ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.57
Committed: Fri Nov 19 16:03:24 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.56: +83 -92 lines
Log Message:
Reduce need for and improve reconcileState

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231 * * parties -- the number of parties to wait (bits 16-31)
232 * * phase -- the generation of the barrier (bits 32-62)
233 * * terminated -- set if barrier is terminated (bit 63 / sign)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 */
241 private volatile long state;
242
243 private static final int MAX_PARTIES = 0xffff;
244 private static final int MAX_PHASE = 0x7fffffff;
245 private static final int PARTIES_SHIFT = 16;
246 private static final int PHASE_SHIFT = 32;
247 private static final int UNARRIVED_MASK = 0xffff;
248 private static final long PARTIES_MASK = 0xffff0000L; // for masking long
249 private static final long ONE_ARRIVAL = 1L;
250 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
251 private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
252
253 // The following unpacking methods are usually manually inlined
254
255 private static int unarrivedOf(long s) {
256 return (int)s & UNARRIVED_MASK;
257 }
258
259 private static int partiesOf(long s) {
260 return (int)s >>> PARTIES_SHIFT;
261 }
262
263 private static int phaseOf(long s) {
264 return (int) (s >>> PHASE_SHIFT);
265 }
266
267 private static int arrivedOf(long s) {
268 return partiesOf(s) - unarrivedOf(s);
269 }
270
271 /**
272 * The parent of this phaser, or null if none
273 */
274 private final Phaser parent;
275
276 /**
277 * The root of phaser tree. Equals this if not in a tree. Used to
278 * support faster state push-down.
279 */
280 private final Phaser root;
281
282 /**
283 * Heads of Treiber stacks for waiting threads. To eliminate
284 * contention when releasing some threads while adding others, we
285 * use two of them, alternating across even and odd phases.
286 * Subphasers share queues with root to speed up releases.
287 */
288 private final AtomicReference<QNode> evenQ;
289 private final AtomicReference<QNode> oddQ;
290
291 private AtomicReference<QNode> queueFor(int phase) {
292 return ((phase & 1) == 0) ? evenQ : oddQ;
293 }
294
295 /**
296 * Main implementation for methods arrive and arriveAndDeregister.
297 * Manually tuned to speed up and minimize race windows for the
298 * common case of just decrementing unarrived field.
299 *
300 * @param adj - adjustment to apply to state -- either
301 * ONE_ARRIVAL (for arrive) or
302 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 */
304 private int doArrive(long adj) {
305 for (;;) {
306 long s = state;
307 int phase = (int)(s >>> PHASE_SHIFT);
308 if (phase < 0)
309 return phase;
310 int unarrived = (int)s & UNARRIVED_MASK;
311 if (unarrived == 0)
312 checkBadArrive(s);
313 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 if (unarrived == 1) {
315 long p = s & PARTIES_MASK; // unshifted parties field
316 long lu = p >>> PARTIES_SHIFT;
317 int u = (int)lu;
318 int nextPhase = (phase + 1) & MAX_PHASE;
319 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 final Phaser parent = this.parent;
321 if (parent == null) {
322 if (onAdvance(phase, u))
323 next |= TERMINATION_PHASE; // obliterate phase
324 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 releaseWaiters(phase);
326 }
327 else {
328 parent.doArrive((u == 0) ?
329 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 !UNSAFE.compareAndSwapLong(this, stateOffset,
333 s, next)))
334 reconcileState();
335 }
336 }
337 return phase;
338 }
339 }
340 }
341
342 /**
343 * Rechecks state and throws bounds exceptions on arrival -- called
344 * only if unarrived is apparently zero.
345 */
346 private void checkBadArrive(long s) {
347 if (reconcileState() == s)
348 throw new IllegalStateException
349 ("Attempted arrival of unregistered party for " +
350 stateToString(s));
351 }
352
353 /**
354 * Implementation of register, bulkRegister
355 *
356 * @param registrations number to add to both parties and unarrived fields
357 */
358 private int doRegister(int registrations) {
359 // assert registrations > 0;
360 // adjustment to state
361 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 final Phaser parent = this.parent;
363 for (;;) {
364 long s = (parent == null) ? state : reconcileState();
365 int phase = (int)(s >>> PHASE_SHIFT);
366 if (phase < 0)
367 return phase;
368 int parties = (int)s >>> PARTIES_SHIFT;
369 if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 internalAwaitAdvance(phase, null); // wait for onAdvance
371 else if (registrations > MAX_PARTIES - parties)
372 throw new IllegalStateException(badRegister(s));
373 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 return phase;
375 }
376 }
377
378 /**
379 * Returns message string for out of bounds exceptions on registration.
