * root if necessary.
297 >     * Main implementation for methods arrive and arriveAndDeregister.
298 >     * Manually tuned to speed up and minimize race windows for the
299 >     * common case of just decrementing unarrived field.
300 >     *
301 >     * @param adj - adjustment to apply to state -- either
302 >     * ONE_ARRIVAL (for arrive) or
303 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
304       */
305 <    private long getReconciledState() {
306 <        return parent == null? state : reconcileState();
305 >    private int doArrive(long adj) {
306 >        for (;;) {
307 >            long s;
308 >            int phase, unarrived;
309 >            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
310 >                return phase;
311 >            else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    Phaser par;
316 >                    long p = s & LPARTIES_MASK; // unshifted parties field
317 >                    long lu = p >>> PARTIES_SHIFT;
318 >                    int u = (int)lu;
319 >                    int nextPhase = (phase + 1) & MAX_PHASE;
320 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
321 >                    if ((par = parent) == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        par.doArrive(u == 0?
329 >                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357 >     */
358 >    private int doRegister(int registrations) {
359 >        long adj = (long)registrations; // adjustment to state
360 >        adj |= adj << PARTIES_SHIFT;
361 >        Phaser par = parent;
362 >        for (;;) {
363 >            int phase, parties;
364 >            long s = par == null? state : reconcileState();
365 >            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
366 >                return phase;
367 >            if ((parties = (((int)s) & PARTIES_MASK) >>> PARTIES_SHIFT) != 0 &&
368 >                (((int)s) & UNARRIVED_MASK) == 0)
369 >                internalAwaitAdvance(phase, null); // wait for onAdvance
370 >            else if (parties + registrations > MAX_PARTIES)
371 >                throw new IllegalStateException(badRegister(s));
372 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
373 >                return phase;
374 >        }
375 >    }
376 >
377 >    /**
378 >     * Returns message string for out of bounds exceptions on registration.
379 >     */
380 >    private String badRegister(long s) {
381 >        return "Attempt to register more than " +
382 >            MAX_PARTIES + " parties for " + stateToString(s);
383      }
384  
385      /**
386 <     * Recursively resolves state.
386 >     * Recursively resolves lagged phase propagation from root if necessary.
387       */
388      private long reconcileState() {
389 <        Phaser p = parent;
390 <        long s = state;
391 <        if (p != null) {
392 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
393 <                long parentState = p.getReconciledState();
394 <                int parentPhase = phaseOf(parentState);
395 <                int phase = phaseOf(s = state);
396 <                if (phase != parentPhase) {
397 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
398 <                    if (casState(s, next)) {
399 <                        releaseWaiters(phase);
400 <                        s = next;
401 <                    }
402 <                }
389 >        Phaser par = parent;
390 >        if (par == null)
391 >            return state;
392 >        Phaser rt = root;
393 >        for (;;) {
394 >            long s, u;
395 >            int phase, rPhase, pPhase;
396 >            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397 >                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398 >                return s;
399 >            long pState = par.parent == null? par.state : par.reconcileState();
400 >            if (state == s) {
401 >                if ((rPhase < 0 || (((int)s) & UNARRIVED_MASK) == 0) &&
402 >                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 >                     pPhase == ((phase + 1) & MAX_PHASE)))
404 >                    UNSAFE.compareAndSwapLong
405 >                        (this, stateOffset, s,
406 >                         (((long) pPhase) << PHASE_SHIFT) |
407 >                         (u = s & LPARTIES_MASK) |
408 >                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 >                else
410 >                    releaseWaiters(phase); // help release others
411              }
412          }
294        return s;
413      }
414  
415      /**
416 <     * Creates a new Phaser without any initially registered parties,
417 <     * initial phase number 0, and no parent.
416 >     * Creates a new phaser without any initially registered parties,
417 >     * initial phase number 0, and no parent. Any thread using this
418 >     * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
425 <     * Creates a new Phaser with the given numbers of registered
425 >     * Creates a new phaser with the given number of registered
426       * unarrived parties, initial phase number 0, and no parent.
427 <     * @param parties the number of parties required to trip barrier.
427 >     *
428 >     * @param parties the number of parties required to trip barrier
429       * @throws IllegalArgumentException if parties less than zero
430 <     * or greater than the maximum number of parties supported.
430 >     * or greater than the maximum number of parties supported
431       */
432      public Phaser(int parties) {
433          this(null, parties);
434      }
435  
436      /**
437 <     * Creates a new Phaser with the given parent, without any
437 >     * Creates a new phaser with the given parent, without any
438       * initially registered parties. If parent is non-null this phaser
439       * is registered with the parent and its initial phase number is
440       * the same as that of parent phaser.
