ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.40
Committed: Mon Aug 24 12:49:39 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.39: +9 -5 lines
Log Message:
Wording improvements

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances; thus, this value is always
104 * greater than zero if there are any registered parties. The values
105 * returned by these methods may reflect transient states and so are
106 * not in general useful for synchronization control. Method {@link
107 * #toString} returns snapshots of these state queries in a form
108 * convenient for informal monitoring.
109 *
110 * <p><b>Sample usages:</b>
111 *
112 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
113 * to control a one-shot action serving a variable number of
114 * parties. The typical idiom is for the method setting this up to
115 * first register, then start the actions, then deregister, as in:
116 *
117 * <pre> {@code
118 * void runTasks(List<Runnable> tasks) {
119 * final Phaser phaser = new Phaser(1); // "1" to register self
120 * // create and start threads
121 * for (Runnable task : tasks) {
122 * phaser.register();
123 * new Thread() {
124 * public void run() {
125 * phaser.arriveAndAwaitAdvance(); // await all creation
126 * task.run();
127 * }
128 * }.start();
129 * }
130 *
131 * // allow threads to start and deregister self
132 * phaser.arriveAndDeregister();
133 * }}</pre>
134 *
135 * <p>One way to cause a set of threads to repeatedly perform actions
136 * for a given number of iterations is to override {@code onAdvance}:
137 *
138 * <pre> {@code
139 * void startTasks(List<Runnable> tasks, final int iterations) {
140 * final Phaser phaser = new Phaser() {
141 * protected boolean onAdvance(int phase, int registeredParties) {
142 * return phase >= iterations || registeredParties == 0;
143 * }
144 * };
145 * phaser.register();
146 * for (Runnable task : tasks) {
147 * phaser.register();
148 * new Thread() {
149 * public void run() {
150 * do {
151 * task.run();
152 * phaser.arriveAndAwaitAdvance();
153 * } while(!phaser.isTerminated();
154 * }
155 * }.start();
156 * }
157 * phaser.arriveAndDeregister(); // deregister self, don't wait
158 * }}</pre>
159 *
160 * If the main task must later await termination, it
161 * may re-register and then execute a similar loop:
162 * <pre> {@code
163 * // ...
164 * phaser.register();
165 * while (!phaser.isTerminated())
166 * phaser.arriveAndAwaitAdvance();
167 * }</pre>
168 *
169 * Related constructions may be used to await particular phase numbers
170 * in contexts where you are sure that the phase will never wrap around
171 * {@code Integer.MAX_VALUE}. For example:
172 *
173 * <pre> {@code
174 * void awaitPhase(Phaser phaser, int phase) {
175 * int p = phaser.register(); // assumes caller not already registered
176 * while (p < phase) {
177 * if (phaser.isTerminated())
178 * // ... deal with unexpected termination
179 * else
180 * p = phaser.arriveAndAwaitAdvance();
181 * }
182 * phaser.arriveAndDeregister();
183 * }
184 * }</pre>
185 *
186 *
187 * <p>To create a set of tasks using a tree of phasers,
188 * you could use code of the following form, assuming a
189 * Task class with a constructor accepting a phaser that
190 * it registers for upon construction:
191 * <pre> {@code
192 * void build(Task[] actions, int lo, int hi, Phaser b) {
193 * int step = (hi - lo) / TASKS_PER_PHASER;
194 * if (step > 1) {
195 * int i = lo;
196 * while (i < hi) {
197 * int r = Math.min(i + step, hi);
198 * build(actions, i, r, new Phaser(b));
199 * i = r;
200 * }
201 * } else {
202 * for (int i = lo; i < hi; ++i)
203 * actions[i] = new Task(b);
204 * // assumes new Task(b) performs b.register()
205 * }
206 * }
207 * // .. initially called, for n tasks via
208 * build(new Task[n], 0, n, new Phaser());}</pre>
209 *
210 * The best value of {@code TASKS_PER_PHASER} depends mainly on
211 * expected barrier synchronization rates. A value as low as four may
212 * be appropriate for extremely small per-barrier task bodies (thus
213 * high rates), or up to hundreds for extremely large ones.