380 */
381 private String badRegister(long s) {
382 return "Attempt to register more than " +
383 MAX_PARTIES + " parties for " + stateToString(s);
384 }
385
386 /**
387 * Recursively resolves lagged phase propagation from root if necessary.
388 */
389 private long reconcileState() {
390 Phaser par = parent;
391 long s = state;
392 if (par != null) {
393 Phaser rt = root;
394 int phase, rPhase;
395 while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 par.reconcileState();
399 else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 long u = s & PARTIES_MASK; // reset unarrived to parties
401 long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 (u >>> PARTIES_SHIFT));
403 if (state == s &&
404 UNSAFE.compareAndSwapLong(this, stateOffset,
405 s, s = next))
406 break;
407 }
408 s = state;
409 }
410 }
411 return s;
412 }
413
414 /**
415 * Creates a new phaser without any initially registered parties,
416 * initial phase number 0, and no parent. Any thread using this
417 * phaser will need to first register for it.
418 */
419 public Phaser() {
420 this(null, 0);
421 }
422
423 /**
424 * Creates a new phaser with the given number of registered
425 * unarrived parties, initial phase number 0, and no parent.
426 *
427 * @param parties the number of parties required to trip barrier
428 * @throws IllegalArgumentException if parties less than zero
429 * or greater than the maximum number of parties supported
430 */
431 public Phaser(int parties) {
432 this(null, parties);
433 }
434
435 /**
436 * Creates a new phaser with the given parent, without any
437 * initially registered parties. If parent is non-null this phaser
438 * is registered with the parent and its initial phase number is
439 * the same as that of parent phaser.
440 *
441 * @param parent the parent phaser
442 */
443 public Phaser(Phaser parent) {
444 this(parent, 0);
445 }
446
447 /**
448 * Creates a new phaser with the given parent and number of
449 * registered unarrived parties. If parent is non-null, this phaser
450 * is registered with the parent and its initial phase number is
451 * the same as that of parent phaser.
452 *
453 * @param parent the parent phaser
454 * @param parties the number of parties required to trip barrier
455 * @throws IllegalArgumentException if parties less than zero
456 * or greater than the maximum number of parties supported
457 */
458 public Phaser(Phaser parent, int parties) {
459 if (parties >>> PARTIES_SHIFT != 0)
460 throw new IllegalArgumentException("Illegal number of parties");
461 int phase;
462 this.parent = parent;
463 if (parent != null) {
464 Phaser r = parent.root;
465 this.root = r;
466 this.evenQ = r.evenQ;
467 this.oddQ = r.oddQ;
468 phase = parent.register();
469 }
470 else {
471 this.root = this;
472 this.evenQ = new AtomicReference<QNode>();
473 this.oddQ = new AtomicReference<QNode>();
474 phase = 0;
475 }
476 long p = (long)parties;
477 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478 }
479
480 /**
481 * Adds a new unarrived party to this phaser.
482 * If an ongoing invocation of {@link #onAdvance} is in progress,
483 * this method may wait until its completion before registering.
484 *
485 * @return the arrival phase number to which this registration applied
486 * @throws IllegalStateException if attempting to register more
487 * than the maximum supported number of parties
488 */
489 public int register() {
490 return doRegister(1);
491 }
492
493 /**
494 * Adds the given number of new unarrived parties to this phaser.
495 * If an ongoing invocation of {@link #onAdvance} is in progress,
496 * this method may wait until its completion before registering.
497 *
498 * @param parties the number of additional parties required to trip barrier
499 * @return the arrival phase number to which this registration applied
500 * @throws IllegalStateException if attempting to register more
501 * than the maximum supported number of parties
502 * @throws IllegalArgumentException if {@code parties < 0}
503 */
504 public int bulkRegister(int parties) {
505 if (parties < 0)
506 throw new IllegalArgumentException();
507 if (parties == 0)
508 return getPhase();
509 return doRegister(parties);
510 }
511
512 /**
513 * Arrives at the barrier, but does not wait for others. (You can
514 * in turn wait for others via {@link #awaitAdvance}). It is an
515 * unenforced usage error for an unregistered party to invoke this
516 * method.