441 <     * @param parent the parent phaser.
441 >     *
442 >     * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
325 <        this.parent = parent;
326 <        if (parent != null) {
327 <            this.root = parent.root;
328 <            phase = parent.register();
329 <        }
330 <        else
331 <            this.root = this;
332 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
449 <     * Creates a new Phaser with the given parent and numbers of
450 <     * registered unarrived parties. If parent is non-null this phaser
449 >     * Creates a new phaser with the given parent and number of
450 >     * registered unarrived parties. If parent is non-null, this phaser
451       * is registered with the parent and its initial phase number is
452       * the same as that of parent phaser.
453 <     * @param parent the parent phaser.
454 <     * @param parties the number of parties required to trip barrier.
453 >     *
454 >     * @param parent the parent phaser
455 >     * @param parties the number of parties required to trip barrier
456       * @throws IllegalArgumentException if parties less than zero
457 <     * or greater than the maximum number of parties supported.
457 >     * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties >>> PARTIES_SHIFT != 0)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483 <     * @return the current barrier phase number upon registration
483 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
484 >     * this method may wait until its completion before registering.
485 >     *
486 >     * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
488 <     * than the maximum supported number of parties.
488 >     * than the maximum supported number of parties
489       */
490      public int register() {
491          return doRegister(1);
# Line 368 | Line 493 | public class Phaser {
493  
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496 <     * @param parties the number of parties required to trip barrier.
497 <     * @return the current barrier phase number upon registration
496 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
497 >     * this method may wait until its completion before registering.
498 >     *
499 >     * @param parties the number of additional parties required to trip barrier
500 >     * @return the arrival phase number to which this registration applied
501       * @throws IllegalStateException if attempting to register more
502 <     * than the maximum supported number of parties.
502 >     * than the maximum supported number of parties
503 >     * @throws IllegalArgumentException if {@code parties < 0}
504       */
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_PARTIES)
509 +            throw new IllegalStateException(badRegister(state));
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
385     * Shared code for register, bulkRegister
386     */
387    private int doRegister(int registrations) {
388        int phase;
389        for (;;) {
390            long s = getReconciledState();
391            phase = phaseOf(s);
392            int unarrived = unarrivedOf(s) + registrations;
393            int parties = partiesOf(s) + registrations;
394            if (phase < 0)
395                break;
396            if (parties > ushortMask || unarrived > ushortMask)
397                throw badBounds(parties, unarrived);
398            if (phase == phaseOf(root.state) &&
399                casState(s, stateFor(phase, parties, unarrived)))
400                break;
401        }
402        return phase;
403    }
404
405    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517 <     * in turn wait for others via {@link #awaitAdvance}).
517 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
518 >     * unenforced usage error for an unregistered party to invoke this
519 >     * method.
520       *
521 <     * @return the barrier phase number upon entry to this method, or a
410 <     * negative value if terminated;
521 >     * @return the arrival phase number, or a negative value if terminated
522       * @throws IllegalStateException if not terminated and the number
523 <     * of unarrived parties would become negative.
523 >     * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        int phase;
416 <        for (;;) {
417 <            long s = state;
418 <            phase = phaseOf(s);
419 <            int parties = partiesOf(s);
420 <            int unarrived = unarrivedOf(s) - 1;
421 <            if (unarrived > 0) {        // Not the last arrival
422 <                if (casState(s, s - 1)) // s-1 adds one arrival
423 <                    break;
424 <            }
425 <            else if (unarrived == 0) {  // the last arrival
426 <                Phaser par = parent;
427 <                if (par == null) {      // directly trip
428 <                    if (casState
429 <                        (s,
430 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
431 <                                         ((phase + 1) & phaseMask), parties))) {
432 <                        releaseWaiters(phase);
433 <                        break;
434 <                    }
435 <                }
436 <                else {                  // cascade to parent
437 <                    if (casState(s, s - 1)) { // zeroes unarrived
438 <                        par.arrive();
439 <                        reconcileState();
440 <                        break;
441 <                    }
442 <                }
443 <            }
444 <            else if (phase < 0) // Don't throw exception if terminated
445 <                break;
446 <            else if (phase != phaseOf(root.state)) // or if unreconciled
447 <                reconcileState();
448 <            else
449 <                throw badBounds(parties, unarrived);
450 <        }
451 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
530 <     * Arrives at the barrier, and deregisters from it, without
531 <     * waiting for others. Deregistration reduces number of parties
530 >     * Arrives at the barrier and deregisters from it without waiting
531 >     * for others. Deregistration reduces the number of parties
532       * required to trip the barrier in future phases.  If this phaser
533       * has a parent, and deregistration causes this phaser to have
534 <     * zero parties, this phaser is also deregistered from its parent.