214 *
215 * </pre>
216 *
217 * <p><b>Implementation notes</b>: This implementation restricts the
218 * maximum number of parties to 65535. Attempts to register additional
219 * parties result in {@code IllegalStateException}. However, you can and
220 * should create tiered phasers to accommodate arbitrarily large sets
221 * of participants.
222 *
223 * @since 1.7
224 * @author Doug Lea
225 */
226 public class Phaser {
227 /*
228 * This class implements an extension of X10 "clocks". Thanks to
229 * Vijay Saraswat for the idea, and to Vivek Sarkar for
230 * enhancements to extend functionality.
231 */
232
233 /**
234 * Barrier state representation. Conceptually, a barrier contains
235 * four values:
236 *
237 * * parties -- the number of parties to wait (16 bits)
238 * * unarrived -- the number of parties yet to hit barrier (16 bits)
239 * * phase -- the generation of the barrier (31 bits)
240 * * terminated -- set if barrier is terminated (1 bit)
241 *
242 * However, to efficiently maintain atomicity, these values are
243 * packed into a single (atomic) long. Termination uses the sign
244 * bit of 32 bit representation of phase, so phase is set to -1 on
245 * termination. Good performance relies on keeping state decoding
246 * and encoding simple, and keeping race windows short.
247 *
248 * Note: there are some cheats in arrive() that rely on unarrived
249 * count being lowest 16 bits.
250 */
251 private volatile long state;
252
253 private static final int ushortBits = 16;
254 private static final int ushortMask = 0xffff;
255 private static final int phaseMask = 0x7fffffff;
256
257 private static int unarrivedOf(long s) {
258 return (int) (s & ushortMask);
259 }
260
261 private static int partiesOf(long s) {
262 return ((int) s) >>> 16;
263 }
264
265 private static int phaseOf(long s) {
266 return (int) (s >>> 32);
267 }
268
269 private static int arrivedOf(long s) {
270 return partiesOf(s) - unarrivedOf(s);
271 }
272
273 private static long stateFor(int phase, int parties, int unarrived) {
274 return ((((long) phase) << 32) | (((long) parties) << 16) |
275 (long) unarrived);
276 }
277
278 private static long trippedStateFor(int phase, int parties) {
279 long lp = (long) parties;
280 return (((long) phase) << 32) | (lp << 16) | lp;
281 }
282
283 /**
284 * Returns message string for bad bounds exceptions.
285 */
286 private static String badBounds(int parties, int unarrived) {
287 return ("Attempt to set " + unarrived +
288 " unarrived of " + parties + " parties");
289 }
290
291 /**
292 * The parent of this phaser, or null if none
293 */
294 private final Phaser parent;
295
296 /**
297 * The root of phaser tree. Equals this if not in a tree. Used to
298 * support faster state push-down.
299 */
300 private final Phaser root;
301
302 // Wait queues
303
304 /**
305 * Heads of Treiber stacks for waiting threads. To eliminate
306 * contention while releasing some threads while adding others, we
307 * use two of them, alternating across even and odd phases.
308 */
309 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
310 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
311
312 private AtomicReference<QNode> queueFor(int phase) {
313 return ((phase & 1) == 0) ? evenQ : oddQ;
314 }
315
316 /**
317 * Returns current state, first resolving lagged propagation from
318 * root if necessary.
319 */
320 private long getReconciledState() {
321 return (parent == null) ? state : reconcileState();
322 }
323
324 /**
325 * Recursively resolves state.
326 */
327 private long reconcileState() {
328 Phaser p = parent;
329 long s = state;
330 if (p != null) {
331 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
332 long parentState = p.getReconciledState();
333 int parentPhase = phaseOf(parentState);
334 int phase = phaseOf(s = state);
335 if (phase != parentPhase) {
336 long next = trippedStateFor(parentPhase, partiesOf(s));
337 if (casState(s, next)) {
338 releaseWaiters(phase);
339 s = next;
340 }
341 }
342 }
343 }
344 return s;
345 }
346
347 /**
348 * Creates a new phaser without any initially registered parties,
349 * initial phase number 0, and no parent. Any thread using this
350 * phaser will need to first register for it.
351 */
352 public Phaser() {
353 this(null);
354 }
355
356 /**
357 * Creates a new phaser with the given numbers of registered
358 * unarrived parties, initial phase number 0, and no parent.