517 *
518 * @return the arrival phase number, or a negative value if terminated
519 * @throws IllegalStateException if not terminated and the number
520 * of unarrived parties would become negative
521 */
522 public int arrive() {
523 return doArrive(ONE_ARRIVAL);
524 }
525
526 /**
527 * Arrives at the barrier and deregisters from it without waiting
528 * for others. Deregistration reduces the number of parties
529 * required to trip the barrier in future phases. If this phaser
530 * has a parent, and deregistration causes this phaser to have
531 * zero parties, this phaser also arrives at and is deregistered
532 * from its parent. It is an unenforced usage error for an
533 * unregistered party to invoke this method.
534 *
535 * @return the arrival phase number, or a negative value if terminated
536 * @throws IllegalStateException if not terminated and the number
537 * of registered or unarrived parties would become negative
538 */
539 public int arriveAndDeregister() {
540 return doArrive(ONE_ARRIVAL|ONE_PARTY);
541 }
542
543 /**
544 * Arrives at the barrier and awaits others. Equivalent in effect
545 * to {@code awaitAdvance(arrive())}. If you need to await with
546 * interruption or timeout, you can arrange this with an analogous
547 * construction using one of the other forms of the {@code
548 * awaitAdvance} method. If instead you need to deregister upon
549 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
550 * usage error for an unregistered party to invoke this method.
551 *
552 * @return the arrival phase number, or a negative number if terminated
553 * @throws IllegalStateException if not terminated and the number
554 * of unarrived parties would become negative
555 */
556 public int arriveAndAwaitAdvance() {
557 return awaitAdvance(arrive());
558 }
559
560 /**
561 * Awaits the phase of the barrier to advance from the given phase
562 * value, returning immediately if the current phase of the
563 * barrier is not equal to the given phase value or this barrier
564 * is terminated.
565 *
566 * @param phase an arrival phase number, or negative value if
567 * terminated; this argument is normally the value returned by a
568 * previous call to {@code arrive} or its variants
569 * @return the next arrival phase number, or a negative value
570 * if terminated or argument is negative
571 */
572 public int awaitAdvance(int phase) {
573 if (phase < 0)
574 return phase;
575 long s = (parent == null) ? state : reconcileState();
576 int p = (int)(s >>> PHASE_SHIFT);
577 return (p != phase) ? p : internalAwaitAdvance(phase, null);
578 }
579
580 /**
581 * Awaits the phase of the barrier to advance from the given phase
582 * value, throwing {@code InterruptedException} if interrupted
583 * while waiting, or returning immediately if the current phase of
584 * the barrier is not equal to the given phase value or this
585 * barrier is terminated.
586 *
587 * @param phase an arrival phase number, or negative value if
588 * terminated; this argument is normally the value returned by a
589 * previous call to {@code arrive} or its variants
590 * @return the next arrival phase number, or a negative value
591 * if terminated or argument is negative
592 * @throws InterruptedException if thread interrupted while waiting
593 */
594 public int awaitAdvanceInterruptibly(int phase)
595 throws InterruptedException {
596 if (phase < 0)
597 return phase;
598 long s = (parent == null) ? state : reconcileState();
599 int p = (int)(s >>> PHASE_SHIFT);
600 if (p == phase) {
601 QNode node = new QNode(this, phase, true, false, 0L);
602 p = internalAwaitAdvance(phase, node);
603 if (node.wasInterrupted)
604 throw new InterruptedException();
605 }
606 return p;
607 }
608
609 /**
610 * Awaits the phase of the barrier to advance from the given phase
611 * value or the given timeout to elapse, throwing {@code
612 * InterruptedException} if interrupted while waiting, or
613 * returning immediately if the current phase of the barrier is
614 * not equal to the given phase value or this barrier is
615 * terminated.