534 >     * zero parties, this phaser also arrives at and is deregistered
535 >     * from its parent.  It is an unenforced usage error for an
536 >     * unregistered party to invoke this method.
537       *
538 <     * @return the current barrier phase number upon entry to
462 <     * this method, or a negative value if terminated;
538 >     * @return the arrival phase number, or a negative value if terminated
539       * @throws IllegalStateException if not terminated and the number
540 <     * of registered or unarrived parties would become negative.
540 >     * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar code to arrive, but too different to merge
468 <        Phaser par = parent;
469 <        int phase;
470 <        for (;;) {
471 <            long s = state;
472 <            phase = phaseOf(s);
473 <            int parties = partiesOf(s) - 1;
474 <            int unarrived = unarrivedOf(s) - 1;
475 <            if (parties >= 0) {
476 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
477 <                    if (casState
478 <                        (s,
479 <                         stateFor(phase, parties, unarrived))) {
480 <                        if (unarrived == 0) {
481 <                            par.arriveAndDeregister();
482 <                            reconcileState();
483 <                        }
484 <                        break;
485 <                    }
486 <                    continue;
487 <                }
488 <                if (unarrived == 0) {
489 <                    if (casState
490 <                        (s,
491 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
492 <                                         ((phase + 1) & phaseMask), parties))) {
493 <                        releaseWaiters(phase);
494 <                        break;
495 <                    }
496 <                    continue;
497 <                }
498 <                if (phase < 0)
499 <                    break;
500 <                if (par != null && phase != phaseOf(root.state)) {
501 <                    reconcileState();
502 <                    continue;
503 <                }
504 <            }
505 <            throw badBounds(parties, unarrived);
506 <        }
507 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
547       * Arrives at the barrier and awaits others. Equivalent in effect
548 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
549 <     * await with interruption of timeout, and/or deregister upon
550 <     * arrival, you can arrange them using analogous constructions.
551 <     * @return the phase on entry to this method
548 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
549 >     * interruption or timeout, you can arrange this with an analogous
550 >     * construction using one of the other forms of the {@code
551 >     * awaitAdvance} method.  If instead you need to deregister upon
552 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 >     * usage error for an unregistered party to invoke this method.
554 >     *
555 >     * @return the arrival phase number, or a negative number if terminated
556       * @throws IllegalStateException if not terminated and the number
557 <     * of unarrived parties would become negative.
557 >     * of unarrived parties would become negative
558       */
559      public int arriveAndAwaitAdvance() {
560          return awaitAdvance(arrive());
561      }
562  
563      /**
564 <     * Awaits the phase of the barrier to advance from the given
565 <     * value, or returns immediately if argument is negative or this
566 <     * barrier is terminated.
567 <     * @param phase the phase on entry to this method
568 <     * @return the phase on exit from this method
564 >     * Awaits the phase of the barrier to advance from the given phase
565 >     * value, returning immediately if the current phase of the
566 >     * barrier is not equal to the given phase value or this barrier
567 >     * is terminated.
568 >     *
569 >     * @param phase an arrival phase number, or negative value if
570 >     * terminated; this argument is normally the value returned by a
571 >     * previous call to {@code arrive} or its variants
572 >     * @return the next arrival phase number, or a negative value
573 >     * if terminated or argument is negative
574       */
575      public int awaitAdvance(int phase) {
576 +        int p;
577          if (phase < 0)
578              return phase;
579 <        long s = getReconciledState();
580 <        int p = phaseOf(s);
581 <        if (p != phase)
579 >        else if ((p = (int)((parent == null? state : reconcileState())
580 >                            >>> PHASE_SHIFT)) == phase)
581 >            return internalAwaitAdvance(phase, null);
582 >        else
583              return p;
537        if (unarrivedOf(s) == 0)
538            parent.awaitAdvance(phase);
539        // Fall here even if parent waited, to reconcile and help release
540        return untimedWait(phase);
584      }
585  
586      /**
587 <     * Awaits the phase of the barrier to advance from the given
588 <     * value, or returns immediately if argument is negative or this
589 <     * barrier is terminated, or throws InterruptedException if
590 <     * interrupted while waiting.
591 <     * @param phase the phase on entry to this method
592 <     * @return the phase on exit from this method
587 >     * Awaits the phase of the barrier to advance from the given phase
588 >     * value, throwing {@code InterruptedException} if interrupted
589 >     * while waiting, or returning immediately if the current phase of
590 >     * the barrier is not equal to the given phase value or this
591 >     * barrier is terminated.
