ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.76
Committed: Sat Oct 15 21:46:25 2011 UTC (12 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.75: +50 -43 lines
Log Message:
sync with main

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (final Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four bit-fields:
241 *
242 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * parties -- the number of parties to wait (bits 16-31)
244 * phase -- the generation of the barrier (bits 32-62)
245 * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished by the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed -- see method
264 * reconcileState.
265 */
266 private volatile long state;
267
268 private static final int MAX_PARTIES = 0xffff;
269 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 private static final int PARTIES_SHIFT = 16;
271 private static final int PHASE_SHIFT = 32;
272 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274 private static final long TERMINATION_BIT = 1L << 63;
275
276 // some special values
277 private static final int ONE_ARRIVAL = 1;
278 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
280 private static final int EMPTY = 1;
281
282 // The following unpacking methods are usually manually inlined
283
284 private static int unarrivedOf(long s) {
285 int counts = (int)s;
286 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287 }
288
289 private static int partiesOf(long s) {
290 return (int)s >>> PARTIES_SHIFT;
291 }
292
293 private static int phaseOf(long s) {
294 return (int)(s >>> PHASE_SHIFT);
295 }
296
297 private static int arrivedOf(long s) {
298 int counts = (int)s;
299 return (counts == EMPTY) ? 0 :
300 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 }
302
303 /**
304 * The parent of this phaser, or null if none
305 */
306 private final Phaser parent;
307
308 /**
309 * The root of phaser tree. Equals this if not in a tree.
310 */
311 private final Phaser root;
312
313 /**
314 * Heads of Treiber stacks for waiting threads. To eliminate
315 * contention when releasing some threads while adding others, we
316 * use two of them, alternating across even and odd phases.
317 * Subphasers share queues with root to speed up releases.
318 */
319 private final AtomicReference<QNode> evenQ;
320 private final AtomicReference<QNode> oddQ;
321
322 private AtomicReference<QNode> queueFor(int phase) {
323 return ((phase & 1) == 0) ? evenQ : oddQ;
324 }
325
326 /**
327 * Returns message string for bounds exceptions on arrival.
328 */
329 private String badArrive(long s) {
330 return "Attempted arrival of unregistered party for " +
331 stateToString(s);
332 }
333
334 /**
335 * Returns message string for bounds exceptions on registration.
336 */
337 private String badRegister(long s) {
338 return "Attempt to register more than " +
339 MAX_PARTIES + " parties for " + stateToString(s);
340 }
341
342 /**
343 * Main implementation for methods arrive and arriveAndDeregister.
344 * Manually tuned to speed up and minimize race windows for the
345 * common case of just decrementing unarrived field.
346 *
347 * @param adjust value to subtract from state;
348 * ONE_ARRIVAL for arrive,
349 * ONE_DEREGISTER for arriveAndDeregister
350 */
351 private int doArrive(int adjust) {
352 final Phaser root = this.root;
353 for (;;) {
354 long s = (root == this) ? state : reconcileState();
355 int phase = (int)(s >>> PHASE_SHIFT);
356 if (phase < 0)
357 return phase;
358 int counts = (int)s;
359 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360 if (unarrived <= 0)
361 throw new IllegalStateException(badArrive(s));
362 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363 if (unarrived == 1) {
364 long n = s & PARTIES_MASK; // base of next state
365 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 if (root == this) {
367 if (onAdvance(phase, nextUnarrived))
368 n |= TERMINATION_BIT;
369 else if (nextUnarrived == 0)
370 n |= EMPTY;
371 else
372 n |= nextUnarrived;
373 int nextPhase = (phase + 1) & MAX_PHASE;
374 n |= (long)nextPhase << PHASE_SHIFT;
375 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376 releaseWaiters(phase);
377 }
378 else if (nextUnarrived == 0) { // propagate deregistration
379 phase = parent.doArrive(ONE_DEREGISTER);
380 UNSAFE.compareAndSwapLong(this, stateOffset,
381 s, s | EMPTY);
382 }
383 else
384 phase = parent.doArrive(ONE_ARRIVAL);
385 }
386 return phase;
387 }
388 }
389 }
390
391 /**
392 * Implementation of register, bulkRegister
393 *
394 * @param registrations number to add to both parties and
395 * unarrived fields. Must be greater than zero.
