ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.59
Committed: Sat Nov 27 16:46:53 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.58: +105 -72 lines
Log Message:
Remove constraints on tiered deregistration

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. The default implementation returns
83 * {@code true} if a deregistration has caused the number of
84 * registered parties to become zero. As illustrated below, when
85 * phasers control actions with a fixed number of iterations, it is
86 * often convenient to override this method to cause termination when
87 * the current phase number reaches a threshold. Method {@link
88 * #forceTermination} is also available to abruptly release waiting
89 * threads and allow them to terminate.
90 *
91 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 * constructed in tree structures) to reduce contention. Phasers with
93 * large numbers of parties that would otherwise experience heavy
94 * synchronization contention costs may instead be set up so that
95 * groups of sub-phasers share a common parent. This may greatly
96 * increase throughput even though it incurs greater per-operation
97 * overhead.
98 *
99 * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 * only by registered parties, the current state of a phaser may be
101 * monitored by any caller. At any given moment there are {@link
102 * #getRegisteredParties} parties in total, of which {@link
103 * #getArrivedParties} have arrived at the current phase ({@link
104 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
105 * parties arrive, the phase advances. The values returned by these
106 * methods may reflect transient states and so are not in general
107 * useful for synchronization control. Method {@link #toString}
108 * returns snapshots of these state queries in a form convenient for
109 * informal monitoring.
110 *
111 * <p><b>Sample usages:</b>
112 *
113 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 * to control a one-shot action serving a variable number of parties.
115 * The typical idiom is for the method setting this up to first
116 * register, then start the actions, then deregister, as in:
117 *
118 * <pre> {@code
119 * void runTasks(List<Runnable> tasks) {
120 * final Phaser phaser = new Phaser(1); // "1" to register self
121 * // create and start threads
122 * for (Runnable task : tasks) {
123 * phaser.register();
124 * new Thread() {
125 * public void run() {
126 * phaser.arriveAndAwaitAdvance(); // await all creation
127 * task.run();
128 * }
129 * }.start();
130 * }
131 *
132 * // allow threads to start and deregister self
133 * phaser.arriveAndDeregister();
134 * }}</pre>
135 *
136 * <p>One way to cause a set of threads to repeatedly perform actions
137 * for a given number of iterations is to override {@code onAdvance}:
138 *
139 * <pre> {@code
140 * void startTasks(List<Runnable> tasks, final int iterations) {
141 * final Phaser phaser = new Phaser() {
142 * protected boolean onAdvance(int phase, int registeredParties) {
143 * return phase >= iterations || registeredParties == 0;
144 * }
145 * };
146 * phaser.register();
147 * for (final Runnable task : tasks) {
148 * phaser.register();
149 * new Thread() {
150 * public void run() {
151 * do {
152 * task.run();
153 * phaser.arriveAndAwaitAdvance();
154 * } while (!phaser.isTerminated());
155 * }
156 * }.start();
157 * }
158 * phaser.arriveAndDeregister(); // deregister self, don't wait
159 * }}</pre>
160 *
161 * If the main task must later await termination, it
162 * may re-register and then execute a similar loop:
163 * <pre> {@code
164 * // ...
165 * phaser.register();
166 * while (!phaser.isTerminated())
167 * phaser.arriveAndAwaitAdvance();}</pre>
168 *
169 * <p>Related constructions may be used to await particular phase numbers
170 * in contexts where you are sure that the phase will never wrap around
171 * {@code Integer.MAX_VALUE}. For example:
172 *
173 * <pre> {@code
174 * void awaitPhase(Phaser phaser, int phase) {
175 * int p = phaser.register(); // assumes caller not already registered
176 * while (p < phase) {
177 * if (phaser.isTerminated())
178 * // ... deal with unexpected termination
179 * else
180 * p = phaser.arriveAndAwaitAdvance();
181 * }
182 * phaser.arriveAndDeregister();
183 * }}</pre>
184 *
185 *
186 * <p>To create a set of tasks using a tree of phasers,
187 * you could use code of the following form, assuming a
188 * Task class with a constructor accepting a phaser that
189 * it registers with upon construction:
190 *
191 * <pre> {@code
192 * void build(Task[] actions, int lo, int hi, Phaser ph) {
193 * if (hi - lo > TASKS_PER_PHASER) {
194 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
195 * int j = Math.min(i + TASKS_PER_PHASER, hi);
196 * build(actions, i, j, new Phaser(ph));
197 * }
198 * } else {
199 * for (int i = lo; i < hi; ++i)
200 * actions[i] = new Task(ph);
201 * // assumes new Task(ph) performs ph.register()
202 * }
203 * }
204 * // .. initially called, for n tasks via
205 * build(new Task[n], 0, n, new Phaser());}</pre>
206 *
207 * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 * expected barrier synchronization rates. A value as low as four may
209 * be appropriate for extremely small per-barrier task bodies (thus
210 * high rates), or up to hundreds for extremely large ones.