592 >     *
593 >     * @param phase an arrival phase number, or negative value if
594 >     * terminated; this argument is normally the value returned by a
595 >     * previous call to {@code arrive} or its variants
596 >     * @return the next arrival phase number, or a negative value
597 >     * if terminated or argument is negative
598       * @throws InterruptedException if thread interrupted while waiting
599       */
600 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
600 >    public int awaitAdvanceInterruptibly(int phase)
601 >        throws InterruptedException {
602 >        int p;
603          if (phase < 0)
604              return phase;
605 <        long s = getReconciledState();
606 <        int p = phaseOf(s);
607 <        if (p != phase)
608 <            return p;
609 <        if (unarrivedOf(s) != 0)
610 <            parent.awaitAdvanceInterruptibly(phase);
611 <        return interruptibleWait(phase);
605 >        if ((p = (int)((parent == null? state : reconcileState())
606 >                       >>> PHASE_SHIFT)) == phase) {
607 >            QNode node = new QNode(this, phase, true, false, 0L);
608 >            p = internalAwaitAdvance(phase, node);
609 >            if (node.wasInterrupted)
610 >                throw new InterruptedException();
611 >        }
612 >        return p;
613      }
614  
615      /**
616 <     * Awaits the phase of the barrier to advance from the given value
617 <     * or the given timeout elapses, or returns immediately if
618 <     * argument is negative or this barrier is terminated.
619 <     * @param phase the phase on entry to this method
620 <     * @return the phase on exit from this method
616 >     * Awaits the phase of the barrier to advance from the given phase
617 >     * value or the given timeout to elapse, throwing {@code
618 >     * InterruptedException} if interrupted while waiting, or
619 >     * returning immediately if the current phase of the barrier is
620 >     * not equal to the given phase value or this barrier is
621 >     * terminated.
622 >     *
623 >     * @param phase an arrival phase number, or negative value if
624 >     * terminated; this argument is normally the value returned by a
625 >     * previous call to {@code arrive} or its variants
626 >     * @param timeout how long to wait before giving up, in units of
627 >     *        {@code unit}
628 >     * @param unit a {@code TimeUnit} determining how to interpret the
629 >     *        {@code timeout} parameter
630 >     * @return the next arrival phase number, or a negative value
631 >     * if terminated or argument is negative
632       * @throws InterruptedException if thread interrupted while waiting
633       * @throws TimeoutException if timed out while waiting
634       */
635 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
635 >    public int awaitAdvanceInterruptibly(int phase,
636 >                                         long timeout, TimeUnit unit)
637          throws InterruptedException, TimeoutException {
638 +        long nanos = unit.toNanos(timeout);
639 +        int p;
640          if (phase < 0)
641              return phase;
642 <        long s = getReconciledState();
643 <        int p = phaseOf(s);
644 <        if (p != phase)
645 <            return p;
646 <        if (unarrivedOf(s) == 0)
647 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
648 <        return timedWait(phase, unit.toNanos(timeout));
642 >        if ((p = (int)((parent == null? state : reconcileState())
643 >                       >>> PHASE_SHIFT)) == phase) {
644 >            QNode node = new QNode(this, phase, true, true, nanos);
645 >            p = internalAwaitAdvance(phase, node);
646 >            if (node.wasInterrupted)
647 >                throw new InterruptedException();
648 >            else if (p == phase)
649 >                throw new TimeoutException();
650 >        }
651 >        return p;
652      }
653  
654      /**
655 <     * Forces this barrier to enter termination state. Counts of
656 <     * arrived and registered parties are unaffected. If this phaser
657 <     * has a parent, it too is terminated. This method may be useful
658 <     * for coordinating recovery after one or more tasks encounter
659 <     * unexpected exceptions.
655 >     * Forces this barrier to enter termination state.  Counts of
656 >     * arrived and registered parties are unaffected.  If this phaser
657 >     * is a member of a tiered set of phasers, then all of the phasers
658 >     * in the set are terminated.  If this phaser is already
659 >     * terminated, this method has no effect.  This method may be
660 >     * useful for coordinating recovery after one or more tasks
661 >     * encounter unexpected exceptions.
662       */
663      public void forceTermination() {
664 <        for (;;) {
665 <            long s = getReconciledState();
666 <            int phase = phaseOf(s);
667 <            int parties = partiesOf(s);
668 <            int unarrived = unarrivedOf(s);
669 <            if (phase < 0 ||
670 <                casState(s, stateFor(-1, parties, unarrived))) {
601 <                releaseWaiters(0);
664 >        // Only need to change root state
665 >        final Phaser root = this.root;
666 >        long s;
667 >        while ((s = root.state) >= 0) {
668 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
669 >                                          s, s | TERMINATION_PHASE)) {
670 >                releaseWaiters(0); // signal all threads
671                  releaseWaiters(1);
603                if (parent != null)
604                    parent.forceTermination();
672                  return;
673              }
674          }
# Line 611 | Line 678 | public class Phaser {
678       * Returns the current phase number. The maximum phase number is
679       * {@code Integer.MAX_VALUE}, after which it restarts at
680       * zero. Upon termination, the phase number is negative.