359 *
360 * @param parties the number of parties required to trip barrier
361 * @throws IllegalArgumentException if parties less than zero
362 * or greater than the maximum number of parties supported
363 */
364 public Phaser(int parties) {
365 this(null, parties);
366 }
367
368 /**
369 * Creates a new phaser with the given parent, without any
370 * initially registered parties. If parent is non-null this phaser
371 * is registered with the parent and its initial phase number is
372 * the same as that of parent phaser.
373 *
374 * @param parent the parent phaser
375 */
376 public Phaser(Phaser parent) {
377 int phase = 0;
378 this.parent = parent;
379 if (parent != null) {
380 this.root = parent.root;
381 phase = parent.register();
382 }
383 else
384 this.root = this;
385 this.state = trippedStateFor(phase, 0);
386 }
387
388 /**
389 * Creates a new phaser with the given parent and numbers of
390 * registered unarrived parties. If parent is non-null, this phaser
391 * is registered with the parent and its initial phase number is
392 * the same as that of parent phaser.
393 *
394 * @param parent the parent phaser
395 * @param parties the number of parties required to trip barrier
396 * @throws IllegalArgumentException if parties less than zero
397 * or greater than the maximum number of parties supported
398 */
399 public Phaser(Phaser parent, int parties) {
400 if (parties < 0 || parties > ushortMask)
401 throw new IllegalArgumentException("Illegal number of parties");
402 int phase = 0;
403 this.parent = parent;
404 if (parent != null) {
405 this.root = parent.root;
406 phase = parent.register();
407 }
408 else
409 this.root = this;
410 this.state = trippedStateFor(phase, parties);
411 }
412
413 /**
414 * Adds a new unarrived party to this phaser.
415 *
416 * @return the arrival phase number to which this registration applied
417 * @throws IllegalStateException if attempting to register more
418 * than the maximum supported number of parties
419 */
420 public int register() {
421 return doRegister(1);
422 }
423
424 /**
425 * Adds the given number of new unarrived parties to this phaser.
426 *
427 * @param parties the number of parties required to trip barrier
428 * @return the arrival phase number to which this registration applied
429 * @throws IllegalStateException if attempting to register more
430 * than the maximum supported number of parties
431 */
432 public int bulkRegister(int parties) {
433 if (parties < 0)
434 throw new IllegalArgumentException();
435 if (parties == 0)
436 return getPhase();
437 return doRegister(parties);
438 }
439
440 /**
441 * Shared code for register, bulkRegister
442 */
443 private int doRegister(int registrations) {
444 int phase;
445 for (;;) {
446 long s = getReconciledState();
447 phase = phaseOf(s);
448 int unarrived = unarrivedOf(s) + registrations;
449 int parties = partiesOf(s) + registrations;
450 if (phase < 0)
451 break;
452 if (parties > ushortMask || unarrived > ushortMask)
453 throw new IllegalStateException(badBounds(parties, unarrived));
454 if (phase == phaseOf(root.state) &&
455 casState(s, stateFor(phase, parties, unarrived)))
456 break;
457 }
458 return phase;
459 }
460
461 /**
462 * Arrives at the barrier, but does not wait for others. (You can
463 * in turn wait for others via {@link #awaitAdvance}). It is an
464 * unenforced usage error for an unregistered party to invoke this
465 * method.
466 *
467 * @return the arrival phase number, or a negative value if terminated
468 * @throws IllegalStateException if not terminated and the number
469 * of unarrived parties would become negative
470 */
471 public int arrive() {
472 int phase;
473 for (;;) {
474 long s = state;
475 phase = phaseOf(s);
476 if (phase < 0)
477 break;
478 int parties = partiesOf(s);
479 int unarrived = unarrivedOf(s) - 1;
480 if (unarrived > 0) { // Not the last arrival
481 if (casState(s, s - 1)) // s-1 adds one arrival
482 break;
483 }
484 else if (unarrived == 0) { // the last arrival
485 Phaser par = parent;
486 if (par == null) { // directly trip
487 if (casState
488 (s,
489 trippedStateFor(onAdvance(phase, parties) ? -1 :
490 ((phase + 1) & phaseMask), parties))) {
491 releaseWaiters(phase);
492 break;
493 }
494 }
495 else { // cascade to parent
496 if (casState(s, s - 1)) { // zeroes unarrived
497 par.arrive();
498 reconcileState();
499 break;
500 }
501 }
502 }
503 else if (phase != phaseOf(root.state)) // or if unreconciled
504 reconcileState();
505 else
506 throw new IllegalStateException(badBounds(parties, unarrived));
507 }
508 return phase;
509 }
510
511 /**
512 * Arrives at the barrier and deregisters from it without waiting
513 * for others. Deregistration reduces the number of parties
514 * required to trip the barrier in future phases. If this phaser
515 * has a parent, and deregistration causes this phaser to have
516 * zero parties, this phaser also arrives at and is deregistered
517 * from its parent. It is an unenforced usage error for an
518 * unregistered party to invoke this method.