616 *
617 * @param phase an arrival phase number, or negative value if
618 * terminated; this argument is normally the value returned by a
619 * previous call to {@code arrive} or its variants
620 * @param timeout how long to wait before giving up, in units of
621 * {@code unit}
622 * @param unit a {@code TimeUnit} determining how to interpret the
623 * {@code timeout} parameter
624 * @return the next arrival phase number, or a negative value
625 * if terminated or argument is negative
626 * @throws InterruptedException if thread interrupted while waiting
627 * @throws TimeoutException if timed out while waiting
628 */
629 public int awaitAdvanceInterruptibly(int phase,
630 long timeout, TimeUnit unit)
631 throws InterruptedException, TimeoutException {
632 if (phase < 0)
633 return phase;
634 long s = (parent == null) ? state : reconcileState();
635 int p = (int)(s >>> PHASE_SHIFT);
636 if (p == phase) {
637 long nanos = unit.toNanos(timeout);
638 QNode node = new QNode(this, phase, true, true, nanos);
639 p = internalAwaitAdvance(phase, node);
640 if (node.wasInterrupted)
641 throw new InterruptedException();
642 else if (p == phase)
643 throw new TimeoutException();
644 }
645 return p;
646 }
647
648 /**
649 * Forces this barrier to enter termination state. Counts of
650 * arrived and registered parties are unaffected. If this phaser
651 * is a member of a tiered set of phasers, then all of the phasers
652 * in the set are terminated. If this phaser is already
653 * terminated, this method has no effect. This method may be
654 * useful for coordinating recovery after one or more tasks
655 * encounter unexpected exceptions.
656 */
657 public void forceTermination() {
658 // Only need to change root state
659 final Phaser root = this.root;
660 long s;
661 while ((s = root.state) >= 0) {
662 if (UNSAFE.compareAndSwapLong(root, stateOffset,
663 s, s | TERMINATION_PHASE)) {
664 releaseWaiters(0); // signal all threads
665 releaseWaiters(1);
666 return;
667 }
668 }
669 }
670
671 /**
672 * Returns the current phase number. The maximum phase number is
673 * {@code Integer.MAX_VALUE}, after which it restarts at
674 * zero. Upon termination, the phase number is negative.
675 *
676 * @return the phase number, or a negative value if terminated
677 */
678 public final int getPhase() {
679 return (int)(root.state >>> PHASE_SHIFT);
680 }
681
682 /**
683 * Returns the number of parties registered at this barrier.
684 *
685 * @return the number of parties
686 */
687 public int getRegisteredParties() {
688 return partiesOf(state);
689 }
690
691 /**
692 * Returns the number of registered parties that have arrived at
693 * the current phase of this barrier.
694 *
695 * @return the number of arrived parties
696 */
697 public int getArrivedParties() {
698 return arrivedOf(parent==null? state : reconcileState());
699 }
700
701 /**
702 * Returns the number of registered parties that have not yet
703 * arrived at the current phase of this barrier.
704 *
705 * @return the number of unarrived parties
706 */
707 public int getUnarrivedParties() {
708 return unarrivedOf(parent==null? state : reconcileState());
709 }
710
711 /**
712 * Returns the parent of this phaser, or {@code null} if none.
713 *
714 * @return the parent of this phaser, or {@code null} if none
715 */
716 public Phaser getParent() {
717 return parent;
718 }
719
720 /**
721 * Returns the root ancestor of this phaser, which is the same as
722 * this phaser if it has no parent.
723 *
724 * @return the root ancestor of this phaser
725 */
726 public Phaser getRoot() {
727 return root;
728 }
729
730 /**
731 * Returns {@code true} if this barrier has been terminated.
732 *
733 * @return {@code true} if this barrier has been terminated
734 */
735 public boolean isTerminated() {
736 return root.state < 0L;
737 }
738
739 /**
740 * Overridable method to perform an action upon impending phase
741 * advance, and to control termination. This method is invoked
742 * upon arrival of the party tripping the barrier (when all other
743 * waiting parties are dormant). If this method returns {@code
744 * true}, then, rather than advance the phase number, this barrier
745 * will be set to a final termination state, and subsequent calls
746 * to {@link #isTerminated} will return true. Any (unchecked)
747 * Exception or Error thrown by an invocation of this method is
748 * propagated to the party attempting to trip the barrier, in
749 * which case no advance occurs.
750 *
751 * <p>The arguments to this method provide the state of the phaser
752 * prevailing for the current transition. The effects of invoking
753 * arrival, registration, and waiting methods on this Phaser from
754 * within {@code onAdvance} are unspecified and should not be
755 * relied on.
756 *
757 * <p>If this Phaser is a member of a tiered set of Phasers, then
758 * {@code onAdvance} is invoked only for its root Phaser on each
759 * advance.
760 *
761 * <p>The default version returns {@code true} when the number of
762 * registered parties is zero. Normally, overrides that arrange
763 * termination for other reasons should also preserve this
764 * property.
765 *
766 * @param phase the phase number on entering the barrier
767 * @param registeredParties the current number of registered parties
768 * @return {@code true} if this barrier should terminate
769 */
770 protected boolean onAdvance(int phase, int registeredParties) {
771 return registeredParties <= 0;
772 }
773
774 /**
775 * Returns a string identifying this phaser, as well as its
776 * state. The state, in brackets, includes the String {@code
777 * "phase = "} followed by the phase number, {@code "parties = "}
778 * followed by the number of registered parties, and {@code
779 * "arrived = "} followed by the number of arrived parties.
780 *
781 * @return a string identifying this barrier, as well as its state
782 */
783 public String toString() {
784 return stateToString(reconcileState());
785 }
786
787 /**
788 * Implementation of toString and string-based error messages
789 */
790 private String stateToString(long s) {
791 return super.toString() +
792 "[phase = " + phaseOf(s) +
793 " parties = " + partiesOf(s) +
794 " arrived = " + arrivedOf(s) + "]";
795 }
796
797 // Waiting mechanics
798
799 /**
800 * Removes and signals threads from queue for phase.
801 */
802 private void releaseWaiters(int phase) {
803 AtomicReference<QNode> head = queueFor(phase);
804 QNode q;
805 int p;
806 while ((q = head.get()) != null &&
807 ((p = q.phase) == phase ||
808 (int)(root.state >>> PHASE_SHIFT) != p)) {
809 if (head.compareAndSet(q, q.next))
810 q.signal();
811 }
812 }
813
814 /** The number of CPUs, for spin control */
815 private static final int NCPU = Runtime.getRuntime().availableProcessors();
816
817 /**
818 * The number of times to spin before blocking while waiting for
819 * advance, per arrival while waiting. On multiprocessors, fully
820 * blocking and waking up a large number of threads all at once is
821 * usually a very slow process, so we use rechargeable spins to
822 * avoid it when threads regularly arrive: When a thread in
823 * internalAwaitAdvance notices another arrival before blocking,
824 * and there appear to be enough CPUs available, it spins
825 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
826 * uniprocessors, there is at least one intervening Thread.yield
827 * before blocking. The value trades off good-citizenship vs big
828 * unnecessary slowdowns.
829 */
830 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
831
832 /**
833 * Possibly blocks and waits for phase to advance unless aborted.
834 *
835 * @param phase current phase
836 * @param node if non-null, the wait node to track interrupt and timeout;
837 * if null, denotes noninterruptible wait
838 * @return current phase
839 */
840 private int internalAwaitAdvance(int phase, QNode node) {
841 Phaser current = this; // to eventually wait at root if tiered
842 boolean queued = false; // true when node is enqueued
843 int lastUnarrived = -1; // to increase spins upon change
844 int spins = SPINS_PER_ARRIVAL;
845 long s;
846 int p;
847 while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
848 Phaser par;
849 int unarrived = (int)s & UNARRIVED_MASK;
850 if (unarrived != lastUnarrived) {
851 if (lastUnarrived == -1) // ensure old queue clean
852 releaseWaiters(phase-1);
853 if ((lastUnarrived = unarrived) < NCPU)
854 spins += SPINS_PER_ARRIVAL;
855 }
856 else if (unarrived == 0 && (par = current.parent) != null) {
857 current = par; // if all arrived, use parent
858 par = par.parent;
859 lastUnarrived = -1;
860 }
861 else if (spins > 0) {
862 if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863 Thread.yield(); // yield midway through spin
864 }
865 else if (node == null) // must be noninterruptible
866 node = new QNode(this, phase, false, false, 0L);
867 else if (node.isReleasable()) {
868 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869 break;
870 else
871 return phase; // aborted
872 }
873 else if (!queued) { // push onto queue
874 AtomicReference<QNode> head = queueFor(phase);
875 QNode q = head.get();
876 if (q == null || q.phase == phase) {
877 node.next = q;
878 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879 break; // recheck to avoid stale enqueue
880 else
881 queued = head.compareAndSet(q, node);
882 }
883 }
884 else {
885 try {
886 ForkJoinPool.managedBlock(node);
887 } catch (InterruptedException ie) {
888 node.wasInterrupted = true;
889 }
890 }
891 }
892 releaseWaiters(phase);
893 if (node != null)
894 node.onRelease();
895 return p;
896 }
897
898 /**
899 * Wait nodes for Treiber stack representing wait queue
900 */
901 static final class QNode implements ForkJoinPool.ManagedBlocker {
902 final Phaser phaser;
903 final int phase;
904 final boolean interruptible;
905 final boolean timed;
906 boolean wasInterrupted;
907 long nanos;
908 long lastTime;
909 volatile Thread thread; // nulled to cancel wait
910 QNode next;
911
912 QNode(Phaser phaser, int phase, boolean interruptible,
913 boolean timed, long nanos) {
914 this.phaser = phaser;
915 this.phase = phase;
916 this.interruptible = interruptible;
917 this.nanos = nanos;
918 this.timed = timed;
919 this.lastTime = timed? System.nanoTime() : 0L;
920 thread = Thread.currentThread();
921 }
922
923 public boolean isReleasable() {
924 Thread t = thread;
925 if (t != null) {
926 if (phaser.getPhase() != phase)
927 t = null;
928 else {
929 if (Thread.interrupted())
930 wasInterrupted = true;
931 if (interruptible && wasInterrupted)
932 t = null;
933 else if (timed) {
934 if (nanos > 0) {
935 long now = System.nanoTime();
936 nanos -= now - lastTime;
937 lastTime = now;
938 }
939 if (nanos <= 0)
940 t = null;
941 }
942 }
943 if (t != null)
944 return false;
945 thread = null;
946 }
947 return true;
948 }
949
950 public boolean block() {
951 if (isReleasable())
952 return true;
953 else if (!timed)
954 LockSupport.park(this);
955 else if (nanos > 0)
956 LockSupport.parkNanos(this, nanos);
957 return isReleasable();
958 }
959
960 void signal() {
961 Thread t = thread;
962 if (t != null) {
963 thread = null;
964 LockSupport.unpark(t);
965 }
966 }
967
968 void onRelease() { // actions upon return from internalAwaitAdvance
969 if (!interruptible && wasInterrupted)
970 Thread.currentThread().interrupt();
971 if (thread != null)
972 thread = null;
973 }
974
975 }
976
977 // Unsafe mechanics
978
979 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
980 private static final long stateOffset =
981 objectFieldOffset("state", Phaser.class);
982
983 private static long objectFieldOffset(String field, Class<?> klazz) {
984 try {
985 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
986 } catch (NoSuchFieldException e) {
987 // Convert Exception to corresponding Error
988 NoSuchFieldError error = new NoSuchFieldError(field);
989 error.initCause(e);
990 throw error;
991 }
992 }
993
994 /**
995 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
996 * Replace with a simple call to Unsafe.getUnsafe when integrating
997 * into a jdk.
998 *
999 * @return a sun.misc.Unsafe
1000 */
1001 private static sun.misc.Unsafe getUnsafe() {
1002 try {
1003 return sun.misc.Unsafe.getUnsafe();
1004 } catch (SecurityException se) {
1005 try {
1006 return java.security.AccessController.doPrivileged
1007 (new java.security
1008 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1009 public sun.misc.Unsafe run() throws Exception {
1010 java.lang.reflect.Field f = sun.misc
1011 .Unsafe.class.getDeclaredField("theUnsafe");
1012 f.setAccessible(true);
1013 return (sun.misc.Unsafe) f.get(null);
1014 }});
1015 } catch (java.security.PrivilegedActionException e) {
1016 throw new RuntimeException("Could not initialize intrinsics",
1017 e.getCause());
1018 }
1019 }
1020 }
1021 }