681 +     *
682       * @return the phase number, or a negative value if terminated
683       */
684      public final int getPhase() {
685 <        return phaseOf(getReconciledState());
618 <    }
619 <
620 <    /**
621 <     * Returns {@code true} if the current phase number equals the given phase.
622 <     * @param phase the phase
623 <     * @return {@code true} if the current phase number equals the given phase
624 <     */
625 <    public final boolean hasPhase(int phase) {
626 <        return phaseOf(getReconciledState()) == phase;
685 >        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
686      }
687  
688      /**
689       * Returns the number of parties registered at this barrier.
690 +     *
691       * @return the number of parties
692       */
693      public int getRegisteredParties() {
694 <        return partiesOf(state);
694 >        return partiesOf(parent==null? state : reconcileState());
695      }
696  
697      /**
698 <     * Returns the number of parties that have arrived at the current
699 <     * phase of this barrier.
698 >     * Returns the number of registered parties that have arrived at
699 >     * the current phase of this barrier.
700 >     *
701       * @return the number of arrived parties
702       */
703      public int getArrivedParties() {
704 <        return arrivedOf(state);
704 >        return arrivedOf(parent==null? state : reconcileState());
705      }
706  
707      /**
708       * Returns the number of registered parties that have not yet
709       * arrived at the current phase of this barrier.
710 +     *
711       * @return the number of unarrived parties
712       */
713      public int getUnarrivedParties() {
714 <        return unarrivedOf(state);
714 >        return unarrivedOf(parent==null? state : reconcileState());
715      }
716  
717      /**
718 <     * Returns the parent of this phaser, or null if none.
719 <     * @return the parent of this phaser, or null if none
718 >     * Returns the parent of this phaser, or {@code null} if none.
719 >     *
720 >     * @return the parent of this phaser, or {@code null} if none
721       */
722      public Phaser getParent() {
723          return parent;
# Line 663 | Line 726 | public class Phaser {
726      /**
727       * Returns the root ancestor of this phaser, which is the same as
728       * this phaser if it has no parent.
729 +     *
730       * @return the root ancestor of this phaser
731       */
732      public Phaser getRoot() {
# Line 671 | Line 735 | public class Phaser {
735  
736      /**
737       * Returns {@code true} if this barrier has been terminated.
738 +     *
739       * @return {@code true} if this barrier has been terminated
740       */
741      public boolean isTerminated() {
742 <        return getPhase() < 0;
742 >        return (parent == null? state : reconcileState()) < 0;
743      }
744  
745      /**
746 <     * Overridable method to perform an action upon phase advance, and
747 <     * to control termination. This method is invoked whenever the
748 <     * barrier is tripped (and thus all other waiting parties are
749 <     * dormant). If it returns true, then, rather than advance the
750 <     * phase number, this barrier will be set to a final termination
751 <     * state, and subsequent calls to {@code isTerminated} will
752 <     * return true.
746 >     * Overridable method to perform an action upon impending phase
747 >     * advance, and to control termination. This method is invoked
748 >     * upon arrival of the party tripping the barrier (when all other
749 >     * waiting parties are dormant).  If this method returns {@code
750 >     * true}, then, rather than advance the phase number, this barrier
751 >     * will be set to a final termination state, and subsequent calls
752 >     * to {@link #isTerminated} will return true. Any (unchecked)
753 >     * Exception or Error thrown by an invocation of this method is
754 >     * propagated to the party attempting to trip the barrier, in
755 >     * which case no advance occurs.
756 >     *
757 >     * <p>The arguments to this method provide the state of the phaser
758 >     * prevailing for the current transition.  The effects of invoking
759 >     * arrival, registration, and waiting methods on this Phaser from
760 >     * within {@code onAdvance} are unspecified and should not be
761 >     * relied on.
762       *
763 <     * <p> The default version returns true when the number of
763 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
764 >     * {@code onAdvance} is invoked only for its root Phaser on each
765 >     * advance.
766 >     *
767 >     * <p>The default version returns {@code true} when the number of
768       * registered parties is zero. Normally, overrides that arrange
769       * termination for other reasons should also preserve this
770       * property.
771       *
694     * <p> You may override this method to perform an action with side
695     * effects visible to participating tasks, but it is in general
696     * only sensible to do so in designs where all parties register
697     * before any arrive, and all {@code awaitAdvance} at each phase.