211 *
212 * <p><b>Implementation notes</b>: This implementation restricts the
213 * maximum number of parties to 65535. Attempts to register additional
214 * parties result in {@code IllegalStateException}. However, you can and
215 * should create tiered phasers to accommodate arbitrarily large sets
216 * of participants.
217 *
218 * @since 1.7
219 * @author Doug Lea
220 */
221 public class Phaser {
222 /*
223 * This class implements an extension of X10 "clocks". Thanks to
224 * Vijay Saraswat for the idea, and to Vivek Sarkar for
225 * enhancements to extend functionality.
226 */
227
228 /**
229 * Barrier state representation. Conceptually, a barrier contains
230 * four values:
231 *
232 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
233 * * parties -- the number of parties to wait (bits 16-31)
234 * * phase -- the generation of the barrier (bits 32-62)
235 * * terminated -- set if barrier is terminated (bit 63 / sign)
236 *
237 * However, to efficiently maintain atomicity, these values are
238 * packed into a single (atomic) long. Termination uses the sign
239 * bit of 32 bit representation of phase, so phase is set to -1 on
240 * termination. Good performance relies on keeping state decoding
241 * and encoding simple, and keeping race windows short.
242 */
243 private volatile long state;
244
245 private static final int MAX_PARTIES = 0xffff;
246 private static final int MAX_PHASE = 0x7fffffff;
247 private static final int PARTIES_SHIFT = 16;
248 private static final int PHASE_SHIFT = 32;
249 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
250 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
251 private static final long ONE_ARRIVAL = 1L;
252 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
253 private static final long TERMINATION_BIT = 1L << 63;
254
255 // The following unpacking methods are usually manually inlined
256
257 private static int unarrivedOf(long s) {
258 return (int)s & UNARRIVED_MASK;
259 }
260
261 private static int partiesOf(long s) {
262 return (int)s >>> PARTIES_SHIFT;
263 }
264
265 private static int phaseOf(long s) {
266 return (int) (s >>> PHASE_SHIFT);
267 }
268
269 private static int arrivedOf(long s) {
270 return partiesOf(s) - unarrivedOf(s);
271 }
272
273 /**
274 * The parent of this phaser, or null if none
275 */
276 private final Phaser parent;
277
278 /**
279 * The root of phaser tree. Equals this if not in a tree. Used to
280 * support faster state push-down.
281 */
282 private final Phaser root;
283
284 /**
285 * Heads of Treiber stacks for waiting threads. To eliminate
286 * contention when releasing some threads while adding others, we
287 * use two of them, alternating across even and odd phases.
288 * Subphasers share queues with root to speed up releases.
289 */
290 private final AtomicReference<QNode> evenQ;
291 private final AtomicReference<QNode> oddQ;
292
293 private AtomicReference<QNode> queueFor(int phase) {
294 return ((phase & 1) == 0) ? evenQ : oddQ;
295 }
296
297 /**
298 * Returns message string for bounds exceptions on arrival.
299 */
300 private String badArrive(long s) {
301 return "Attempted arrival of unregistered party for " +
302 stateToString(s);
303 }
304
305 /**
306 * Returns message string for bounds exceptions on registration.
307 */
308 private String badRegister(long s) {
309 return "Attempt to register more than " +
310 MAX_PARTIES + " parties for " + stateToString(s);
311 }
312
313 /**
314 * Main implementation for methods arrive and arriveAndDeregister.