396 */
397 private int doRegister(int registrations) {
398 // adjustment to state
399 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400 final Phaser parent = this.parent;
401 int phase;
402 for (;;) {
403 long s = (parent == null) ? state : reconcileState();
404 int counts = (int)s;
405 int parties = counts >>> PARTIES_SHIFT;
406 int unarrived = counts & UNARRIVED_MASK;
407 if (registrations > MAX_PARTIES - parties)
408 throw new IllegalStateException(badRegister(s));
409 phase = (int)(s >>> PHASE_SHIFT);
410 if (phase < 0)
411 break;
412 if (counts != EMPTY) { // not 1st registration
413 if (parent == null || reconcileState() == s) {
414 if (unarrived == 0) // wait out advance
415 root.internalAwaitAdvance(phase, null);
416 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 s, s + adjust))
418 break;
419 }
420 }
421 else if (parent == null) { // 1st root registration
422 long next = ((long)phase << PHASE_SHIFT) | adjust;
423 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424 break;
425 }
426 else {
427 synchronized (this) { // 1st sub registration
428 if (state == s) { // recheck under lock
429 phase = parent.doRegister(1);
430 if (phase < 0)
431 break;
432 // finish registration whenever parent registration
433 // succeeded, even when racing with termination,
434 // since these are part of the same "transaction".
435 while (!UNSAFE.compareAndSwapLong
436 (this, stateOffset, s,
437 ((long)phase << PHASE_SHIFT) | adjust)) {
438 s = state;
439 phase = (int)(root.state >>> PHASE_SHIFT);
440 // assert (int)s == EMPTY;
441 }
442 break;
443 }
444 }
445 }
446 }
447 return phase;
448 }
449
450 /**
451 * Resolves lagged phase propagation from root if necessary.
452 * Reconciliation normally occurs when root has advanced but
453 * subphasers have not yet done so, in which case they must finish
454 * their own advance by setting unarrived to parties (or if
455 * parties is zero, resetting to unregistered EMPTY state).
456 * However, this method may also be called when "floating"
457 * subphasers with possibly some unarrived parties are merely
458 * catching up to current phase, in which case counts are
459 * unaffected.
460 *
461 * @return reconciled state
462 */
463 private long reconcileState() {
464 final Phaser root = this.root;
465 long s = state;
466 if (root != this) {
467 int phase, u, p;
468 // CAS root phase with current parties; possibly trip unarrived
469 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
470 (int)(s >>> PHASE_SHIFT) &&
471 !UNSAFE.compareAndSwapLong
472 (this, stateOffset, s,
473 s = (((long)phase << PHASE_SHIFT) |
474 (s & PARTIES_MASK) |
475 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
476 ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
477 p : u))))
478 s = state;
479 }
480 return s;
481 }
482
483 /**
484 * Creates a new phaser with no initially registered parties, no
485 * parent, and initial phase number 0. Any thread using this
486 * phaser will need to first register for it.
487 */
488 public Phaser() {
489 this(null, 0);
490 }
491
492 /**
493 * Creates a new phaser with the given number of registered
494 * unarrived parties, no parent, and initial phase number 0.
495 *
496 * @param parties the number of parties required to advance to the
497 * next phase
498 * @throws IllegalArgumentException if parties less than zero
499 * or greater than the maximum number of parties supported
500 */
501 public Phaser(int parties) {
502 this(null, parties);
503 }
504
505 /**
506 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
507 *
508 * @param parent the parent phaser
509 */
510 public Phaser(Phaser parent) {
511 this(parent, 0);
512 }
513
514 /**
515 * Creates a new phaser with the given parent and number of
516 * registered unarrived parties. When the given parent is non-null
517 * and the given number of parties is greater than zero, this
518 * child phaser is registered with its parent.
519 *
520 * @param parent the parent phaser
521 * @param parties the number of parties required to advance to the
522 * next phase
523 * @throws IllegalArgumentException if parties less than zero
524 * or greater than the maximum number of parties supported
525 */
526 public Phaser(Phaser parent, int parties) {
527 if (parties >>> PARTIES_SHIFT != 0)
528 throw new IllegalArgumentException("Illegal number of parties");
529 int phase = 0;
530 this.parent = parent;
531 if (parent != null) {
532 final Phaser root = parent.root;
533 this.root = root;
534 this.evenQ = root.evenQ;
535 this.oddQ = root.oddQ;
536 if (parties != 0)
537 phase = parent.doRegister(1);
538 }
539 else {
540 this.root = this;
541 this.evenQ = new AtomicReference<QNode>();
542 this.oddQ = new AtomicReference<QNode>();
543 }
544 this.state = (parties == 0) ? (long)EMPTY :
545 ((long)phase << PHASE_SHIFT) |
546 ((long)parties << PARTIES_SHIFT) |
547 ((long)parties);
548 }
549
550 /**
551 * Adds a new unarrived party to this phaser. If an ongoing
552 * invocation of {@link #onAdvance} is in progress, this method
553 * may await its completion before returning. If this phaser has
554 * a parent, and this phaser previously had no registered parties,
555 * this child phaser is also registered with its parent. If
556 * this phaser is terminated, the attempt to register has
557 * no effect, and a negative value is returned.
558 *
559 * @return the arrival phase number to which this registration
560 * applied. If this value is negative, then this phaser has
561 * terminated, in which case registration has no effect.
562 * @throws IllegalStateException if attempting to register more
563 * than the maximum supported number of parties
564 */
565 public int register() {
566 return doRegister(1);
567 }
568
569 /**
570 * Adds the given number of new unarrived parties to this phaser.
571 * If an ongoing invocation of {@link #onAdvance} is in progress,
572 * this method may await its completion before returning. If this
573 * phaser has a parent, and the given number of parties is greater
574 * than zero, and this phaser previously had no registered
575 * parties, this child phaser is also registered with its parent.
576 * If this phaser is terminated, the attempt to register has no
577 * effect, and a negative value is returned.
578 *
579 * @param parties the number of additional parties required to
580 * advance to the next phase
581 * @return the arrival phase number to which this registration
582 * applied. If this value is negative, then this phaser has
583 * terminated, in which case registration has no effect.
584 * @throws IllegalStateException if attempting to register more
585 * than the maximum supported number of parties
586 * @throws IllegalArgumentException if {@code parties < 0}
587 */
588 public int bulkRegister(int parties) {
589 if (parties < 0)
590 throw new IllegalArgumentException();
591 if (parties == 0)
592 return getPhase();
593 return doRegister(parties);
594 }
595
596 /**
597 * Arrives at this phaser, without waiting for others to arrive.
598 *
599 * <p>It is a usage error for an unregistered party to invoke this
600 * method. However, this error may result in an {@code
601 * IllegalStateException} only upon some subsequent operation on
602 * this phaser, if ever.
603 *
604 * @return the arrival phase number, or a negative value if terminated
605 * @throws IllegalStateException if not terminated and the number
606 * of unarrived parties would become negative
607 */
608 public int arrive() {
609 return doArrive(ONE_ARRIVAL);
610 }
611
612 /**
613 * Arrives at this phaser and deregisters from it without waiting
614 * for others to arrive. Deregistration reduces the number of
615 * parties required to advance in future phases. If this phaser
616 * has a parent, and deregistration causes this phaser to have
617 * zero parties, this phaser is also deregistered from its parent.
618 *
619 * <p>It is a usage error for an unregistered party to invoke this
620 * method. However, this error may result in an {@code
621 * IllegalStateException} only upon some subsequent operation on
622 * this phaser, if ever.
623 *
624 * @return the arrival phase number, or a negative value if terminated
625 * @throws IllegalStateException if not terminated and the number
626 * of registered or unarrived parties would become negative
627 */
628 public int arriveAndDeregister() {
629 return doArrive(ONE_DEREGISTER);
630 }
631
632 /**
633 * Arrives at this phaser and awaits others. Equivalent in effect
634 * to {@code awaitAdvance(arrive())}. If you need to await with
635 * interruption or timeout, you can arrange this with an analogous
636 * construction using one of the other forms of the {@code
637 * awaitAdvance} method. If instead you need to deregister upon
638 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
639 *
640 * <p>It is a usage error for an unregistered party to invoke this
641 * method. However, this error may result in an {@code
642 * IllegalStateException} only upon some subsequent operation on
643 * this phaser, if ever.
644 *
645 * @return the arrival phase number, or the (negative)
646 * {@linkplain #getPhase() current phase} if terminated
647 * @throws IllegalStateException if not terminated and the number
648 * of unarrived parties would become negative
649 */
650 public int arriveAndAwaitAdvance() {
651 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
652 final Phaser root = this.root;
653 for (;;) {
654 long s = (root == this) ? state : reconcileState();
655 int phase = (int)(s >>> PHASE_SHIFT);
656 if (phase < 0)
657 return phase;
658 int counts = (int)s;
659 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
660 if (unarrived <= 0)
661 throw new IllegalStateException(badArrive(s));
662 if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
663 s -= ONE_ARRIVAL)) {
664 if (unarrived > 1)
665 return root.internalAwaitAdvance(phase, null);
666 if (root != this)
667 return parent.arriveAndAwaitAdvance();
668 long n = s & PARTIES_MASK; // base of next state
669 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
670 if (onAdvance(phase, nextUnarrived))
671 n |= TERMINATION_BIT;
672 else if (nextUnarrived == 0)
673 n |= EMPTY;
674 else
675 n |= nextUnarrived;
676 int nextPhase = (phase + 1) & MAX_PHASE;
677 n |= (long)nextPhase << PHASE_SHIFT;
678 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
679 return (int)(state >>> PHASE_SHIFT); // terminated
680 releaseWaiters(phase);
681 return nextPhase;
682 }
683 }
684 }
685
686 /**
687 * Awaits the phase of this phaser to advance from the given phase
688 * value, returning immediately if the current phase is not equal
689 * to the given phase value or this phaser is terminated.
690 *
691 * @param phase an arrival phase number, or negative value if
692 * terminated; this argument is normally the value returned by a
693 * previous call to {@code arrive} or {@code arriveAndDeregister}.
694 * @return the next arrival phase number, or the argument if it is
695 * negative, or the (negative) {@linkplain #getPhase() current phase}
696 * if terminated
697 */
698 public int awaitAdvance(int phase) {
699 final Phaser root = this.root;
700 long s = (root == this) ? state : reconcileState();
701 int p = (int)(s >>> PHASE_SHIFT);
702 if (phase < 0)
703 return phase;
704 if (p == phase)
705 return root.internalAwaitAdvance(phase, null);
706 return p;
707 }
708
709 /**
710 * Awaits the phase of this phaser to advance from the given phase
711 * value, throwing {@code InterruptedException} if interrupted
712 * while waiting, or returning immediately if the current phase is
713 * not equal to the given phase value or this phaser is
714 * terminated.
715 *
716 * @param phase an arrival phase number, or negative value if
717 * terminated; this argument is normally the value returned by a
718 * previous call to {@code arrive} or {@code arriveAndDeregister}.
719 * @return the next arrival phase number, or the argument if it is
720 * negative, or the (negative) {@linkplain #getPhase() current phase}
721 * if terminated
722 * @throws InterruptedException if thread interrupted while waiting
723 */
724 public int awaitAdvanceInterruptibly(int phase)
725 throws InterruptedException {
726 final Phaser root = this.root;
727 long s = (root == this) ? state : reconcileState();
728 int p = (int)(s >>> PHASE_SHIFT);
729 if (phase < 0)
730 return phase;
731 if (p == phase) {
732 QNode node = new QNode(this, phase, true, false, 0L);
733 p = root.internalAwaitAdvance(phase, node);
734 if (node.wasInterrupted)
735 throw new InterruptedException();
736 }
737 return p;
738 }
739
740 /**
741 * Awaits the phase of this phaser to advance from the given phase
742 * value or the given timeout to elapse, throwing {@code
743 * InterruptedException} if interrupted while waiting, or
744 * returning immediately if the current phase is not equal to the
745 * given phase value or this phaser is terminated.
746 *
747 * @param phase an arrival phase number, or negative value if
748 * terminated; this argument is normally the value returned by a
749 * previous call to {@code arrive} or {@code arriveAndDeregister}.
750 * @param timeout how long to wait before giving up, in units of
751 * {@code unit}
752 * @param unit a {@code TimeUnit} determining how to interpret the
753 * {@code timeout} parameter
754 * @return the next arrival phase number, or the argument if it is
755 * negative, or the (negative) {@linkplain #getPhase() current phase}
756 * if terminated
757 * @throws InterruptedException if thread interrupted while waiting
758 * @throws TimeoutException if timed out while waiting
759 */
760 public int awaitAdvanceInterruptibly(int phase,
761 long timeout, TimeUnit unit)
762 throws InterruptedException, TimeoutException {
763 long nanos = unit.toNanos(timeout);
764 final Phaser root = this.root;
765 long s = (root == this) ? state : reconcileState();
766 int p = (int)(s >>> PHASE_SHIFT);
767 if (phase < 0)
768 return phase;
769 if (p == phase) {
770 QNode node = new QNode(this, phase, true, true, nanos);
771 p = root.internalAwaitAdvance(phase, node);
772 if (node.wasInterrupted)
773 throw new InterruptedException();
774 else if (p == phase)
775 throw new TimeoutException();
776 }
777 return p;
778 }
779
780 /**
781 * Forces this phaser to enter termination state. Counts of
782 * registered parties are unaffected. If this phaser is a member
783 * of a tiered set of phasers, then all of the phasers in the set
784 * are terminated. If this phaser is already terminated, this
785 * method has no effect. This method may be useful for
786 * coordinating recovery after one or more tasks encounter
787 * unexpected exceptions.
788 */
789 public void forceTermination() {
790 // Only need to change root state
791 final Phaser root = this.root;
792 long s;
793 while ((s = root.state) >= 0) {
794 if (UNSAFE.compareAndSwapLong(root, stateOffset,
795 s, s | TERMINATION_BIT)) {
796 // signal all threads
797 releaseWaiters(0); // Waiters on evenQ
798 releaseWaiters(1); // Waiters on oddQ
799 return;
800 }
801 }
802 }
803
804 /**
805 * Returns the current phase number. The maximum phase number is
806 * {@code Integer.MAX_VALUE}, after which it restarts at
807 * zero. Upon termination, the phase number is negative,
808 * in which case the prevailing phase prior to termination
809 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
810 *
811 * @return the phase number, or a negative value if terminated
812 */
813 public final int getPhase() {
814 return (int)(root.state >>> PHASE_SHIFT);
815 }
816
817 /**
818 * Returns the number of parties registered at this phaser.
819 *
820 * @return the number of parties
821 */
822 public int getRegisteredParties() {
823 return partiesOf(state);
824 }
825
826 /**
827 * Returns the number of registered parties that have arrived at
828 * the current phase of this phaser. If this phaser has terminated,
829 * the returned value is meaningless and arbitrary.
830 *
831 * @return the number of arrived parties
832 */
833 public int getArrivedParties() {
834 return arrivedOf(reconcileState());
835 }
836
837 /**
838 * Returns the number of registered parties that have not yet
839 * arrived at the current phase of this phaser. If this phaser has
840 * terminated, the returned value is meaningless and arbitrary.
841 *
842 * @return the number of unarrived parties
843 */
844 public int getUnarrivedParties() {
845 return unarrivedOf(reconcileState());
846 }
847
848 /**
849 * Returns the parent of this phaser, or {@code null} if none.
850 *
851 * @return the parent of this phaser, or {@code null} if none
852 */
853 public Phaser getParent() {
854 return parent;
855 }
856
857 /**
858 * Returns the root ancestor of this phaser, which is the same as
859 * this phaser if it has no parent.
860 *
861 * @return the root ancestor of this phaser
862 */
863 public Phaser getRoot() {
864 return root;
865 }
866
867 /**
868 * Returns {@code true} if this phaser has been terminated.
869 *
870 * @return {@code true} if this phaser has been terminated
871 */
872 public boolean isTerminated() {
873 return root.state < 0L;
874 }
875
876 /**
877 * Overridable method to perform an action upon impending phase
878 * advance, and to control termination. This method is invoked
879 * upon arrival of the party advancing this phaser (when all other
880 * waiting parties are dormant). If this method returns {@code
881 * true}, this phaser will be set to a final termination state
882 * upon advance, and subsequent calls to {@link #isTerminated}
883 * will return true. Any (unchecked) Exception or Error thrown by
884 * an invocation of this method is propagated to the party
885 * attempting to advance this phaser, in which case no advance
886 * occurs.
887 *
888 * <p>The arguments to this method provide the state of the phaser
889 * prevailing for the current transition. The effects of invoking
890 * arrival, registration, and waiting methods on this phaser from
891 * within {@code onAdvance} are unspecified and should not be
892 * relied on.
893 *
894 * <p>If this phaser is a member of a tiered set of phasers, then
895 * {@code onAdvance} is invoked only for its root phaser on each
896 * advance.
897 *
898 * <p>To support the most common use cases, the default
899 * implementation of this method returns {@code true} when the
900 * number of registered parties has become zero as the result of a
901 * party invoking {@code arriveAndDeregister}. You can disable
902 * this behavior, thus enabling continuation upon future
903 * registrations, by overriding this method to always return
904 * {@code false}:
905 *
906 * <pre> {@code
907 * Phaser phaser = new Phaser() {
908 * protected boolean onAdvance(int phase, int parties) { return false; }
909 * }}</pre>
910 *
911 * @param phase the current phase number on entry to this method,
912 * before this phaser is advanced
913 * @param registeredParties the current number of registered parties
914 * @return {@code true} if this phaser should terminate
915 */
916 protected boolean onAdvance(int phase, int registeredParties) {
917 return registeredParties == 0;
918 }
919
920 /**
921 * Returns a string identifying this phaser, as well as its
922 * state. The state, in brackets, includes the String {@code
923 * "phase = "} followed by the phase number, {@code "parties = "}
924 * followed by the number of registered parties, and {@code
925 * "arrived = "} followed by the number of arrived parties.
926 *
927 * @return a string identifying this phaser, as well as its state
928 */
929 public String toString() {
930 return stateToString(reconcileState());
931 }
932
933 /**
934 * Implementation of toString and string-based error messages
935 */
936 private String stateToString(long s) {
937 return super.toString() +
938 "[phase = " + phaseOf(s) +
939 " parties = " + partiesOf(s) +
940 " arrived = " + arrivedOf(s) + "]";
941 }
942
943 // Waiting mechanics
944
945 /**
946 * Removes and signals threads from queue for phase.
947 */
948 private void releaseWaiters(int phase) {
949 QNode q; // first element of queue
950 Thread t; // its thread
951 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
952 while ((q = head.get()) != null &&
953 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
954 if (head.compareAndSet(q, q.next) &&
955 (t = q.thread) != null) {
956 q.thread = null;
957 LockSupport.unpark(t);
958 }
959 }
960 }
961
962 /**
963 * Variant of releaseWaiters that additionally tries to remove any
964 * nodes no longer waiting for advance due to timeout or
965 * interrupt. Currently, nodes are removed only if they are at
966 * head of queue, which suffices to reduce memory footprint in
967 * most usages.
968 *
969 * @return current phase on exit
970 */
971 private int abortWait(int phase) {
972 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
973 for (;;) {
974 Thread t;
975 QNode q = head.get();
976 int p = (int)(root.state >>> PHASE_SHIFT);
977 if (q == null || ((t = q.thread) != null && q.phase == p))
978 return p;
979 if (head.compareAndSet(q, q.next) && t != null) {
980 q.thread = null;
981 LockSupport.unpark(t);
982 }
983 }
984 }
985
986 /** The number of CPUs, for spin control */
987 private static final int NCPU = Runtime.getRuntime().availableProcessors();
988
989 /**
990 * The number of times to spin before blocking while waiting for
991 * advance, per arrival while waiting. On multiprocessors, fully
992 * blocking and waking up a large number of threads all at once is
993 * usually a very slow process, so we use rechargeable spins to
994 * avoid it when threads regularly arrive: When a thread in
995 * internalAwaitAdvance notices another arrival before blocking,
996 * and there appear to be enough CPUs available, it spins
997 * SPINS_PER_ARRIVAL more times before blocking. The value trades
998 * off good-citizenship vs big unnecessary slowdowns.
999 */
1000 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
1001
1002 /**
1003 * Possibly blocks and waits for phase to advance unless aborted.
1004 * Call only on root phaser.
1005 *
1006 * @param phase current phase
1007 * @param node if non-null, the wait node to track interrupt and timeout;
1008 * if null, denotes noninterruptible wait
1009 * @return current phase
1010 */
1011 private int internalAwaitAdvance(int phase, QNode node) {
1012 // assert root == this;
1013 releaseWaiters(phase-1); // ensure old queue clean
1014 boolean queued = false; // true when node is enqueued
1015 int lastUnarrived = 0; // to increase spins upon change
1016 int spins = SPINS_PER_ARRIVAL;
1017 long s;
1018 int p;
1019 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1020 if (node == null) { // spinning in noninterruptible mode
1021 int unarrived = (int)s & UNARRIVED_MASK;
1022 if (unarrived != lastUnarrived &&
1023 (lastUnarrived = unarrived) < NCPU)
1024 spins += SPINS_PER_ARRIVAL;
1025 boolean interrupted = Thread.interrupted();
1026 if (interrupted || --spins < 0) { // need node to record intr
1027 node = new QNode(this, phase, false, false, 0L);
1028 node.wasInterrupted = interrupted;
1029 }
1030 }
1031 else if (node.isReleasable()) // done or aborted
1032 break;
1033 else if (!queued) { // push onto queue
1034 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1035 QNode q = node.next = head.get();
1036 if ((q == null || q.phase == phase) &&
1037 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1038 queued = head.compareAndSet(q, node);
1039 }
1040 else {
1041 try {
1042 ForkJoinPool.managedBlock(node);
1043 } catch (InterruptedException ie) {
1044 node.wasInterrupted = true;
1045 }
1046 }
1047 }
1048
1049 if (node != null) {
1050 if (node.thread != null)
1051 node.thread = null; // avoid need for unpark()
1052 if (node.wasInterrupted && !node.interruptible)
1053 Thread.currentThread().interrupt();
1054 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1055 return abortWait(phase); // possibly clean up on abort
1056 }
1057 releaseWaiters(phase);
1058 return p;
1059 }
1060
1061 /**
1062 * Wait nodes for Treiber stack representing wait queue
1063 */
1064 static final class QNode implements ForkJoinPool.ManagedBlocker {
1065 final Phaser phaser;
1066 final int phase;
1067 final boolean interruptible;
1068 final boolean timed;
1069 boolean wasInterrupted;
1070 long nanos;
1071 long lastTime;
1072 volatile Thread thread; // nulled to cancel wait
1073 QNode next;
1074
1075 QNode(Phaser phaser, int phase, boolean interruptible,
1076 boolean timed, long nanos) {
1077 this.phaser = phaser;
1078 this.phase = phase;
1079 this.interruptible = interruptible;
1080 this.nanos = nanos;
1081 this.timed = timed;
1082 this.lastTime = timed ? System.nanoTime() : 0L;
1083 thread = Thread.currentThread();
1084 }
1085
1086 public boolean isReleasable() {
1087 if (thread == null)
1088 return true;
1089 if (phaser.getPhase() != phase) {
1090 thread = null;
1091 return true;
1092 }
1093 if (Thread.interrupted())
1094 wasInterrupted = true;
1095 if (wasInterrupted && interruptible) {
1096 thread = null;
1097 return true;
1098 }
1099 if (timed) {
1100 if (nanos > 0L) {
1101 long now = System.nanoTime();
1102 nanos -= now - lastTime;
1103 lastTime = now;
1104 }
1105 if (nanos <= 0L) {
1106 thread = null;
1107 return true;
1108 }
1109 }
1110 return false;
1111 }
1112
1113 public boolean block() {
1114 if (isReleasable())
1115 return true;
1116 else if (!timed)
1117 LockSupport.park(this);
1118 else if (nanos > 0)
1119 LockSupport.parkNanos(this, nanos);
1120 return isReleasable();
1121 }
1122 }
1123
1124 // Unsafe mechanics
1125
1126 private static final sun.misc.Unsafe UNSAFE;
1127 private static final long stateOffset;
1128 static {
1129 try {
1130 UNSAFE = getUnsafe();
1131 Class<?> k = Phaser.class;
1132 stateOffset = UNSAFE.objectFieldOffset
1133 (k.getDeclaredField("state"));
1134 } catch (Exception e) {
1135 throw new Error(e);
1136 }
1137 }
1138
1139 /**
1140 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1141 * Replace with a simple call to Unsafe.getUnsafe when integrating
1142 * into a jdk.
1143 *
1144 * @return a sun.misc.Unsafe
1145 */
1146 private static sun.misc.Unsafe getUnsafe() {
1147 try {
1148 return sun.misc.Unsafe.getUnsafe();
1149 } catch (SecurityException se) {
1150 try {
1151 return java.security.AccessController.doPrivileged
1152 (new java.security
1153 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1154 public sun.misc.Unsafe run() throws Exception {
1155 java.lang.reflect.Field f = sun.misc
1156 .Unsafe.class.getDeclaredField("theUnsafe");
1157 f.setAccessible(true);
1158 return (sun.misc.Unsafe) f.get(null);
1159 }});
1160 } catch (java.security.PrivilegedActionException e) {
1161 throw new RuntimeException("Could not initialize intrinsics",
1162 e.getCause());
1163 }
1164 }
1165 }
1166 }