698     * Otherwise, you cannot ensure lack of interference. In
699     * particular, this method may be invoked more than once per
700     * transition if other parties successfully register while the
701     * invocation of this method is in progress, thus postponing the
702     * transition until those parties also arrive, re-triggering this
703     * method.
704     *
772       * @param phase the phase number on entering the barrier
773       * @param registeredParties the current number of registered parties
774       * @return {@code true} if this barrier should terminate
# Line 720 | Line 787 | public class Phaser {
787       * @return a string identifying this barrier, as well as its state
788       */
789      public String toString() {
790 <        long s = getReconciledState();
790 >        return stateToString(reconcileState());
791 >    }
792 >
793 >    /**
794 >     * Implementation of toString and string-based error messages
795 >     */
796 >    private String stateToString(long s) {
797          return super.toString() +
798              "[phase = " + phaseOf(s) +
799              " parties = " + partiesOf(s) +
800              " arrived = " + arrivedOf(s) + "]";
801      }
802  
803 <    // methods for waiting
731 <
732 <    /** The number of CPUs, for spin control */
733 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
734 <
735 <    /**
736 <     * The number of times to spin before blocking in timed waits.
737 <     * The value is empirically derived.
738 <     */
739 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
740 <
741 <    /**
742 <     * The number of times to spin before blocking in untimed waits.
743 <     * This is greater than timed value because untimed waits spin
744 <     * faster since they don't need to check times on each spin.
745 <     */
746 <    static final int maxUntimedSpins = maxTimedSpins * 32;
747 <
748 <    /**
749 <     * The number of nanoseconds for which it is faster to spin
750 <     * rather than to use timed park. A rough estimate suffices.
751 <     */
752 <    static final long spinForTimeoutThreshold = 1000L;
753 <
754 <    /**
755 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
756 <     * tasks.
757 <     */
758 <    static final class QNode {
759 <        QNode next;
760 <        volatile Thread thread; // nulled to cancel wait
761 <        QNode() {
762 <            thread = Thread.currentThread();
763 <        }
764 <        void signal() {
765 <            Thread t = thread;
766 <            if (t != null) {
767 <                thread = null;
768 <                LockSupport.unpark(t);
769 <            }
770 <        }
771 <    }
803 >    // Waiting mechanics
804  
805      /**
806 <     * Removes and signals waiting threads from wait queue
806 >     * Removes and signals threads from queue for phase
807       */
808      private void releaseWaiters(int phase) {
809          AtomicReference<QNode> head = queueFor(phase);
810          QNode q;
811 <        while ((q = head.get()) != null) {
811 >        int p;
812 >        while ((q = head.get()) != null &&
813 >               ((p = q.phase) == phase ||
814 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
815              if (head.compareAndSet(q, q.next))
816                  q.signal();
817          }
818      }
819  
820      /**
821 <     * Enqueues node and waits unless aborted or signalled.
821 >     * Tries to enqueue given node in the appropriate wait queue.
822 >     *
823 >     * @return true if successful
824       */
825 <    private int untimedWait(int phase) {
826 <        int spins = maxUntimedSpins;
827 <        QNode node = null;
828 <        boolean interrupted = false;
829 <        boolean queued = false;
830 <        int p;
831 <        while ((p = getPhase()) == phase) {
795 <            interrupted = Thread.interrupted();
796 <            if (node != null) {
797 <                if (!queued) {
798 <                    AtomicReference<QNode> head = queueFor(phase);
799 <                    queued = head.compareAndSet(node.next = head.get(), node);
800 <                }
801 <                else if (node.thread != null)
802 <                    LockSupport.park(this);
803 <            }
804 <            else if (spins <= 0)
805 <                node = new QNode();
806 <            else
807 <                --spins;
808 <        }
809 <        if (node != null)
810 <            node.thread = null;
811 <        if (interrupted)
812 <            Thread.currentThread().interrupt();
813 <        releaseWaiters(phase);
814 <        return p;
825 >    private boolean tryEnqueue(int phase, QNode node) {
826 >        releaseWaiters(phase-1); // ensure old queue clean
827 >        AtomicReference<QNode> head = queueFor(phase);
828 >        QNode q = head.get();
829 >        return ((q == null || q.phase == phase) &&
830 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
831 >                head.compareAndSet(node.next = q, node));
832      }
833  
834 +    /** The number of CPUs, for spin control */
835 +    private static final int NCPU = Runtime.getRuntime().availableProcessors();
836 +
837      /**
838 <     * Messier interruptible version
838 >     * The number of times to spin before blocking while waiting for
839 >     * advance, per arrival while waiting. On multiprocessors, fully
840 >     * blocking and waking up a large number of threads all at once is
841 >     * usually a very slow process, so we use rechargeable spins to
842 >     * avoid it when threads regularly arrive: When a thread in
843 >     * internalAwaitAdvance notices another arrival before blocking,
844 >     * and there appear to be enough CPUs available, it spins
845 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
846 >     * uniprocessors, there is at least one intervening Thread.yield
847 >     * before blocking. The value trades off good-citizenship vs big
848 >     * unnecessary slowdowns.