315 * Manually tuned to speed up and minimize race windows for the
316 * common case of just decrementing unarrived field.
317 *
318 * @param adj - adjustment to apply to state -- either
319 * ONE_ARRIVAL (for arrive) or
320 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321 */
322 private int doArrive(long adj) {
323 for (;;) {
324 long s = state;
325 int unarrived = (int)s & UNARRIVED_MASK;
326 int phase = (int)(s >>> PHASE_SHIFT);
327 if (phase < 0)
328 return phase;
329 else if (unarrived == 0) {
330 if (reconcileState() == s) // recheck
331 throw new IllegalStateException(badArrive(s));
332 }
333 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 if (unarrived == 1) {
335 long p = s & PARTIES_MASK; // unshifted parties field
336 long lu = p >>> PARTIES_SHIFT;
337 int u = (int)lu;
338 int nextPhase = (phase + 1) & MAX_PHASE;
339 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 final Phaser parent = this.parent;
341 if (parent == null) {
342 if (onAdvance(phase, u))
343 next |= TERMINATION_BIT;
344 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345 releaseWaiters(phase);
346 }
347 else {
348 parent.doArrive((u == 0) ?
349 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352 !UNSAFE.compareAndSwapLong(this, stateOffset,
353 s, next)))
354 reconcileState();
355 }
356 }
357 return phase;
358 }
359 }
360 }
361
362 /**
363 * Implementation of register, bulkRegister
364 *
365 * @param registrations number to add to both parties and
366 * unarrived fields. Must be greater than zero.
367 */
368 private int doRegister(int registrations) {
369 // adjustment to state
370 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371 final Phaser parent = this.parent;
372 for (;;) {
373 long s = (parent == null) ? state : reconcileState();
374 int parties = (int)s >>> PARTIES_SHIFT;
375 int phase = (int)(s >>> PHASE_SHIFT);
376 if (phase < 0)
377 return phase;
378 else if (registrations > MAX_PARTIES - parties)
379 throw new IllegalStateException(badRegister(s));
380 else if ((parties == 0 && parent == null) || // first reg of root
381 ((int)s & UNARRIVED_MASK) != 0) { // not advancing
382 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383 return phase;
384 }
385 else if (parties != 0) // wait for onAdvance
386 internalAwaitAdvance(phase, null);
387 else { // 1st registration of child
388 synchronized(this) { // register parent first
389 if (reconcileState() == s) { // recheck under lock
390 parent.doRegister(1); // OK if throws IllegalState
391 for (;;) { // simpler form of outer loop
392 s = reconcileState();
393 phase = (int)(s >>> PHASE_SHIFT);
394 if (phase < 0 ||
395 UNSAFE.compareAndSwapLong(this, stateOffset,
396 s, s + adj))
397 return phase;
398 }
399 }
400 }
401 }
402 }
403 }
404
405 /**
406 * Recursively resolves lagged phase propagation from root if necessary.
407 */
408 private long reconcileState() {
409 Phaser par = parent;
410 long s = state;
411 if (par != null) {
412 Phaser rt = root;
413 int phase, rPhase;
414 while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416 if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
417 par.reconcileState();
418 else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419 long u = s & PARTIES_MASK; // reset unarrived to parties
420 long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421 (u >>> PARTIES_SHIFT));
422 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 }
424 s = state;
425 }
426 }
427 return s;
428 }
429
430 /**
431 * Creates a new phaser without any initially registered parties,
432 * initial phase number 0, and no parent. Any thread using this
433 * phaser will need to first register for it.
434 */
435 public Phaser() {
436 this(null, 0);
437 }
438
439 /**
440 * Creates a new phaser with the given number of registered
441 * unarrived parties, initial phase number 0, and no parent.
442 *
443 * @param parties the number of parties required to trip barrier
444 * @throws IllegalArgumentException if parties less than zero
445 * or greater than the maximum number of parties supported
446 */
447 public Phaser(int parties) {
448 this(null, parties);
449 }
450
451 /**
452 * Creates a new phaser with the given parent, and without any
453 * initially registered parties. Any thread using this phaser
454 * will need to first register for it, at which point, if the
455 * given parent is non-null, this phaser will also be registered
456 * with the parent.
457 *
458 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
459 *
460 * @param parent the parent phaser
461 */
462 public Phaser(Phaser parent) {
463 this(parent, 0);
464 }
465
466 /**
467 * Creates a new phaser with the given parent and number of
468 * registered unarrived parties. If parent is non-null and
469 * the number of parties is non-zero, this phaser is registered
470 * with the parent.
471 *
472 * @param parent the parent phaser
473 * @param parties the number of parties required to trip barrier
474 * @throws IllegalArgumentException if parties less than zero
475 * or greater than the maximum number of parties supported
476 */
477 public Phaser(Phaser parent, int parties) {
478 if (parties >>> PARTIES_SHIFT != 0)
479 throw new IllegalArgumentException("Illegal number of parties");
480 int phase;
481 this.parent = parent;
482 if (parent != null) {
483 Phaser r = parent.root;
484 this.root = r;
485 this.evenQ = r.evenQ;
486 this.oddQ = r.oddQ;
487 phase = (parties == 0) ? parent.getPhase() : parent.doRegister(1);
488 }
489 else {
490 this.root = this;
491 this.evenQ = new AtomicReference<QNode>();
492 this.oddQ = new AtomicReference<QNode>();
493 phase = 0;
494 }
495 long p = (long)parties;
496 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
497 }
498
499 /**
500 * Adds a new unarrived party to this phaser. If an ongoing
501 * invocation of {@link #onAdvance} is in progress, this method
502 * may wait until its completion before registering. If this
503 * phaser has a parent, and this phaser previously had no
504 * registered parties, this phaser is also registered with its
505 * parent.
506 *
507 * @return the arrival phase number to which this registration applied
508 * @throws IllegalStateException if attempting to register more
509 * than the maximum supported number of parties
510 */
511 public int register() {
512 return doRegister(1);
513 }
514
515 /**
516 * Adds the given number of new unarrived parties to this phaser.
517 * If an ongoing invocation of {@link #onAdvance} is in progress,
518 * this method may wait until its completion before registering.
519 * If this phaser has a parent, and the given number of parities
520 * is greater than zero, and this phaser previously had no
521 * registered parties, this phaser is also registered with its
522 * parent.
523 *
524 * @param parties the number of additional parties required to trip barrier
525 * @return the arrival phase number to which this registration applied
526 * @throws IllegalStateException if attempting to register more
527 * than the maximum supported number of parties
528 * @throws IllegalArgumentException if {@code parties < 0}
529 */
530 public int bulkRegister(int parties) {
531 if (parties < 0)
532 throw new IllegalArgumentException();
533 else if (parties == 0)
534 return getPhase();
535 return doRegister(parties);
536 }
537
538 /**
539 * Arrives at the barrier, but does not wait for others. (You can
540 * in turn wait for others via {@link #awaitAdvance}). It is a
541 * usage error for an unregistered party to invoke this
542 * method. However, it is possible that this error will result in
543 * an {code IllegalStateException} only when some <em>other</em>
544 * party arrives.
545 *
546 * @return the arrival phase number, or a negative value if terminated
547 * @throws IllegalStateException if not terminated and the number
548 * of unarrived parties would become negative
549 */
550 public int arrive() {
551 return doArrive(ONE_ARRIVAL);
552 }
553
554 /**
555 * Arrives at the barrier and deregisters from it without waiting
556 * for others. Deregistration reduces the number of parties
557 * required to trip the barrier in future phases. If this phaser
558 * has a parent, and deregistration causes this phaser to have
559 * zero parties, this phaser also arrives at and is deregistered
560 * from its parent. It is a usage error for an unregistered party
561 * to invoke this method. However, it is possible that this error
562 * will result in an {code IllegalStateException} only when some
563 * <em>other</em> party arrives.
564 *
565 * @return the arrival phase number, or a negative value if terminated
566 * @throws IllegalStateException if not terminated and the number
567 * of registered or unarrived parties would become negative
568 */
569 public int arriveAndDeregister() {
570 return doArrive(ONE_ARRIVAL|ONE_PARTY);
571 }
572
573 /**
574 * Arrives at the barrier and awaits others. Equivalent in effect
575 * to {@code awaitAdvance(arrive())}. If you need to await with
576 * interruption or timeout, you can arrange this with an analogous
577 * construction using one of the other forms of the {@code
578 * awaitAdvance} method. If instead you need to deregister upon
579 * arrival, use {@link #arriveAndDeregister}. It is a usage error
580 * for an unregistered party to invoke this method. However, it is
581 * possible that this error will result in an {code
582 * IllegalStateException} only when some <em>other</em> party
583 * arrives.
584 *
585 * @return the arrival phase number, or a negative number if terminated
586 * @throws IllegalStateException if not terminated and the number
587 * of unarrived parties would become negative
588 */
589 public int arriveAndAwaitAdvance() {
590 return awaitAdvance(arrive());
591 }
592
593 /**
594 * Awaits the phase of the barrier to advance from the given phase
595 * value, returning immediately if the current phase of the
596 * barrier is not equal to the given phase value or this barrier
597 * is terminated.
598 *
599 * @param phase an arrival phase number, or negative value if
600 * terminated; this argument is normally the value returned by a
601 * previous call to {@code arrive} or its variants
602 * @return the next arrival phase number, or a negative value
603 * if terminated or argument is negative
604 */
605 public int awaitAdvance(int phase) {
606 if (phase < 0)
607 return phase;
608 long s = (parent == null) ? state : reconcileState();
609 int p = (int)(s >>> PHASE_SHIFT);
610 return (p != phase) ? p : internalAwaitAdvance(phase, null);
611 }
612
613 /**
614 * Awaits the phase of the barrier to advance from the given phase
615 * value, throwing {@code InterruptedException} if interrupted
616 * while waiting, or returning immediately if the current phase of
617 * the barrier is not equal to the given phase value or this
618 * barrier is terminated.
619 *
620 * @param phase an arrival phase number, or negative value if
621 * terminated; this argument is normally the value returned by a
622 * previous call to {@code arrive} or its variants
623 * @return the next arrival phase number, or a negative value
624 * if terminated or argument is negative
625 * @throws InterruptedException if thread interrupted while waiting
626 */
627 public int awaitAdvanceInterruptibly(int phase)
628 throws InterruptedException {
629 if (phase < 0)
630 return phase;
631 long s = (parent == null) ? state : reconcileState();
632 int p = (int)(s >>> PHASE_SHIFT);
633 if (p == phase) {
634 QNode node = new QNode(this, phase, true, false, 0L);
635 p = internalAwaitAdvance(phase, node);
636 if (node.wasInterrupted)
637 throw new InterruptedException();
638 }
639 return p;
640 }
641
642 /**
643 * Awaits the phase of the barrier to advance from the given phase
644 * value or the given timeout to elapse, throwing {@code
645 * InterruptedException} if interrupted while waiting, or
646 * returning immediately if the current phase of the barrier is
647 * not equal to the given phase value or this barrier is
648 * terminated.
649 *
650 * @param phase an arrival phase number, or negative value if
651 * terminated; this argument is normally the value returned by a
652 * previous call to {@code arrive} or its variants
653 * @param timeout how long to wait before giving up, in units of
654 * {@code unit}
655 * @param unit a {@code TimeUnit} determining how to interpret the
656 * {@code timeout} parameter
657 * @return the next arrival phase number, or a negative value
658 * if terminated or argument is negative
659 * @throws InterruptedException if thread interrupted while waiting
660 * @throws TimeoutException if timed out while waiting
661 */
662 public int awaitAdvanceInterruptibly(int phase,
663 long timeout, TimeUnit unit)
664 throws InterruptedException, TimeoutException {
665 if (phase < 0)
666 return phase;
667 long s = (parent == null) ? state : reconcileState();
668 int p = (int)(s >>> PHASE_SHIFT);
669 if (p == phase) {
670 long nanos = unit.toNanos(timeout);
671 QNode node = new QNode(this, phase, true, true, nanos);
672 p = internalAwaitAdvance(phase, node);
673 if (node.wasInterrupted)
674 throw new InterruptedException();
675 else if (p == phase)
676 throw new TimeoutException();
677 }
678 return p;
679 }
680
681 /**
682 * Forces this barrier to enter termination state. Counts of
683 * arrived and registered parties are unaffected. If this phaser
684 * is a member of a tiered set of phasers, then all of the phasers
685 * in the set are terminated. If this phaser is already
686 * terminated, this method has no effect. This method may be
687 * useful for coordinating recovery after one or more tasks
688 * encounter unexpected exceptions.
689 */
690 public void forceTermination() {
691 // Only need to change root state
692 final Phaser root = this.root;
693 long s;
694 while ((s = root.state) >= 0) {
695 if (UNSAFE.compareAndSwapLong(root, stateOffset,
696 s, s | TERMINATION_BIT)) {
697 releaseWaiters(0); // signal all threads
698 releaseWaiters(1);
699 return;
700 }
701 }
702 }
703
704 /**
705 * Returns the current phase number. The maximum phase number is
706 * {@code Integer.MAX_VALUE}, after which it restarts at
707 * zero. Upon termination, the phase number is negative.
708 *
709 * @return the phase number, or a negative value if terminated
710 */
711 public final int getPhase() {
712 return (int)(root.state >>> PHASE_SHIFT);
713 }
714
715 /**
716 * Returns the number of parties registered at this barrier.
717 *
718 * @return the number of parties
719 */
720 public int getRegisteredParties() {
721 return partiesOf(state);
722 }
723
724 /**
725 * Returns the number of registered parties that have arrived at
726 * the current phase of this barrier.
727 *
728 * @return the number of arrived parties
729 */
730 public int getArrivedParties() {
731 return arrivedOf(parent==null? state : reconcileState());
732 }
733
734 /**
735 * Returns the number of registered parties that have not yet
736 * arrived at the current phase of this barrier.
737 *
738 * @return the number of unarrived parties
739 */
740 public int getUnarrivedParties() {
741 return unarrivedOf(parent==null? state : reconcileState());
742 }
743
744 /**
745 * Returns the parent of this phaser, or {@code null} if none.
746 *
747 * @return the parent of this phaser, or {@code null} if none
748 */
749 public Phaser getParent() {
750 return parent;
751 }
752
753 /**
754 * Returns the root ancestor of this phaser, which is the same as
755 * this phaser if it has no parent.
756 *
757 * @return the root ancestor of this phaser
758 */
759 public Phaser getRoot() {
760 return root;
761 }
762
763 /**
764 * Returns {@code true} if this barrier has been terminated.
765 *
766 * @return {@code true} if this barrier has been terminated
767 */
768 public boolean isTerminated() {
769 return root.state < 0L;
770 }
771
772 /**
773 * Overridable method to perform an action upon impending phase
774 * advance, and to control termination. This method is invoked
775 * upon arrival of the party tripping the barrier (when all other
776 * waiting parties are dormant). If this method returns {@code
777 * true}, then, rather than advance the phase number, this barrier
778 * will be set to a final termination state, and subsequent calls
779 * to {@link #isTerminated} will return true. Any (unchecked)
780 * Exception or Error thrown by an invocation of this method is
781 * propagated to the party attempting to trip the barrier, in
782 * which case no advance occurs.
783 *
784 * <p>The arguments to this method provide the state of the phaser
785 * prevailing for the current transition. The effects of invoking
786 * arrival, registration, and waiting methods on this Phaser from
787 * within {@code onAdvance} are unspecified and should not be
788 * relied on.
789 *
790 * <p>If this Phaser is a member of a tiered set of Phasers, then
791 * {@code onAdvance} is invoked only for its root Phaser on each
792 * advance.
793 *
794 * <p>To support the most common use cases, the default
795 * implementation of this method returns {@code true} when the
796 * number of registered parties has become zero as the result of a
797 * party invoking {@code arriveAndDeregister}. You can disable
798 * this behavior, thus enabling continuation upon future
799 * registrations, by overriding this method to always return
800 * {@code false}:
801 *
802 * <pre> {@code
803 * Phaser phaser = new Phaser() {
804 * protected boolean onAdvance(int phase, int parties) { return false; }
805 * }}</pre>
806 *
807 * @param phase the phase number on entering the barrier
808 * @param registeredParties the current number of registered parties
809 * @return {@code true} if this barrier should terminate
810 */
811 protected boolean onAdvance(int phase, int registeredParties) {
812 return registeredParties <= 0;
813 }
814
815 /**
816 * Returns a string identifying this phaser, as well as its
817 * state. The state, in brackets, includes the String {@code
818 * "phase = "} followed by the phase number, {@code "parties = "}
819 * followed by the number of registered parties, and {@code
820 * "arrived = "} followed by the number of arrived parties.
821 *
822 * @return a string identifying this barrier, as well as its state
823 */
824 public String toString() {
825 return stateToString(reconcileState());
826 }
827
828 /**
829 * Implementation of toString and string-based error messages
830 */
831 private String stateToString(long s) {
832 return super.toString() +
833 "[phase = " + phaseOf(s) +
834 " parties = " + partiesOf(s) +
835 " arrived = " + arrivedOf(s) + "]";
836 }
837
838 // Waiting mechanics
839
840 /**
841 * Removes and signals threads from queue for phase.
842 */
843 private void releaseWaiters(int phase) {
844 AtomicReference<QNode> head = queueFor(phase);
845 QNode q;
846 int p;
847 while ((q = head.get()) != null &&
848 ((p = q.phase) == phase ||
849 (int)(root.state >>> PHASE_SHIFT) != p)) {
850 if (head.compareAndSet(q, q.next))
851 q.signal();
852 }
853 }
854
855 /** The number of CPUs, for spin control */
856 private static final int NCPU = Runtime.getRuntime().availableProcessors();
857
858 /**
859 * The number of times to spin before blocking while waiting for
860 * advance, per arrival while waiting. On multiprocessors, fully
861 * blocking and waking up a large number of threads all at once is
862 * usually a very slow process, so we use rechargeable spins to
863 * avoid it when threads regularly arrive: When a thread in
864 * internalAwaitAdvance notices another arrival before blocking,
865 * and there appear to be enough CPUs available, it spins
866 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
867 * uniprocessors, there is at least one intervening Thread.yield
868 * before blocking. The value trades off good-citizenship vs big
869 * unnecessary slowdowns.
870 */
871 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
872
873 /**
874 * Possibly blocks and waits for phase to advance unless aborted.
875 *
876 * @param phase current phase
877 * @param node if non-null, the wait node to track interrupt and timeout;
878 * if null, denotes noninterruptible wait
879 * @return current phase
880 */
881 private int internalAwaitAdvance(int phase, QNode node) {
882 Phaser current = this; // to eventually wait at root if tiered
883 boolean queued = false; // true when node is enqueued
884 int lastUnarrived = -1; // to increase spins upon change
885 int spins = SPINS_PER_ARRIVAL;
886 long s;
887 int p;
888 while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
889 Phaser par;
890 int unarrived = (int)s & UNARRIVED_MASK;
891 if (unarrived != lastUnarrived) {
892 if (lastUnarrived == -1) // ensure old queue clean
893 releaseWaiters(phase-1);
894 if ((lastUnarrived = unarrived) < NCPU)
895 spins += SPINS_PER_ARRIVAL;
896 }
897 else if (unarrived == 0 && (par = current.parent) != null) {
898 current = par; // if all arrived, use parent
899 par = par.parent;
900 lastUnarrived = -1;
901 }
902 else if (spins > 0) {
903 if (--spins == (SPINS_PER_ARRIVAL >>> 1))