519 *
520 * @return the arrival phase number, or a negative value if terminated
521 * @throws IllegalStateException if not terminated and the number
522 * of registered or unarrived parties would become negative
523 */
524 public int arriveAndDeregister() {
525 // similar code to arrive, but too different to merge
526 Phaser par = parent;
527 int phase;
528 for (;;) {
529 long s = state;
530 phase = phaseOf(s);
531 if (phase < 0)
532 break;
533 int parties = partiesOf(s) - 1;
534 int unarrived = unarrivedOf(s) - 1;
535 if (parties >= 0) {
536 if (unarrived > 0 || (unarrived == 0 && par != null)) {
537 if (casState
538 (s,
539 stateFor(phase, parties, unarrived))) {
540 if (unarrived == 0) {
541 par.arriveAndDeregister();
542 reconcileState();
543 }
544 break;
545 }
546 continue;
547 }
548 if (unarrived == 0) {
549 if (casState
550 (s,
551 trippedStateFor(onAdvance(phase, parties) ? -1 :
552 ((phase + 1) & phaseMask), parties))) {
553 releaseWaiters(phase);
554 break;
555 }
556 continue;
557 }
558 if (par != null && phase != phaseOf(root.state)) {
559 reconcileState();
560 continue;
561 }
562 }
563 throw new IllegalStateException(badBounds(parties, unarrived));
564 }
565 return phase;
566 }
567
568 /**
569 * Arrives at the barrier and awaits others. Equivalent in effect
570 * to {@code awaitAdvance(arrive())}. If you need to await with
571 * interruption or timeout, you can arrange this with an analogous
572 * construction using one of the other forms of the awaitAdvance
573 * method. If instead you need to deregister upon arrival use
574 * {@code arriveAndDeregister}. It is an unenforced usage error
575 * for an unregistered party to invoke this method.
576 *
577 * @return the arrival phase number, or a negative number if terminated
578 * @throws IllegalStateException if not terminated and the number
579 * of unarrived parties would become negative
580 */
581 public int arriveAndAwaitAdvance() {
582 return awaitAdvance(arrive());
583 }
584
585 /**
586 * Awaits the phase of the barrier to advance from the given phase
587 * value, returning immediately if the current phase of the
588 * barrier is not equal to the given phase value or this barrier
589 * is terminated. It is an unenforced usage error for an
590 * unregistered party to invoke this method.
591 *
592 * @param phase an arrival phase number, or negative value if
593 * terminated; this argument is normally the value returned by a
594 * previous call to {@code arrive} or its variants
595 * @return the next arrival phase number, or a negative value
596 * if terminated or argument is negative
597 */
598 public int awaitAdvance(int phase) {
599 if (phase < 0)
600 return phase;
601 long s = getReconciledState();
602 int p = phaseOf(s);
603 if (p != phase)
604 return p;
605 if (unarrivedOf(s) == 0 && parent != null)
606 parent.awaitAdvance(phase);
607 // Fall here even if parent waited, to reconcile and help release
608 return untimedWait(phase);
609 }
610
611 /**
612 * Awaits the phase of the barrier to advance from the given phase
613 * value, throwing {@code InterruptedException} if interrupted
614 * while waiting, or returning immediately if the current phase of
615 * the barrier is not equal to the given phase value or this
616 * barrier is terminated. It is an unenforced usage error for an
617 * unregistered party to invoke this method.