849       */
850 <    private int interruptibleWait(int phase) throws InterruptedException {
851 <        int spins = maxUntimedSpins;
852 <        QNode node = null;
853 <        boolean queued = false;
854 <        boolean interrupted = false;
855 <        int p;
856 <        while ((p = getPhase()) == phase) {
857 <            if (interrupted = Thread.interrupted())
858 <                break;
859 <            if (node != null) {
860 <                if (!queued) {
861 <                    AtomicReference<QNode> head = queueFor(phase);
862 <                    queued = head.compareAndSet(node.next = head.get(), node);
850 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
851 >
852 >    /**
853 >     * Possibly blocks and waits for phase to advance unless aborted.
854 >     *
855 >     * @param phase current phase
856 >     * @param node if non-null, the wait node to track interrupt and timeout;
857 >     * if null, denotes noninterruptible wait
858 >     * @return current phase
859 >     */
860 >    private int internalAwaitAdvance(int phase, QNode node) {
861 >        Phaser current = this;       // to eventually wait at root if tiered
862 >        boolean queued = false;      // true when node is enqueued
863 >        int lastUnarrived = -1;      // to increase spins upon change
864 >        int spins = SPINS_PER_ARRIVAL;
865 >        for (;;) {
866 >            int p, unarrived;
867 >            Phaser par;
868 >            long s = current.state;
869 >            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
870 >                if (node != null)
871 >                    node.onRelease();
872 >                releaseWaiters(phase);
873 >                return p;
874 >            }
875 >            else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0 &&
876 >                     (par = current.parent) != null) {
877 >                current = par;       // if all arrived, use parent
878 >                par = par.parent;
879 >                lastUnarrived = -1;
880 >            }
881 >            else if (unarrived != lastUnarrived) {
882 >                if ((lastUnarrived = unarrived) < NCPU)
883 >                    spins += SPINS_PER_ARRIVAL;
884 >            }
885 >            else if (spins > 0) {
886 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
887 >                    Thread.yield();  // yield midway through spin
888 >            }
889 >            else if (node == null)   // must be noninterruptible
890 >                node = new QNode(this, phase, false, false, 0L);
891 >            else if (node.isReleasable()) {
892 >                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
893 >                    return phase;    // aborted
894 >            }
895 >            else if (!queued)
896 >                queued = tryEnqueue(phase, node);
897 >            else {
898 >                try {
899 >                    ForkJoinPool.managedBlock(node);
900 >                } catch (InterruptedException ie) {
901 >                    node.wasInterrupted = true;
902                  }
834                else if (node.thread != null)
835                    LockSupport.park(this);
903              }
904 <            else if (spins <= 0)
838 <                node = new QNode();
839 <            else
840 <                --spins;
841 <        }
842 <        if (node != null)
843 <            node.thread = null;
844 <        if (interrupted)
845 <            throw new InterruptedException();
846 <        releaseWaiters(phase);
847 <        return p;
904 >        }
905      }
906  
907      /**
908 <     * Even messier timeout version.