904 Thread.yield(); // yield midway through spin
905 }
906 else if (node == null) // must be noninterruptible
907 node = new QNode(this, phase, false, false, 0L);
908 else if (node.isReleasable()) {
909 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
910 break;
911 else
912 return phase; // aborted
913 }
914 else if (!queued) { // push onto queue
915 AtomicReference<QNode> head = queueFor(phase);
916 QNode q = head.get();
917 if (q == null || q.phase == phase) {
918 node.next = q;
919 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
920 break; // recheck to avoid stale enqueue
921 else
922 queued = head.compareAndSet(q, node);
923 }
924 }
925 else {
926 try {
927 ForkJoinPool.managedBlock(node);
928 } catch (InterruptedException ie) {
929 node.wasInterrupted = true;
930 }
931 }
932 }
933 releaseWaiters(phase);
934 if (node != null)
935 node.onRelease();
936 return p;
937 }
938
939 /**
940 * Wait nodes for Treiber stack representing wait queue
941 */
942 static final class QNode implements ForkJoinPool.ManagedBlocker {
943 final Phaser phaser;
944 final int phase;
945 final boolean interruptible;
946 final boolean timed;
947 boolean wasInterrupted;
948 long nanos;
949 long lastTime;
950 volatile Thread thread; // nulled to cancel wait
951 QNode next;
952
953 QNode(Phaser phaser, int phase, boolean interruptible,
954 boolean timed, long nanos) {
955 this.phaser = phaser;
956 this.phase = phase;
957 this.interruptible = interruptible;
958 this.nanos = nanos;
959 this.timed = timed;
960 this.lastTime = timed? System.nanoTime() : 0L;
961 thread = Thread.currentThread();
962 }
963
964 public boolean isReleasable() {
965 Thread t = thread;
966 if (t != null) {
967 if (phaser.getPhase() != phase)
968 t = null;
969 else {
970 if (Thread.interrupted())
971 wasInterrupted = true;
972 if (interruptible && wasInterrupted)
973 t = null;
974 else if (timed) {
975 if (nanos > 0) {
976 long now = System.nanoTime();
977 nanos -= now - lastTime;
978 lastTime = now;
979 }
980 if (nanos <= 0)
981 t = null;
982 }
983 }
984 if (t != null)
985 return false;
986 thread = null;
987 }
988 return true;
989 }
990
991 public boolean block() {
992 if (isReleasable())
993 return true;
994 else if (!timed)
995 LockSupport.park(this);
996 else if (nanos > 0)
997 LockSupport.parkNanos(this, nanos);
998 return isReleasable();
999 }
1000
1001 void signal() {
1002 Thread t = thread;
1003 if (t != null) {
1004 thread = null;
1005 LockSupport.unpark(t);
1006 }
1007 }
1008
1009 void onRelease() { // actions upon return from internalAwaitAdvance
1010 if (!interruptible && wasInterrupted)
1011 Thread.currentThread().interrupt();
1012 if (thread != null)
1013 thread = null;
1014 }
1015
1016 }
1017
1018 // Unsafe mechanics
1019
1020 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1021 private static final long stateOffset =
1022 objectFieldOffset("state", Phaser.class);
1023
1024 private static long objectFieldOffset(String field, Class<?> klazz) {
1025 try {
1026 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1027 } catch (NoSuchFieldException e) {
1028 // Convert Exception to corresponding Error
1029 NoSuchFieldError error = new NoSuchFieldError(field);
1030 error.initCause(e);
1031 throw error;
1032 }
1033 }
1034
1035 /**
1036 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1037 * Replace with a simple call to Unsafe.getUnsafe when integrating
1038 * into a jdk.
1039 *
1040 * @return a sun.misc.Unsafe
1041 */
1042 private static sun.misc.Unsafe getUnsafe() {
1043 try {
1044 return sun.misc.Unsafe.getUnsafe();
1045 } catch (SecurityException se) {
1046 try {
1047 return java.security.AccessController.doPrivileged
1048 (new java.security
1049 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1050 public sun.misc.Unsafe run() throws Exception {
1051 java.lang.reflect.Field f = sun.misc
1052 .Unsafe.class.getDeclaredField("theUnsafe");
1053 f.setAccessible(true);
1054 return (sun.misc.Unsafe) f.get(null);
1055 }});
1056 } catch (java.security.PrivilegedActionException e) {
1057 throw new RuntimeException("Could not initialize intrinsics",
1058 e.getCause());
1059 }
1060 }
1061 }
1062 }