618 *
619 * @param phase an arrival phase number, or negative value if
620 * terminated; this argument is normally the value returned by a
621 * previous call to {@code arrive} or its variants
622 * @return the next arrival phase number, or a negative value
623 * if terminated or argument is negative
624 * @throws InterruptedException if thread interrupted while waiting
625 */
626 public int awaitAdvanceInterruptibly(int phase)
627 throws InterruptedException {
628 if (phase < 0)
629 return phase;
630 long s = getReconciledState();
631 int p = phaseOf(s);
632 if (p != phase)
633 return p;
634 if (unarrivedOf(s) == 0 && parent != null)
635 parent.awaitAdvanceInterruptibly(phase);
636 return interruptibleWait(phase);
637 }
638
639 /**
640 * Awaits the phase of the barrier to advance from the given phase
641 * value or the given timeout to elapse, throwing {@code
642 * InterruptedException} if interrupted while waiting, or
643 * returning immediately if the current phase of the barrier is
644 * not equal to the given phase value or this barrier is
645 * terminated. It is an unenforced usage error for an
646 * unregistered party to invoke this method.
647 *
648 * @param phase an arrival phase number, or negative value if
649 * terminated; this argument is normally the value returned by a
650 * previous call to {@code arrive} or its variants
651 * @param timeout how long to wait before giving up, in units of
652 * {@code unit}
653 * @param unit a {@code TimeUnit} determining how to interpret the
654 * {@code timeout} parameter
655 * @return the next arrival phase number, or a negative value
656 * if terminated or argument is negative
657 * @throws InterruptedException if thread interrupted while waiting
658 * @throws TimeoutException if timed out while waiting
659 */
660 public int awaitAdvanceInterruptibly(int phase,
661 long timeout, TimeUnit unit)
662 throws InterruptedException, TimeoutException {
663 if (phase < 0)
664 return phase;
665 long s = getReconciledState();
666 int p = phaseOf(s);
667 if (p != phase)
668 return p;
669 if (unarrivedOf(s) == 0 && parent != null)
670 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
671 return timedWait(phase, unit.toNanos(timeout));
672 }
673
674 /**
675 * Forces this barrier to enter termination state. Counts of
676 * arrived and registered parties are unaffected. If this phaser
677 * has a parent, it too is terminated. This method may be useful
678 * for coordinating recovery after one or more tasks encounter
679 * unexpected exceptions.
680 */
681 public void forceTermination() {
682 for (;;) {
683 long s = getReconciledState();
684 int phase = phaseOf(s);
685 int parties = partiesOf(s);
686 int unarrived = unarrivedOf(s);
687 if (phase < 0 ||
688 casState(s, stateFor(-1, parties, unarrived))) {
689 releaseWaiters(0);
690 releaseWaiters(1);
691 if (parent != null)
692 parent.forceTermination();
693 return;
694 }
695 }
696 }
697
698 /**
699 * Returns the current phase number. The maximum phase number is
700 * {@code Integer.MAX_VALUE}, after which it restarts at
701 * zero. Upon termination, the phase number is negative.
702 *
703 * @return the phase number, or a negative value if terminated
704 */
705 public final int getPhase() {
706 return phaseOf(getReconciledState());
707 }
708
709 /**
710 * Returns the number of parties registered at this barrier.
711 *
712 * @return the number of parties
713 */
714 public int getRegisteredParties() {
715 return partiesOf(state);
716 }
717
718 /**
719 * Returns the number of registered parties that have arrived at
720 * the current phase of this barrier.
721 *
722 * @return the number of arrived parties
723 */
724 public int getArrivedParties() {
725 return arrivedOf(state);
726 }
727
728 /**
729 * Returns the number of registered parties that have not yet
730 * arrived at the current phase of this barrier.
731 *
732 * @return the number of unarrived parties
733 */
734 public int getUnarrivedParties() {
735 return unarrivedOf(state);
736 }
737
738 /**
739 * Returns the parent of this phaser, or {@code null} if none.
740 *
741 * @return the parent of this phaser, or {@code null} if none
742 */
743 public Phaser getParent() {
744 return parent;
745 }
746
747 /**
748 * Returns the root ancestor of this phaser, which is the same as
749 * this phaser if it has no parent.
750 *
751 * @return the root ancestor of this phaser
752 */
753 public Phaser getRoot() {
754 return root;
755 }
756
757 /**
758 * Returns {@code true} if this barrier has been terminated.
759 *
760 * @return {@code true} if this barrier has been terminated
761 */
762 public boolean isTerminated() {
763 return getPhase() < 0;
764 }
765
766 /**
767 * Overridable method to perform an action upon phase advance, and
768 * to control termination. This method is invoked whenever the
769 * barrier is tripped (and thus all other waiting parties are
770 * dormant). If it returns {@code true}, then, rather than advance
771 * the phase number, this barrier will be set to a final
772 * termination state, and subsequent calls to {@link #isTerminated}
773 * will return true.
774 *
775 * <p>The default version returns {@code true} when the number of
776 * registered parties is zero. Normally, overrides that arrange
777 * termination for other reasons should also preserve this
778 * property.
779 *
780 * <p>You may override this method to perform an action with side
781 * effects visible to participating tasks, but it is in general
782 * only sensible to do so in designs where all parties register
783 * before any arrive, and all {@link #awaitAdvance} at each phase.
784 * Otherwise, you cannot ensure lack of interference from other
785 * parties during the invocation of this method.
786 *
787 * @param phase the phase number on entering the barrier
788 * @param registeredParties the current number of registered parties
789 * @return {@code true} if this barrier should terminate
790 */
791 protected boolean onAdvance(int phase, int registeredParties) {
792 return registeredParties <= 0;
793 }
794
795 /**
796 * Returns a string identifying this phaser, as well as its
797 * state. The state, in brackets, includes the String {@code
798 * "phase = "} followed by the phase number, {@code "parties = "}
799 * followed by the number of registered parties, and {@code
800 * "arrived = "} followed by the number of arrived parties.
801 *
802 * @return a string identifying this barrier, as well as its state
803 */
804 public String toString() {
805 long s = getReconciledState();
806 return super.toString() +
807 "[phase = " + phaseOf(s) +
808 " parties = " + partiesOf(s) +
809 " arrived = " + arrivedOf(s) + "]";
810 }
811
812 // methods for waiting
813
814 /**
815 * Wait nodes for Treiber stack representing wait queue
816 */
817 static final class QNode implements ForkJoinPool.ManagedBlocker {
818 final Phaser phaser;
819 final int phase;
820 final long startTime;
821 final long nanos;
822 final boolean timed;
823 final boolean interruptible;
824 volatile boolean wasInterrupted = false;
825 volatile Thread thread; // nulled to cancel wait
826 QNode next;
827 QNode(Phaser phaser, int phase, boolean interruptible,
828 boolean timed, long startTime, long nanos) {
829 this.phaser = phaser;
830 this.phase = phase;
831 this.timed = timed;
832 this.interruptible = interruptible;
833 this.startTime = startTime;
834 this.nanos = nanos;
835 thread = Thread.currentThread();
836 }
837 public boolean isReleasable() {
838 return (thread == null ||
839 phaser.getPhase() != phase ||
840 (interruptible && wasInterrupted) ||
841 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
842 }
843 public boolean block() {
844 if (Thread.interrupted()) {
845 wasInterrupted = true;
846 if (interruptible)
847 return true;
848 }
849 if (!timed)
850 LockSupport.park(this);
851 else {
852 long waitTime = nanos - (System.nanoTime() - startTime);
853 if (waitTime <= 0)
854 return true;
855 LockSupport.parkNanos(this, waitTime);
856 }
857 return isReleasable();
858 }
859 void signal() {
860 Thread t = thread;
861 if (t != null) {
862 thread = null;
863 LockSupport.unpark(t);
864 }
865 }
866 boolean doWait() {
867 if (thread != null) {
868 try {
869 ForkJoinPool.managedBlock(this, false);
870 } catch (InterruptedException ie) {
871 }
872 }
873 return wasInterrupted;
874 }
875
876 }
877
878 /**
879 * Removes and signals waiting threads from wait queue.
880 */
881 private void releaseWaiters(int phase) {
882 AtomicReference<QNode> head = queueFor(phase);
883 QNode q;
884 while ((q = head.get()) != null) {
885 if (head.compareAndSet(q, q.next))
886 q.signal();
887 }
888 }
889
890 /**
891 * Tries to enqueue given node in the appropriate wait queue.