908 >     * Wait nodes for Treiber stack representing wait queue
909       */
910 <    private int timedWait(int phase, long nanos)
911 <        throws InterruptedException, TimeoutException {
912 <        int p;
913 <        if ((p = getPhase()) == phase) {
914 <            long lastTime = System.nanoTime();
915 <            int spins = maxTimedSpins;
916 <            QNode node = null;
917 <            boolean queued = false;
918 <            boolean interrupted = false;
919 <            while ((p = getPhase()) == phase) {
920 <                if (interrupted = Thread.interrupted())
921 <                    break;
922 <                long now = System.nanoTime();
923 <                if ((nanos -= now - lastTime) <= 0)
924 <                    break;
925 <                lastTime = now;
926 <                if (node != null) {
927 <                    if (!queued) {
928 <                        AtomicReference<QNode> head = queueFor(phase);
929 <                        queued = head.compareAndSet(node.next = head.get(), node);
930 <                    }
931 <                    else if (node.thread != null &&
932 <                             nanos > spinForTimeoutThreshold) {
933 <                        LockSupport.parkNanos(this, nanos);
910 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
911 >        final Phaser phaser;
912 >        final int phase;
913 >        final boolean interruptible;
914 >        final boolean timed;
915 >        boolean wasInterrupted;
916 >        long nanos;
917 >        long lastTime;
918 >        volatile Thread thread; // nulled to cancel wait
919 >        QNode next;
920 >
921 >        QNode(Phaser phaser, int phase, boolean interruptible,
922 >              boolean timed, long nanos) {
923 >            this.phaser = phaser;
924 >            this.phase = phase;
925 >            this.interruptible = interruptible;
926 >            this.nanos = nanos;
927 >            this.timed = timed;
928 >            this.lastTime = timed? System.nanoTime() : 0L;
929 >            thread = Thread.currentThread();
930 >        }
931 >
932 >        public boolean isReleasable() {
933 >            Thread t = thread;
934 >            if (t != null) {
935 >                if (phaser.getPhase() != phase)
936 >                    t = null;
937 >                else {
938 >                    if (Thread.interrupted())
939 >                        wasInterrupted = true;
940 >                    if (interruptible && wasInterrupted)
941 >                        t = null;
942 >                    else if (timed) {
943 >                        if (nanos > 0) {
944 >                            long now = System.nanoTime();
945 >                            nanos -= now - lastTime;
946 >                            lastTime = now;
947 >                        }
948 >                        if (nanos <= 0)
949 >                            t = null;
950                      }
951                  }
952 <                else if (spins <= 0)
953 <                    node = new QNode();
954 <                else
882 <                    --spins;
952 >                if (t != null)
953 >                    return false;
954 >                thread = null;
955              }
956 <            if (node != null)
885 <                node.thread = null;
886 <            if (interrupted)
887 <                throw new InterruptedException();
888 <            if (p == phase && (p = getPhase()) == phase)
889 <                throw new TimeoutException();
956 >            return true;
957          }
958 <        releaseWaiters(phase);
959 <        return p;
958 >
959 >        public boolean block() {
960 >            if (isReleasable())
961 >                return true;
962 >            else if (!timed)
963 >                LockSupport.park(this);
964 >            else if (nanos > 0)
965 >                LockSupport.parkNanos(this, nanos);
966 >            return isReleasable();
967 >        }
968 >
969 >        void signal() {
970 >            Thread t = thread;
971 >            if (t != null) {
972 >                thread = null;
973 >                LockSupport.unpark(t);
974 >            }
975 >        }
976 >
977 >        void onRelease() { // actions upon return from internalAwaitAdvance
978 >            if (!interruptible && wasInterrupted)
979 >                Thread.currentThread().interrupt();
980 >            if (thread != null)
981 >                thread = null;
982 >        }
983 >
984      }
985  
986 <    // Temporary Unsafe mechanics for preliminary release
986 >    // Unsafe mechanics
987  
988 <    static final Unsafe _unsafe;
989 <    static final long stateOffset;
988 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
989 >    private static final long stateOffset =
990 >        objectFieldOffset("state", Phaser.class);
991  
992 <    static {
992 >    private static long objectFieldOffset(String field, Class<?> klazz) {
993          try {
994 <            if (Phaser.class.getClassLoader() != null) {
995 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
996 <                f.setAccessible(true);
997 <                _unsafe = (Unsafe)f.get(null);
998 <            }
999 <            else
908 <                _unsafe = Unsafe.getUnsafe();
909 <            stateOffset = _unsafe.objectFieldOffset
910 <                (Phaser.class.getDeclaredField("state"));
911 <        } catch (Exception e) {
912 <            throw new RuntimeException("Could not initialize intrinsics", e);
994 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
995 >        } catch (NoSuchFieldException e) {
996 >            // Convert Exception to corresponding Error
997 >            NoSuchFieldError error = new NoSuchFieldError(field);
998 >            error.initCause(e);
999 >            throw error;
1000          }
1001      }
1002  
1003 <    final boolean casState(long cmp, long val) {
1004 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1003 >    /**
1004 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1005 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1006 >     * into a jdk.
1007 >     *
1008 >     * @return a sun.misc.Unsafe
1009 >     */
1010 >    private static sun.misc.Unsafe getUnsafe() {
1011 >        try {
1012 >            return sun.misc.Unsafe.getUnsafe();
1013 >        } catch (SecurityException se) {
1014 >            try {
1015 >                return java.security.AccessController.doPrivileged
1016 >                    (new java.security
1017 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1018 >                        public sun.misc.Unsafe run() throws Exception {
1019 >                            java.lang.reflect.Field f = sun.misc
1020 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1021 >                            f.setAccessible(true);
1022 >                            return (sun.misc.Unsafe) f.get(null);
1023 >                        }});
1024 >            } catch (java.security.PrivilegedActionException e) {
1025 >                throw new RuntimeException("Could not initialize intrinsics",
1026 >                                           e.getCause());
1027 >            }
1028 >        }
1029      }
1030   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines