ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.75
Committed: Wed Sep 21 12:30:39 2011 UTC (12 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.74: +21 -13 lines
Log Message:
Allow multiple subphasers to register while others deregister

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (final Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four bit-fields:
241 *
242 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * parties -- the number of parties to wait (bits 16-31)
244 * phase -- the generation of the barrier (bits 32-62)
245 * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished by the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed -- see method
264 * reconcileState.
265 */
266 private volatile long state;
267
268 private static final int MAX_PARTIES = 0xffff;
269 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 private static final int PARTIES_SHIFT = 16;
271 private static final int PHASE_SHIFT = 32;
272 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274 private static final long TERMINATION_BIT = 1L << 63;
275
276 // some special values
277 private static final int ONE_ARRIVAL = 1;
278 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 private static final int EMPTY = 1;
280
281 // The following unpacking methods are usually manually inlined
282
283 private static int unarrivedOf(long s) {
284 int counts = (int)s;
285 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286 }
287
288 private static int partiesOf(long s) {
289 return (int)s >>> PARTIES_SHIFT;
290 }
291
292 private static int phaseOf(long s) {
293 return (int)(s >>> PHASE_SHIFT);
294 }
295
296 private static int arrivedOf(long s) {
297 int counts = (int)s;
298 return (counts == EMPTY) ? 0 :
299 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300 }
301
302 /**
303 * The parent of this phaser, or null if none
304 */
305 private final Phaser parent;
306
307 /**
308 * The root of phaser tree. Equals this if not in a tree.
309 */
310 private final Phaser root;
311
312 /**
313 * Heads of Treiber stacks for waiting threads. To eliminate
314 * contention when releasing some threads while adding others, we
315 * use two of them, alternating across even and odd phases.
316 * Subphasers share queues with root to speed up releases.
317 */
318 private final AtomicReference<QNode> evenQ;
319 private final AtomicReference<QNode> oddQ;
320
321 private AtomicReference<QNode> queueFor(int phase) {
322 return ((phase & 1) == 0) ? evenQ : oddQ;
323 }
324
325 /**
326 * Returns message string for bounds exceptions on arrival.
327 */
328 private String badArrive(long s) {
329 return "Attempted arrival of unregistered party for " +
330 stateToString(s);
331 }
332
333 /**
334 * Returns message string for bounds exceptions on registration.
335 */
336 private String badRegister(long s) {
337 return "Attempt to register more than " +
338 MAX_PARTIES + " parties for " + stateToString(s);
339 }
340
341 /**
342 * Main implementation for methods arrive and arriveAndDeregister.
343 * Manually tuned to speed up and minimize race windows for the
344 * common case of just decrementing unarrived field.
345 *
346 * @param deregister false for arrive, true for arriveAndDeregister
347 */
348 private int doArrive(boolean deregister) {
349 int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 final Phaser root = this.root;
351 for (;;) {
352 long s = (root == this) ? state : reconcileState();
353 int phase = (int)(s >>> PHASE_SHIFT);
354 int counts = (int)s;
355 int unarrived = (counts & UNARRIVED_MASK) - 1;
356 if (phase < 0)
357 return phase;
358 else if (counts == EMPTY || unarrived < 0) {
359 if (root == this || reconcileState() == s)
360 throw new IllegalStateException(badArrive(s));
361 }
362 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 long n = s & PARTIES_MASK; // base of next state
364 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 if (unarrived == 0) {
366 if (root == this) {
367 if (onAdvance(phase, nextUnarrived))
368 n |= TERMINATION_BIT;
369 else if (nextUnarrived == 0)
370 n |= EMPTY;
371 else
372 n |= nextUnarrived;
373 n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
374 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
375 }
376 else if (nextUnarrived == 0) { // propagate deregistration
377 phase = parent.doArrive(true);
378 UNSAFE.compareAndSwapLong(this, stateOffset,
379 s, s | EMPTY);
380 }
381 else
382 phase = parent.doArrive(false);
383 releaseWaiters(phase);
384 }
385 return phase;
386 }
387 }
388 }
389
390 /**
391 * Implementation of register, bulkRegister
392 *
393 * @param registrations number to add to both parties and
394 * unarrived fields. Must be greater than zero.
395 */
396 private int doRegister(int registrations) {
397 // adjustment to state
398 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 final Phaser parent = this.parent;
400 int phase;
401 for (;;) {
402 long s = (parent == null) ? state : reconcileState();
403 int counts = (int)s;
404 int parties = counts >>> PARTIES_SHIFT;
405 int unarrived = counts & UNARRIVED_MASK;
406 if (registrations > MAX_PARTIES - parties)
407 throw new IllegalStateException(badRegister(s));
408 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
409 break;
410 else if (counts != EMPTY) { // not 1st registration
411 if (parent == null || reconcileState() == s) {
412 if (unarrived == 0) // wait out advance
413 root.internalAwaitAdvance(phase, null);
414 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
415 s, s + adj))
416 break;
417 }
418 }
419 else if (parent == null) { // 1st root registration
420 long next = ((long)phase << PHASE_SHIFT) | adj;
421 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422 break;
423 }
424 else {
425 synchronized (this) { // 1st sub registration
426 if (state == s) { // recheck under lock
427 parent.doRegister(1);
428 do { // force current phase
429 phase = (int)(root.state >>> PHASE_SHIFT);
430 // assert phase < 0 || (int)state == EMPTY;
431 } while (!UNSAFE.compareAndSwapLong
432 (this, stateOffset, state,
433 ((long)phase << PHASE_SHIFT) | adj));
434 break;
435 }
436 }
437 }
438 }
439 return phase;
440 }
441
442 /**
443 * Resolves lagged phase propagation from root if necessary.
444 * Reconciliation normally occurs when root has advanced but
445 * subphasers have not yet done so, in which case they must finish
446 * their own advance by setting unarrived to parties (or if
447 * parties is zero, resetting to unregistered EMPTY state).
448 * However, this method may also be called when "floating"
449 * subphasers with possibly some unarrived parties are merely
450 * catching up to current phase, in which case counts are
451 * unaffected.
452 *
453 * @return reconciled state
454 */
455 private long reconcileState() {
456 final Phaser root = this.root;
457 long s = state;
458 if (root != this) {
459 int phase, u, p;
460 // CAS root phase with current parties; possibly trip unarrived
461 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462 (int)(s >>> PHASE_SHIFT) &&
463 !UNSAFE.compareAndSwapLong
464 (this, stateOffset, s,
465 s = (((long)phase << PHASE_SHIFT) |
466 (s & PARTIES_MASK) |
467 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
468 ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
469 p : u))))
470 s = state;
471 }
472 return s;
473 }
474
475 /**
476 * Creates a new phaser with no initially registered parties, no
477 * parent, and initial phase number 0. Any thread using this
478 * phaser will need to first register for it.
479 */
480 public Phaser() {
481 this(null, 0);
482 }
483
484 /**
485 * Creates a new phaser with the given number of registered
486 * unarrived parties, no parent, and initial phase number 0.
487 *
488 * @param parties the number of parties required to advance to the
489 * next phase
490 * @throws IllegalArgumentException if parties less than zero
491 * or greater than the maximum number of parties supported
492 */
493 public Phaser(int parties) {
494 this(null, parties);
495 }
496
497 /**
498 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
499 *
500 * @param parent the parent phaser
501 */
502 public Phaser(Phaser parent) {
503 this(parent, 0);
504 }
505
506 /**
507 * Creates a new phaser with the given parent and number of
508 * registered unarrived parties. When the given parent is non-null
509 * and the given number of parties is greater than zero, this
510 * child phaser is registered with its parent.
511 *
512 * @param parent the parent phaser
513 * @param parties the number of parties required to advance to the
514 * next phase
515 * @throws IllegalArgumentException if parties less than zero
516 * or greater than the maximum number of parties supported
517 */
518 public Phaser(Phaser parent, int parties) {
519 if (parties >>> PARTIES_SHIFT != 0)
520 throw new IllegalArgumentException("Illegal number of parties");
521 int phase = 0;
522 this.parent = parent;
523 if (parent != null) {
524 final Phaser root = parent.root;
525 this.root = root;
526 this.evenQ = root.evenQ;
527 this.oddQ = root.oddQ;
528 if (parties != 0)
529 phase = parent.doRegister(1);
530 }
531 else {
532 this.root = this;
533 this.evenQ = new AtomicReference<QNode>();
534 this.oddQ = new AtomicReference<QNode>();
535 }
536 this.state = (parties == 0) ? (long)EMPTY :
537 ((long)phase << PHASE_SHIFT) |
538 ((long)parties << PARTIES_SHIFT) |
539 ((long)parties);
540 }
541
542 /**
543 * Adds a new unarrived party to this phaser. If an ongoing
544 * invocation of {@link #onAdvance} is in progress, this method
545 * may await its completion before returning. If this phaser has
546 * a parent, and this phaser previously had no registered parties,
547 * this child phaser is also registered with its parent. If
548 * this phaser is terminated, the attempt to register has
549 * no effect, and a negative value is returned.
550 *
551 * @return the arrival phase number to which this registration
552 * applied. If this value is negative, then this phaser has
553 * terminated, in which case registration has no effect.
554 * @throws IllegalStateException if attempting to register more
555 * than the maximum supported number of parties
556 */
557 public int register() {
558 return doRegister(1);
559 }
560
561 /**
562 * Adds the given number of new unarrived parties to this phaser.
563 * If an ongoing invocation of {@link #onAdvance} is in progress,
564 * this method may await its completion before returning. If this
565 * phaser has a parent, and the given number of parties is greater
566 * than zero, and this phaser previously had no registered
567 * parties, this child phaser is also registered with its parent.
568 * If this phaser is terminated, the attempt to register has no
569 * effect, and a negative value is returned.
570 *
571 * @param parties the number of additional parties required to
572 * advance to the next phase
573 * @return the arrival phase number to which this registration
574 * applied. If this value is negative, then this phaser has
575 * terminated, in which case registration has no effect.
576 * @throws IllegalStateException if attempting to register more
577 * than the maximum supported number of parties
578 * @throws IllegalArgumentException if {@code parties < 0}
579 */
580 public int bulkRegister(int parties) {
581 if (parties < 0)
582 throw new IllegalArgumentException();
583 if (parties == 0)
584 return getPhase();
585 return doRegister(parties);
586 }
587
588 /**
589 * Arrives at this phaser, without waiting for others to arrive.
590 *
591 * <p>It is a usage error for an unregistered party to invoke this
592 * method. However, this error may result in an {@code
593 * IllegalStateException} only upon some subsequent operation on
594 * this phaser, if ever.
595 *
596 * @return the arrival phase number, or a negative value if terminated
597 * @throws IllegalStateException if not terminated and the number
598 * of unarrived parties would become negative
599 */
600 public int arrive() {
601 return doArrive(false);
602 }
603
604 /**
605 * Arrives at this phaser and deregisters from it without waiting
606 * for others to arrive. Deregistration reduces the number of
607 * parties required to advance in future phases. If this phaser
608 * has a parent, and deregistration causes this phaser to have
609 * zero parties, this phaser is also deregistered from its parent.
610 *
611 * <p>It is a usage error for an unregistered party to invoke this
612 * method. However, this error may result in an {@code
613 * IllegalStateException} only upon some subsequent operation on
614 * this phaser, if ever.
615 *
616 * @return the arrival phase number, or a negative value if terminated
617 * @throws IllegalStateException if not terminated and the number
618 * of registered or unarrived parties would become negative
619 */
620 public int arriveAndDeregister() {
621 return doArrive(true);
622 }
623
624 /**
625 * Arrives at this phaser and awaits others. Equivalent in effect
626 * to {@code awaitAdvance(arrive())}. If you need to await with
627 * interruption or timeout, you can arrange this with an analogous
628 * construction using one of the other forms of the {@code
629 * awaitAdvance} method. If instead you need to deregister upon
630 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
631 *
632 * <p>It is a usage error for an unregistered party to invoke this
633 * method. However, this error may result in an {@code
634 * IllegalStateException} only upon some subsequent operation on
635 * this phaser, if ever.
636 *
637 * @return the arrival phase number, or the (negative)
638 * {@linkplain #getPhase() current phase} if terminated
639 * @throws IllegalStateException if not terminated and the number
640 * of unarrived parties would become negative
641 */
642 public int arriveAndAwaitAdvance() {
643 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
644 final Phaser root = this.root;
645 for (;;) {
646 long s = (root == this) ? state : reconcileState();
647 int phase = (int)(s >>> PHASE_SHIFT);
648 int counts = (int)s;
649 int unarrived = (counts & UNARRIVED_MASK) - 1;
650 if (phase < 0)
651 return phase;
652 else if (counts == EMPTY || unarrived < 0) {
653 if (reconcileState() == s)
654 throw new IllegalStateException(badArrive(s));
655 }
656 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657 s -= ONE_ARRIVAL)) {
658 if (unarrived != 0)
659 return root.internalAwaitAdvance(phase, null);
660 if (root != this)
661 return parent.arriveAndAwaitAdvance();
662 long n = s & PARTIES_MASK; // base of next state
663 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 if (onAdvance(phase, nextUnarrived))
665 n |= TERMINATION_BIT;
666 else if (nextUnarrived == 0)
667 n |= EMPTY;
668 else
669 n |= nextUnarrived;
670 int nextPhase = (phase + 1) & MAX_PHASE;
671 n |= (long)nextPhase << PHASE_SHIFT;
672 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673 return (int)(state >>> PHASE_SHIFT); // terminated
674 releaseWaiters(phase);
675 return nextPhase;
676 }
677 }
678 }
679
680 /**
681 * Awaits the phase of this phaser to advance from the given phase
682 * value, returning immediately if the current phase is not equal
683 * to the given phase value or this phaser is terminated.
684 *
685 * @param phase an arrival phase number, or negative value if
686 * terminated; this argument is normally the value returned by a
687 * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 * @return the next arrival phase number, or the argument if it is
689 * negative, or the (negative) {@linkplain #getPhase() current phase}
690 * if terminated
691 */
692 public int awaitAdvance(int phase) {
693 final Phaser root = this.root;
694 long s = (root == this) ? state : reconcileState();
695 int p = (int)(s >>> PHASE_SHIFT);
696 if (phase < 0)
697 return phase;
698 if (p == phase)
699 return root.internalAwaitAdvance(phase, null);
700 return p;
701 }
702
703 /**
704 * Awaits the phase of this phaser to advance from the given phase
705 * value, throwing {@code InterruptedException} if interrupted
706 * while waiting, or returning immediately if the current phase is
707 * not equal to the given phase value or this phaser is
708 * terminated.
709 *
710 * @param phase an arrival phase number, or negative value if
711 * terminated; this argument is normally the value returned by a
712 * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 * @return the next arrival phase number, or the argument if it is
714 * negative, or the (negative) {@linkplain #getPhase() current phase}
715 * if terminated
716 * @throws InterruptedException if thread interrupted while waiting
717 */
718 public int awaitAdvanceInterruptibly(int phase)
719 throws InterruptedException {
720 final Phaser root = this.root;
721 long s = (root == this) ? state : reconcileState();
722 int p = (int)(s >>> PHASE_SHIFT);
723 if (phase < 0)
724 return phase;
725 if (p == phase) {
726 QNode node = new QNode(this, phase, true, false, 0L);
727 p = root.internalAwaitAdvance(phase, node);
728 if (node.wasInterrupted)
729 throw new InterruptedException();
730 }
731 return p;
732 }
733
734 /**
735 * Awaits the phase of this phaser to advance from the given phase
736 * value or the given timeout to elapse, throwing {@code
737 * InterruptedException} if interrupted while waiting, or
738 * returning immediately if the current phase is not equal to the
739 * given phase value or this phaser is terminated.
740 *
741 * @param phase an arrival phase number, or negative value if
742 * terminated; this argument is normally the value returned by a
743 * previous call to {@code arrive} or {@code arriveAndDeregister}.
744 * @param timeout how long to wait before giving up, in units of
745 * {@code unit}
746 * @param unit a {@code TimeUnit} determining how to interpret the
747 * {@code timeout} parameter
748 * @return the next arrival phase number, or the argument if it is
749 * negative, or the (negative) {@linkplain #getPhase() current phase}
750 * if terminated
751 * @throws InterruptedException if thread interrupted while waiting
752 * @throws TimeoutException if timed out while waiting
753 */
754 public int awaitAdvanceInterruptibly(int phase,
755 long timeout, TimeUnit unit)
756 throws InterruptedException, TimeoutException {
757 long nanos = unit.toNanos(timeout);
758 final Phaser root = this.root;
759 long s = (root == this) ? state : reconcileState();
760 int p = (int)(s >>> PHASE_SHIFT);
761 if (phase < 0)
762 return phase;
763 if (p == phase) {
764 QNode node = new QNode(this, phase, true, true, nanos);
765 p = root.internalAwaitAdvance(phase, node);
766 if (node.wasInterrupted)
767 throw new InterruptedException();
768 else if (p == phase)
769 throw new TimeoutException();
770 }
771 return p;
772 }
773
774 /**
775 * Forces this phaser to enter termination state. Counts of
776 * registered parties are unaffected. If this phaser is a member
777 * of a tiered set of phasers, then all of the phasers in the set
778 * are terminated. If this phaser is already terminated, this
779 * method has no effect. This method may be useful for
780 * coordinating recovery after one or more tasks encounter
781 * unexpected exceptions.
782 */
783 public void forceTermination() {
784 // Only need to change root state
785 final Phaser root = this.root;
786 long s;
787 while ((s = root.state) >= 0) {
788 if (UNSAFE.compareAndSwapLong(root, stateOffset,
789 s, s | TERMINATION_BIT)) {
790 // signal all threads
791 releaseWaiters(0);
792 releaseWaiters(1);
793 return;
794 }
795 }
796 }
797
798 /**
799 * Returns the current phase number. The maximum phase number is
800 * {@code Integer.MAX_VALUE}, after which it restarts at
801 * zero. Upon termination, the phase number is negative,
802 * in which case the prevailing phase prior to termination
803 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
804 *
805 * @return the phase number, or a negative value if terminated
806 */
807 public final int getPhase() {
808 return (int)(root.state >>> PHASE_SHIFT);
809 }
810
811 /**
812 * Returns the number of parties registered at this phaser.
813 *
814 * @return the number of parties
815 */
816 public int getRegisteredParties() {
817 return partiesOf(state);
818 }
819
820 /**
821 * Returns the number of registered parties that have arrived at
822 * the current phase of this phaser. If this phaser has terminated,
823 * the returned value is meaningless and arbitrary.
824 *
825 * @return the number of arrived parties
826 */
827 public int getArrivedParties() {
828 return arrivedOf(reconcileState());
829 }
830
831 /**
832 * Returns the number of registered parties that have not yet
833 * arrived at the current phase of this phaser. If this phaser has
834 * terminated, the returned value is meaningless and arbitrary.
835 *
836 * @return the number of unarrived parties
837 */
838 public int getUnarrivedParties() {
839 return unarrivedOf(reconcileState());
840 }
841
842 /**
843 * Returns the parent of this phaser, or {@code null} if none.
844 *
845 * @return the parent of this phaser, or {@code null} if none
846 */
847 public Phaser getParent() {
848 return parent;
849 }
850
851 /**
852 * Returns the root ancestor of this phaser, which is the same as
853 * this phaser if it has no parent.
854 *
855 * @return the root ancestor of this phaser
856 */
857 public Phaser getRoot() {
858 return root;
859 }
860
861 /**
862 * Returns {@code true} if this phaser has been terminated.
863 *
864 * @return {@code true} if this phaser has been terminated
865 */
866 public boolean isTerminated() {
867 return root.state < 0L;
868 }
869
870 /**
871 * Overridable method to perform an action upon impending phase
872 * advance, and to control termination. This method is invoked
873 * upon arrival of the party advancing this phaser (when all other
874 * waiting parties are dormant). If this method returns {@code
875 * true}, this phaser will be set to a final termination state
876 * upon advance, and subsequent calls to {@link #isTerminated}
877 * will return true. Any (unchecked) Exception or Error thrown by
878 * an invocation of this method is propagated to the party
879 * attempting to advance this phaser, in which case no advance
880 * occurs.
881 *
882 * <p>The arguments to this method provide the state of the phaser
883 * prevailing for the current transition. The effects of invoking
884 * arrival, registration, and waiting methods on this phaser from
885 * within {@code onAdvance} are unspecified and should not be
886 * relied on.
887 *
888 * <p>If this phaser is a member of a tiered set of phasers, then
889 * {@code onAdvance} is invoked only for its root phaser on each
890 * advance.
891 *
892 * <p>To support the most common use cases, the default
893 * implementation of this method returns {@code true} when the
894 * number of registered parties has become zero as the result of a
895 * party invoking {@code arriveAndDeregister}. You can disable
896 * this behavior, thus enabling continuation upon future
897 * registrations, by overriding this method to always return
898 * {@code false}:
899 *
900 * <pre> {@code
901 * Phaser phaser = new Phaser() {
902 * protected boolean onAdvance(int phase, int parties) { return false; }
903 * }}</pre>
904 *
905 * @param phase the current phase number on entry to this method,
906 * before this phaser is advanced
907 * @param registeredParties the current number of registered parties
908 * @return {@code true} if this phaser should terminate
909 */
910 protected boolean onAdvance(int phase, int registeredParties) {
911 return registeredParties == 0;
912 }
913
914 /**
915 * Returns a string identifying this phaser, as well as its
916 * state. The state, in brackets, includes the String {@code
917 * "phase = "} followed by the phase number, {@code "parties = "}
918 * followed by the number of registered parties, and {@code
919 * "arrived = "} followed by the number of arrived parties.
920 *
921 * @return a string identifying this phaser, as well as its state
922 */
923 public String toString() {
924 return stateToString(reconcileState());
925 }
926
927 /**
928 * Implementation of toString and string-based error messages
929 */
930 private String stateToString(long s) {
931 return super.toString() +
932 "[phase = " + phaseOf(s) +
933 " parties = " + partiesOf(s) +
934 " arrived = " + arrivedOf(s) + "]";
935 }
936
937 // Waiting mechanics
938
939 /**
940 * Removes and signals threads from queue for phase.
941 */
942 private void releaseWaiters(int phase) {
943 QNode q; // first element of queue
944 Thread t; // its thread
945 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
946 while ((q = head.get()) != null &&
947 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
948 if (head.compareAndSet(q, q.next) &&
949 (t = q.thread) != null) {
950 q.thread = null;
951 LockSupport.unpark(t);
952 }
953 }
954 }
955
956 /**
957 * Variant of releaseWaiters that additionally tries to remove any
958 * nodes no longer waiting for advance due to timeout or
959 * interrupt. Currently, nodes are removed only if they are at
960 * head of queue, which suffices to reduce memory footprint in
961 * most usages.
962 *
963 * @return current phase on exit
964 */
965 private int abortWait(int phase) {
966 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967 for (;;) {
968 Thread t;
969 QNode q = head.get();
970 int p = (int)(root.state >>> PHASE_SHIFT);
971 if (q == null || ((t = q.thread) != null && q.phase == p))
972 return p;
973 if (head.compareAndSet(q, q.next) && t != null) {
974 q.thread = null;
975 LockSupport.unpark(t);
976 }
977 }
978 }
979
980 /** The number of CPUs, for spin control */
981 private static final int NCPU = Runtime.getRuntime().availableProcessors();
982
983 /**
984 * The number of times to spin before blocking while waiting for
985 * advance, per arrival while waiting. On multiprocessors, fully
986 * blocking and waking up a large number of threads all at once is
987 * usually a very slow process, so we use rechargeable spins to
988 * avoid it when threads regularly arrive: When a thread in
989 * internalAwaitAdvance notices another arrival before blocking,
990 * and there appear to be enough CPUs available, it spins
991 * SPINS_PER_ARRIVAL more times before blocking. The value trades
992 * off good-citizenship vs big unnecessary slowdowns.
993 */
994 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
995
996 /**
997 * Possibly blocks and waits for phase to advance unless aborted.
998 * Call only from root node.
999 *
1000 * @param phase current phase
1001 * @param node if non-null, the wait node to track interrupt and timeout;
1002 * if null, denotes noninterruptible wait
1003 * @return current phase
1004 */
1005 private int internalAwaitAdvance(int phase, QNode node) {
1006 releaseWaiters(phase-1); // ensure old queue clean
1007 boolean queued = false; // true when node is enqueued
1008 int lastUnarrived = 0; // to increase spins upon change
1009 int spins = SPINS_PER_ARRIVAL;
1010 long s;
1011 int p;
1012 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013 if (node == null) { // spinning in noninterruptible mode
1014 int unarrived = (int)s & UNARRIVED_MASK;
1015 if (unarrived != lastUnarrived &&
1016 (lastUnarrived = unarrived) < NCPU)
1017 spins += SPINS_PER_ARRIVAL;
1018 boolean interrupted = Thread.interrupted();
1019 if (interrupted || --spins < 0) { // need node to record intr
1020 node = new QNode(this, phase, false, false, 0L);
1021 node.wasInterrupted = interrupted;
1022 }
1023 }
1024 else if (node.isReleasable()) // done or aborted
1025 break;
1026 else if (!queued) { // push onto queue
1027 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028 QNode q = node.next = head.get();
1029 if ((q == null || q.phase == phase) &&
1030 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031 queued = head.compareAndSet(q, node);
1032 }
1033 else {
1034 try {
1035 ForkJoinPool.managedBlock(node);
1036 } catch (InterruptedException ie) {
1037 node.wasInterrupted = true;
1038 }
1039 }
1040 }
1041
1042 if (node != null) {
1043 if (node.thread != null)
1044 node.thread = null; // avoid need for unpark()
1045 if (node.wasInterrupted && !node.interruptible)
1046 Thread.currentThread().interrupt();
1047 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 return abortWait(phase); // possibly clean up on abort
1049 }
1050 releaseWaiters(phase);
1051 return p;
1052 }
1053
1054 /**
1055 * Wait nodes for Treiber stack representing wait queue
1056 */
1057 static final class QNode implements ForkJoinPool.ManagedBlocker {
1058 final Phaser phaser;
1059 final int phase;
1060 final boolean interruptible;
1061 final boolean timed;
1062 boolean wasInterrupted;
1063 long nanos;
1064 long lastTime;
1065 volatile Thread thread; // nulled to cancel wait
1066 QNode next;
1067
1068 QNode(Phaser phaser, int phase, boolean interruptible,
1069 boolean timed, long nanos) {
1070 this.phaser = phaser;
1071 this.phase = phase;
1072 this.interruptible = interruptible;
1073 this.nanos = nanos;
1074 this.timed = timed;
1075 this.lastTime = timed ? System.nanoTime() : 0L;
1076 thread = Thread.currentThread();
1077 }
1078
1079 public boolean isReleasable() {
1080 if (thread == null)
1081 return true;
1082 if (phaser.getPhase() != phase) {
1083 thread = null;
1084 return true;
1085 }
1086 if (Thread.interrupted())
1087 wasInterrupted = true;
1088 if (wasInterrupted && interruptible) {
1089 thread = null;
1090 return true;
1091 }
1092 if (timed) {
1093 if (nanos > 0L) {
1094 long now = System.nanoTime();
1095 nanos -= now - lastTime;
1096 lastTime = now;
1097 }
1098 if (nanos <= 0L) {
1099 thread = null;
1100 return true;
1101 }
1102 }
1103 return false;
1104 }
1105
1106 public boolean block() {
1107 if (isReleasable())
1108 return true;
1109 else if (!timed)
1110 LockSupport.park(this);
1111 else if (nanos > 0)
1112 LockSupport.parkNanos(this, nanos);
1113 return isReleasable();
1114 }
1115 }
1116
1117 // Unsafe mechanics
1118
1119 private static final sun.misc.Unsafe UNSAFE;
1120 private static final long stateOffset;
1121 static {
1122 try {
1123 UNSAFE = getUnsafe();
1124 Class<?> k = Phaser.class;
1125 stateOffset = UNSAFE.objectFieldOffset
1126 (k.getDeclaredField("state"));
1127 } catch (Exception e) {
1128 throw new Error(e);
1129 }
1130 }
1131
1132 /**
1133 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1134 * Replace with a simple call to Unsafe.getUnsafe when integrating
1135 * into a jdk.
1136 *
1137 * @return a sun.misc.Unsafe
1138 */
1139 private static sun.misc.Unsafe getUnsafe() {
1140 try {
1141 return sun.misc.Unsafe.getUnsafe();
1142 } catch (SecurityException se) {
1143 try {
1144 return java.security.AccessController.doPrivileged
1145 (new java.security
1146 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1147 public sun.misc.Unsafe run() throws Exception {
1148 java.lang.reflect.Field f = sun.misc
1149 .Unsafe.class.getDeclaredField("theUnsafe");
1150 f.setAccessible(true);
1151 return (sun.misc.Unsafe) f.get(null);
1152 }});
1153 } catch (java.security.PrivilegedActionException e) {
1154 throw new RuntimeException("Could not initialize intrinsics",
1155 e.getCause());
1156 }
1157 }
1158 }
1159 }