892 *
893 * @return true if successful
894 */
895 private boolean tryEnqueue(QNode node) {
896 AtomicReference<QNode> head = queueFor(node.phase);
897 return head.compareAndSet(node.next = head.get(), node);
898 }
899
900 /**
901 * Enqueues node and waits unless aborted or signalled.
902 *
903 * @return current phase
904 */
905 private int untimedWait(int phase) {
906 QNode node = null;
907 boolean queued = false;
908 boolean interrupted = false;
909 int p;
910 while ((p = getPhase()) == phase) {
911 if (Thread.interrupted())
912 interrupted = true;
913 else if (node == null)
914 node = new QNode(this, phase, false, false, 0, 0);
915 else if (!queued)
916 queued = tryEnqueue(node);
917 else
918 interrupted = node.doWait();
919 }
920 if (node != null)
921 node.thread = null;
922 releaseWaiters(phase);
923 if (interrupted)
924 Thread.currentThread().interrupt();
925 return p;
926 }
927
928 /**
929 * Interruptible version
930 * @return current phase
931 */
932 private int interruptibleWait(int phase) throws InterruptedException {
933 QNode node = null;
934 boolean queued = false;
935 boolean interrupted = false;
936 int p;
937 while ((p = getPhase()) == phase && !interrupted) {
938 if (Thread.interrupted())
939 interrupted = true;
940 else if (node == null)
941 node = new QNode(this, phase, true, false, 0, 0);
942 else if (!queued)
943 queued = tryEnqueue(node);
944 else
945 interrupted = node.doWait();
946 }
947 if (node != null)
948 node.thread = null;
949 if (p != phase || (p = getPhase()) != phase)
950 releaseWaiters(phase);
951 if (interrupted)
952 throw new InterruptedException();
953 return p;
954 }
955
956 /**
957 * Timeout version.
958 * @return current phase
959 */
960 private int timedWait(int phase, long nanos)
961 throws InterruptedException, TimeoutException {
962 long startTime = System.nanoTime();
963 QNode node = null;
964 boolean queued = false;
965 boolean interrupted = false;
966 int p;
967 while ((p = getPhase()) == phase && !interrupted) {
968 if (Thread.interrupted())
969 interrupted = true;
970 else if (nanos - (System.nanoTime() - startTime) <= 0)
971 break;
972 else if (node == null)
973 node = new QNode(this, phase, true, true, startTime, nanos);
974 else if (!queued)
975 queued = tryEnqueue(node);
976 else
977 interrupted = node.doWait();
978 }
979 if (node != null)
980 node.thread = null;
981 if (p != phase || (p = getPhase()) != phase)
982 releaseWaiters(phase);
983 if (interrupted)
984 throw new InterruptedException();
985 if (p == phase)
986 throw new TimeoutException();
987 return p;
988 }
989
990 // Unsafe mechanics
991
992 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
993 private static final long stateOffset =
994 objectFieldOffset("state", Phaser.class);
995
996 private final boolean casState(long cmp, long val) {
997 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
998 }
999
1000 private static long objectFieldOffset(String field, Class<?> klazz) {
1001 try {
1002 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1003 } catch (NoSuchFieldException e) {
1004 // Convert Exception to corresponding Error
1005 NoSuchFieldError error = new NoSuchFieldError(field);
1006 error.initCause(e);
1007 throw error;
1008 }
1009 }
1010
1011 /**
1012 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1013 * Replace with a simple call to Unsafe.getUnsafe when integrating
1014 * into a jdk.
1015 *
1016 * @return a sun.misc.Unsafe
1017 */
1018 private static sun.misc.Unsafe getUnsafe() {
1019 try {
1020 return sun.misc.Unsafe.getUnsafe();
1021 } catch (SecurityException se) {
1022 try {
1023 return java.security.AccessController.doPrivileged
1024 (new java.security
1025 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1026 public sun.misc.Unsafe run() throws Exception {
1027 java.lang.reflect.Field f = sun.misc
1028 .Unsafe.class.getDeclaredField("theUnsafe");
1029 f.setAccessible(true);
1030 return (sun.misc.Unsafe) f.get(null);
1031 }});
1032 } catch (java.security.PrivilegedActionException e) {
1033 throw new RuntimeException("Could not initialize intrinsics",
1034 e.getCause());
1035 }
1036 }
1037 }
1038 }