ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.81
Committed: Fri Jul 15 18:49:12 2016 UTC (7 years, 9 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.80: +0 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li><b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (final Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 * <p>To create a set of {@code n} tasks using a tree of phasers, you
197 * could use code of the following form, assuming a Task class with a
198 * constructor accepting a {@code Phaser} that it registers with upon
199 * construction. After invocation of {@code build(new Task[n], 0, n,
200 * new Phaser())}, these tasks could then be started, for example by
201 * submitting to a pool:
202 *
203 * <pre> {@code
204 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
205 * if (hi - lo > TASKS_PER_PHASER) {
206 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
207 * int j = Math.min(i + TASKS_PER_PHASER, hi);
208 * build(tasks, i, j, new Phaser(ph));
209 * }
210 * } else {
211 * for (int i = lo; i < hi; ++i)
212 * tasks[i] = new Task(ph);
213 * // assumes new Task(ph) performs ph.register()
214 * }
215 * }}</pre>
216 *
217 * The best value of {@code TASKS_PER_PHASER} depends mainly on
218 * expected synchronization rates. A value as low as four may
219 * be appropriate for extremely small per-phase task bodies (thus
220 * high rates), or up to hundreds for extremely large ones.
221 *
222 * <p><b>Implementation notes</b>: This implementation restricts the
223 * maximum number of parties to 65535. Attempts to register additional
224 * parties result in {@code IllegalStateException}. However, you can and
225 * should create tiered phasers to accommodate arbitrarily large sets
226 * of participants.
227 *
228 * @since 1.7
229 * @author Doug Lea
230 */
231 public class Phaser {
232 /*
233 * This class implements an extension of X10 "clocks". Thanks to
234 * Vijay Saraswat for the idea, and to Vivek Sarkar for
235 * enhancements to extend functionality.
236 */
237
238 /**
239 * Primary state representation, holding four bit-fields:
240 *
241 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
242 * parties -- the number of parties to wait (bits 16-31)
243 * phase -- the generation of the barrier (bits 32-62)
244 * terminated -- set if barrier is terminated (bit 63 / sign)
245 *
246 * Except that a phaser with no registered parties is
247 * distinguished by the otherwise illegal state of having zero
248 * parties and one unarrived parties (encoded as EMPTY below).
249 *
250 * To efficiently maintain atomicity, these values are packed into
251 * a single (atomic) long. Good performance relies on keeping
252 * state decoding and encoding simple, and keeping race windows
253 * short.
254 *
255 * All state updates are performed via CAS except initial
256 * registration of a sub-phaser (i.e., one with a non-null
257 * parent). In this (relatively rare) case, we use built-in
258 * synchronization to lock while first registering with its
259 * parent.
260 *
261 * The phase of a subphaser is allowed to lag that of its
262 * ancestors until it is actually accessed -- see method
263 * reconcileState.
264 */
265 private volatile long state;
266
267 private static final int MAX_PARTIES = 0xffff;
268 private static final int MAX_PHASE = Integer.MAX_VALUE;
269 private static final int PARTIES_SHIFT = 16;
270 private static final int PHASE_SHIFT = 32;
271 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
272 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
273 private static final long COUNTS_MASK = 0xffffffffL;
274 private static final long TERMINATION_BIT = 1L << 63;
275
276 // some special values
277 private static final int ONE_ARRIVAL = 1;
278 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
280 private static final int EMPTY = 1;
281
282 // The following unpacking methods are usually manually inlined
283
284 private static int unarrivedOf(long s) {
285 int counts = (int)s;
286 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287 }
288
289 private static int partiesOf(long s) {
290 return (int)s >>> PARTIES_SHIFT;
291 }
292
293 private static int phaseOf(long s) {
294 return (int)(s >>> PHASE_SHIFT);
295 }
296
297 private static int arrivedOf(long s) {
298 int counts = (int)s;
299 return (counts == EMPTY) ? 0 :
300 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 }
302
303 /**
304 * The parent of this phaser, or null if none
305 */
306 private final Phaser parent;
307
308 /**
309 * The root of phaser tree. Equals this if not in a tree.
310 */
311 private final Phaser root;
312
313 /**
314 * Heads of Treiber stacks for waiting threads. To eliminate
315 * contention when releasing some threads while adding others, we
316 * use two of them, alternating across even and odd phases.
317 * Subphasers share queues with root to speed up releases.
318 */
319 private final AtomicReference<QNode> evenQ;
320 private final AtomicReference<QNode> oddQ;
321
322 private AtomicReference<QNode> queueFor(int phase) {
323 return ((phase & 1) == 0) ? evenQ : oddQ;
324 }
325
326 /**
327 * Returns message string for bounds exceptions on arrival.
328 */
329 private String badArrive(long s) {
330 return "Attempted arrival of unregistered party for " +
331 stateToString(s);
332 }
333
334 /**
335 * Returns message string for bounds exceptions on registration.
336 */
337 private String badRegister(long s) {
338 return "Attempt to register more than " +
339 MAX_PARTIES + " parties for " + stateToString(s);
340 }
341
342 /**
343 * Main implementation for methods arrive and arriveAndDeregister.
344 * Manually tuned to speed up and minimize race windows for the
345 * common case of just decrementing unarrived field.
346 *
347 * @param adjust value to subtract from state;
348 * ONE_ARRIVAL for arrive,
349 * ONE_DEREGISTER for arriveAndDeregister
350 */
351 private int doArrive(int adjust) {
352 final Phaser root = this.root;
353 for (;;) {
354 long s = (root == this) ? state : reconcileState();
355 int phase = (int)(s >>> PHASE_SHIFT);
356 if (phase < 0)
357 return phase;
358 int counts = (int)s;
359 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360 if (unarrived <= 0)
361 throw new IllegalStateException(badArrive(s));
362 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363 if (unarrived == 1) {
364 long n = s & PARTIES_MASK; // base of next state
365 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 if (root == this) {
367 if (onAdvance(phase, nextUnarrived))
368 n |= TERMINATION_BIT;
369 else if (nextUnarrived == 0)
370 n |= EMPTY;
371 else
372 n |= nextUnarrived;
373 int nextPhase = (phase + 1) & MAX_PHASE;
374 n |= (long)nextPhase << PHASE_SHIFT;
375 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376 releaseWaiters(phase);
377 }
378 else if (nextUnarrived == 0) { // propagate deregistration
379 phase = parent.doArrive(ONE_DEREGISTER);
380 UNSAFE.compareAndSwapLong(this, stateOffset,
381 s, s | EMPTY);
382 }
383 else
384 phase = parent.doArrive(ONE_ARRIVAL);
385 }
386 return phase;
387 }
388 }
389 }
390
391 /**
392 * Implementation of register, bulkRegister
393 *
394 * @param registrations number to add to both parties and
395 * unarrived fields. Must be greater than zero.
396 */
397 private int doRegister(int registrations) {
398 // adjustment to state
399 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400 final Phaser parent = this.parent;
401 int phase;
402 for (;;) {
403 long s = (parent == null) ? state : reconcileState();
404 int counts = (int)s;
405 int parties = counts >>> PARTIES_SHIFT;
406 int unarrived = counts & UNARRIVED_MASK;
407 if (registrations > MAX_PARTIES - parties)
408 throw new IllegalStateException(badRegister(s));
409 phase = (int)(s >>> PHASE_SHIFT);
410 if (phase < 0)
411 break;
412 if (counts != EMPTY) { // not 1st registration
413 if (parent == null || reconcileState() == s) {
414 if (unarrived == 0) // wait out advance
415 root.internalAwaitAdvance(phase, null);
416 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 s, s + adjust))
418 break;
419 }
420 }
421 else if (parent == null) { // 1st root registration
422 long next = ((long)phase << PHASE_SHIFT) | adjust;
423 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424 break;
425 }
426 else {
427 synchronized (this) { // 1st sub registration
428 if (state == s) { // recheck under lock
429 phase = parent.doRegister(1);
430 if (phase < 0)
431 break;
432 // finish registration whenever parent registration
433 // succeeded, even when racing with termination,
434 // since these are part of the same "transaction".
435 while (!UNSAFE.compareAndSwapLong
436 (this, stateOffset, s,
437 ((long)phase << PHASE_SHIFT) | adjust)) {
438 s = state;
439 phase = (int)(root.state >>> PHASE_SHIFT);
440 // assert (int)s == EMPTY;
441 }
442 break;
443 }
444 }
445 }
446 }
447 return phase;
448 }
449
450 /**
451 * Resolves lagged phase propagation from root if necessary.
452 * Reconciliation normally occurs when root has advanced but
453 * subphasers have not yet done so, in which case they must finish
454 * their own advance by setting unarrived to parties (or if
455 * parties is zero, resetting to unregistered EMPTY state).
456 *
457 * @return reconciled state
458 */
459 private long reconcileState() {
460 final Phaser root = this.root;
461 long s = state;
462 if (root != this) {
463 int phase, p;
464 // CAS to root phase with current parties, tripping unarrived
465 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
466 (int)(s >>> PHASE_SHIFT) &&
467 !UNSAFE.compareAndSwapLong
468 (this, stateOffset, s,
469 s = (((long)phase << PHASE_SHIFT) |
470 ((phase < 0) ? (s & COUNTS_MASK) :
471 (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
472 ((s & PARTIES_MASK) | p))))))
473 s = state;
474 }
475 return s;
476 }
477
478 /**
479 * Creates a new phaser with no initially registered parties, no
480 * parent, and initial phase number 0. Any thread using this
481 * phaser will need to first register for it.
482 */
483 public Phaser() {
484 this(null, 0);
485 }
486
487 /**
488 * Creates a new phaser with the given number of registered
489 * unarrived parties, no parent, and initial phase number 0.
490 *
491 * @param parties the number of parties required to advance to the
492 * next phase
493 * @throws IllegalArgumentException if parties less than zero
494 * or greater than the maximum number of parties supported
495 */
496 public Phaser(int parties) {
497 this(null, parties);
498 }
499
500 /**
501 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
502 *
503 * @param parent the parent phaser
504 */
505 public Phaser(Phaser parent) {
506 this(parent, 0);
507 }
508
509 /**
510 * Creates a new phaser with the given parent and number of
511 * registered unarrived parties. When the given parent is non-null
512 * and the given number of parties is greater than zero, this
513 * child phaser is registered with its parent.
514 *
515 * @param parent the parent phaser
516 * @param parties the number of parties required to advance to the
517 * next phase
518 * @throws IllegalArgumentException if parties less than zero
519 * or greater than the maximum number of parties supported
520 */
521 public Phaser(Phaser parent, int parties) {
522 if (parties >>> PARTIES_SHIFT != 0)
523 throw new IllegalArgumentException("Illegal number of parties");
524 int phase = 0;
525 this.parent = parent;
526 if (parent != null) {
527 final Phaser root = parent.root;
528 this.root = root;
529 this.evenQ = root.evenQ;
530 this.oddQ = root.oddQ;
531 if (parties != 0)
532 phase = parent.doRegister(1);
533 }
534 else {
535 this.root = this;
536 this.evenQ = new AtomicReference<QNode>();
537 this.oddQ = new AtomicReference<QNode>();
538 }
539 this.state = (parties == 0) ? (long)EMPTY :
540 ((long)phase << PHASE_SHIFT) |
541 ((long)parties << PARTIES_SHIFT) |
542 ((long)parties);
543 }
544
545 /**
546 * Adds a new unarrived party to this phaser. If an ongoing
547 * invocation of {@link #onAdvance} is in progress, this method
548 * may await its completion before returning. If this phaser has
549 * a parent, and this phaser previously had no registered parties,
550 * this child phaser is also registered with its parent. If
551 * this phaser is terminated, the attempt to register has
552 * no effect, and a negative value is returned.
553 *
554 * @return the arrival phase number to which this registration
555 * applied. If this value is negative, then this phaser has
556 * terminated, in which case registration has no effect.
557 * @throws IllegalStateException if attempting to register more
558 * than the maximum supported number of parties
559 */
560 public int register() {
561 return doRegister(1);
562 }
563
564 /**
565 * Adds the given number of new unarrived parties to this phaser.
566 * If an ongoing invocation of {@link #onAdvance} is in progress,
567 * this method may await its completion before returning. If this
568 * phaser has a parent, and the given number of parties is greater
569 * than zero, and this phaser previously had no registered
570 * parties, this child phaser is also registered with its parent.
571 * If this phaser is terminated, the attempt to register has no
572 * effect, and a negative value is returned.
573 *
574 * @param parties the number of additional parties required to
575 * advance to the next phase
576 * @return the arrival phase number to which this registration
577 * applied. If this value is negative, then this phaser has
578 * terminated, in which case registration has no effect.
579 * @throws IllegalStateException if attempting to register more
580 * than the maximum supported number of parties
581 * @throws IllegalArgumentException if {@code parties < 0}
582 */
583 public int bulkRegister(int parties) {
584 if (parties < 0)
585 throw new IllegalArgumentException();
586 if (parties == 0)
587 return getPhase();
588 return doRegister(parties);
589 }
590
591 /**
592 * Arrives at this phaser, without waiting for others to arrive.
593 *
594 * <p>It is a usage error for an unregistered party to invoke this
595 * method. However, this error may result in an {@code
596 * IllegalStateException} only upon some subsequent operation on
597 * this phaser, if ever.
598 *
599 * @return the arrival phase number, or a negative value if terminated
600 * @throws IllegalStateException if not terminated and the number
601 * of unarrived parties would become negative
602 */
603 public int arrive() {
604 return doArrive(ONE_ARRIVAL);
605 }
606
607 /**
608 * Arrives at this phaser and deregisters from it without waiting
609 * for others to arrive. Deregistration reduces the number of
610 * parties required to advance in future phases. If this phaser
611 * has a parent, and deregistration causes this phaser to have
612 * zero parties, this phaser is also deregistered from its parent.
613 *
614 * <p>It is a usage error for an unregistered party to invoke this
615 * method. However, this error may result in an {@code
616 * IllegalStateException} only upon some subsequent operation on
617 * this phaser, if ever.
618 *
619 * @return the arrival phase number, or a negative value if terminated
620 * @throws IllegalStateException if not terminated and the number
621 * of registered or unarrived parties would become negative
622 */
623 public int arriveAndDeregister() {
624 return doArrive(ONE_DEREGISTER);
625 }
626
627 /**
628 * Arrives at this phaser and awaits others. Equivalent in effect
629 * to {@code awaitAdvance(arrive())}. If you need to await with
630 * interruption or timeout, you can arrange this with an analogous
631 * construction using one of the other forms of the {@code
632 * awaitAdvance} method. If instead you need to deregister upon
633 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
634 *
635 * <p>It is a usage error for an unregistered party to invoke this
636 * method. However, this error may result in an {@code
637 * IllegalStateException} only upon some subsequent operation on
638 * this phaser, if ever.
639 *
640 * @return the arrival phase number, or the (negative)
641 * {@linkplain #getPhase() current phase} if terminated
642 * @throws IllegalStateException if not terminated and the number
643 * of unarrived parties would become negative
644 */
645 public int arriveAndAwaitAdvance() {
646 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
647 final Phaser root = this.root;
648 for (;;) {
649 long s = (root == this) ? state : reconcileState();
650 int phase = (int)(s >>> PHASE_SHIFT);
651 if (phase < 0)
652 return phase;
653 int counts = (int)s;
654 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
655 if (unarrived <= 0)
656 throw new IllegalStateException(badArrive(s));
657 if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
658 s -= ONE_ARRIVAL)) {
659 if (unarrived > 1)
660 return root.internalAwaitAdvance(phase, null);
661 if (root != this)
662 return parent.arriveAndAwaitAdvance();
663 long n = s & PARTIES_MASK; // base of next state
664 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
665 if (onAdvance(phase, nextUnarrived))
666 n |= TERMINATION_BIT;
667 else if (nextUnarrived == 0)
668 n |= EMPTY;
669 else
670 n |= nextUnarrived;
671 int nextPhase = (phase + 1) & MAX_PHASE;
672 n |= (long)nextPhase << PHASE_SHIFT;
673 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
674 return (int)(state >>> PHASE_SHIFT); // terminated
675 releaseWaiters(phase);
676 return nextPhase;
677 }
678 }
679 }
680
681 /**
682 * Awaits the phase of this phaser to advance from the given phase
683 * value, returning immediately if the current phase is not equal
684 * to the given phase value or this phaser is terminated.
685 *
686 * @param phase an arrival phase number, or negative value if
687 * terminated; this argument is normally the value returned by a
688 * previous call to {@code arrive} or {@code arriveAndDeregister}.
689 * @return the next arrival phase number, or the argument if it is
690 * negative, or the (negative) {@linkplain #getPhase() current phase}
691 * if terminated
692 */
693 public int awaitAdvance(int phase) {
694 final Phaser root = this.root;
695 long s = (root == this) ? state : reconcileState();
696 int p = (int)(s >>> PHASE_SHIFT);
697 if (phase < 0)
698 return phase;
699 if (p == phase)
700 return root.internalAwaitAdvance(phase, null);
701 return p;
702 }
703
704 /**
705 * Awaits the phase of this phaser to advance from the given phase
706 * value, throwing {@code InterruptedException} if interrupted
707 * while waiting, or returning immediately if the current phase is
708 * not equal to the given phase value or this phaser is
709 * terminated.
710 *
711 * @param phase an arrival phase number, or negative value if
712 * terminated; this argument is normally the value returned by a
713 * previous call to {@code arrive} or {@code arriveAndDeregister}.
714 * @return the next arrival phase number, or the argument if it is
715 * negative, or the (negative) {@linkplain #getPhase() current phase}
716 * if terminated
717 * @throws InterruptedException if thread interrupted while waiting
718 */
719 public int awaitAdvanceInterruptibly(int phase)
720 throws InterruptedException {
721 final Phaser root = this.root;
722 long s = (root == this) ? state : reconcileState();
723 int p = (int)(s >>> PHASE_SHIFT);
724 if (phase < 0)
725 return phase;
726 if (p == phase) {
727 QNode node = new QNode(this, phase, true, false, 0L);
728 p = root.internalAwaitAdvance(phase, node);
729 if (node.wasInterrupted)
730 throw new InterruptedException();
731 }
732 return p;
733 }
734
735 /**
736 * Awaits the phase of this phaser to advance from the given phase
737 * value or the given timeout to elapse, throwing {@code
738 * InterruptedException} if interrupted while waiting, or
739 * returning immediately if the current phase is not equal to the
740 * given phase value or this phaser is terminated.
741 *
742 * @param phase an arrival phase number, or negative value if
743 * terminated; this argument is normally the value returned by a
744 * previous call to {@code arrive} or {@code arriveAndDeregister}.
745 * @param timeout how long to wait before giving up, in units of
746 * {@code unit}
747 * @param unit a {@code TimeUnit} determining how to interpret the
748 * {@code timeout} parameter
749 * @return the next arrival phase number, or the argument if it is
750 * negative, or the (negative) {@linkplain #getPhase() current phase}
751 * if terminated
752 * @throws InterruptedException if thread interrupted while waiting
753 * @throws TimeoutException if timed out while waiting
754 */
755 public int awaitAdvanceInterruptibly(int phase,
756 long timeout, TimeUnit unit)
757 throws InterruptedException, TimeoutException {
758 long nanos = unit.toNanos(timeout);
759 final Phaser root = this.root;
760 long s = (root == this) ? state : reconcileState();
761 int p = (int)(s >>> PHASE_SHIFT);
762 if (phase < 0)
763 return phase;
764 if (p == phase) {
765 QNode node = new QNode(this, phase, true, true, nanos);
766 p = root.internalAwaitAdvance(phase, node);
767 if (node.wasInterrupted)
768 throw new InterruptedException();
769 else if (p == phase)
770 throw new TimeoutException();
771 }
772 return p;
773 }
774
775 /**
776 * Forces this phaser to enter termination state. Counts of
777 * registered parties are unaffected. If this phaser is a member
778 * of a tiered set of phasers, then all of the phasers in the set
779 * are terminated. If this phaser is already terminated, this
780 * method has no effect. This method may be useful for
781 * coordinating recovery after one or more tasks encounter
782 * unexpected exceptions.
783 */
784 public void forceTermination() {
785 // Only need to change root state
786 final Phaser root = this.root;
787 long s;
788 while ((s = root.state) >= 0) {
789 if (UNSAFE.compareAndSwapLong(root, stateOffset,
790 s, s | TERMINATION_BIT)) {
791 // signal all threads
792 releaseWaiters(0); // Waiters on evenQ
793 releaseWaiters(1); // Waiters on oddQ
794 return;
795 }
796 }
797 }
798
799 /**
800 * Returns the current phase number. The maximum phase number is
801 * {@code Integer.MAX_VALUE}, after which it restarts at
802 * zero. Upon termination, the phase number is negative,
803 * in which case the prevailing phase prior to termination
804 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
805 *
806 * @return the phase number, or a negative value if terminated
807 */
808 public final int getPhase() {
809 return (int)(root.state >>> PHASE_SHIFT);
810 }
811
812 /**
813 * Returns the number of parties registered at this phaser.
814 *
815 * @return the number of parties
816 */
817 public int getRegisteredParties() {
818 return partiesOf(state);
819 }
820
821 /**
822 * Returns the number of registered parties that have arrived at
823 * the current phase of this phaser. If this phaser has terminated,
824 * the returned value is meaningless and arbitrary.
825 *
826 * @return the number of arrived parties
827 */
828 public int getArrivedParties() {
829 return arrivedOf(reconcileState());
830 }
831
832 /**
833 * Returns the number of registered parties that have not yet
834 * arrived at the current phase of this phaser. If this phaser has
835 * terminated, the returned value is meaningless and arbitrary.
836 *
837 * @return the number of unarrived parties
838 */
839 public int getUnarrivedParties() {
840 return unarrivedOf(reconcileState());
841 }
842
843 /**
844 * Returns the parent of this phaser, or {@code null} if none.
845 *
846 * @return the parent of this phaser, or {@code null} if none
847 */
848 public Phaser getParent() {
849 return parent;
850 }
851
852 /**
853 * Returns the root ancestor of this phaser, which is the same as
854 * this phaser if it has no parent.
855 *
856 * @return the root ancestor of this phaser
857 */
858 public Phaser getRoot() {
859 return root;
860 }
861
862 /**
863 * Returns {@code true} if this phaser has been terminated.
864 *
865 * @return {@code true} if this phaser has been terminated
866 */
867 public boolean isTerminated() {
868 return root.state < 0L;
869 }
870
871 /**
872 * Overridable method to perform an action upon impending phase
873 * advance, and to control termination. This method is invoked
874 * upon arrival of the party advancing this phaser (when all other
875 * waiting parties are dormant). If this method returns {@code
876 * true}, this phaser will be set to a final termination state
877 * upon advance, and subsequent calls to {@link #isTerminated}
878 * will return true. Any (unchecked) Exception or Error thrown by
879 * an invocation of this method is propagated to the party
880 * attempting to advance this phaser, in which case no advance
881 * occurs.
882 *
883 * <p>The arguments to this method provide the state of the phaser
884 * prevailing for the current transition. The effects of invoking
885 * arrival, registration, and waiting methods on this phaser from
886 * within {@code onAdvance} are unspecified and should not be
887 * relied on.
888 *
889 * <p>If this phaser is a member of a tiered set of phasers, then
890 * {@code onAdvance} is invoked only for its root phaser on each
891 * advance.
892 *
893 * <p>To support the most common use cases, the default
894 * implementation of this method returns {@code true} when the
895 * number of registered parties has become zero as the result of a
896 * party invoking {@code arriveAndDeregister}. You can disable
897 * this behavior, thus enabling continuation upon future
898 * registrations, by overriding this method to always return
899 * {@code false}:
900 *
901 * <pre> {@code
902 * Phaser phaser = new Phaser() {
903 * protected boolean onAdvance(int phase, int parties) { return false; }
904 * }}</pre>
905 *
906 * @param phase the current phase number on entry to this method,
907 * before this phaser is advanced
908 * @param registeredParties the current number of registered parties
909 * @return {@code true} if this phaser should terminate
910 */
911 protected boolean onAdvance(int phase, int registeredParties) {
912 return registeredParties == 0;
913 }
914
915 /**
916 * Returns a string identifying this phaser, as well as its
917 * state. The state, in brackets, includes the String {@code
918 * "phase = "} followed by the phase number, {@code "parties = "}
919 * followed by the number of registered parties, and {@code
920 * "arrived = "} followed by the number of arrived parties.
921 *
922 * @return a string identifying this phaser, as well as its state
923 */
924 public String toString() {
925 return stateToString(reconcileState());
926 }
927
928 /**
929 * Implementation of toString and string-based error messages
930 */
931 private String stateToString(long s) {
932 return super.toString() +
933 "[phase = " + phaseOf(s) +
934 " parties = " + partiesOf(s) +
935 " arrived = " + arrivedOf(s) + "]";
936 }
937
938 // Waiting mechanics
939
940 /**
941 * Removes and signals threads from queue for phase.
942 */
943 private void releaseWaiters(int phase) {
944 QNode q; // first element of queue
945 Thread t; // its thread
946 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
947 while ((q = head.get()) != null &&
948 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
949 if (head.compareAndSet(q, q.next) &&
950 (t = q.thread) != null) {
951 q.thread = null;
952 LockSupport.unpark(t);
953 }
954 }
955 }
956
957 /**
958 * Variant of releaseWaiters that additionally tries to remove any
959 * nodes no longer waiting for advance due to timeout or
960 * interrupt. Currently, nodes are removed only if they are at
961 * head of queue, which suffices to reduce memory footprint in
962 * most usages.
963 *
964 * @return current phase on exit
965 */
966 private int abortWait(int phase) {
967 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
968 for (;;) {
969 Thread t;
970 QNode q = head.get();
971 int p = (int)(root.state >>> PHASE_SHIFT);
972 if (q == null || ((t = q.thread) != null && q.phase == p))
973 return p;
974 if (head.compareAndSet(q, q.next) && t != null) {
975 q.thread = null;
976 LockSupport.unpark(t);
977 }
978 }
979 }
980
981 /** The number of CPUs, for spin control */
982 private static final int NCPU = Runtime.getRuntime().availableProcessors();
983
984 /**
985 * The number of times to spin before blocking while waiting for
986 * advance, per arrival while waiting. On multiprocessors, fully
987 * blocking and waking up a large number of threads all at once is
988 * usually a very slow process, so we use rechargeable spins to
989 * avoid it when threads regularly arrive: When a thread in
990 * internalAwaitAdvance notices another arrival before blocking,
991 * and there appear to be enough CPUs available, it spins
992 * SPINS_PER_ARRIVAL more times before blocking. The value trades
993 * off good-citizenship vs big unnecessary slowdowns.
994 */
995 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
996
997 /**
998 * Possibly blocks and waits for phase to advance unless aborted.
999 * Call only on root phaser.
1000 *
1001 * @param phase current phase
1002 * @param node if non-null, the wait node to track interrupt and timeout;
1003 * if null, denotes noninterruptible wait
1004 * @return current phase
1005 */
1006 private int internalAwaitAdvance(int phase, QNode node) {
1007 // assert root == this;
1008 releaseWaiters(phase-1); // ensure old queue clean
1009 boolean queued = false; // true when node is enqueued
1010 int lastUnarrived = 0; // to increase spins upon change
1011 int spins = SPINS_PER_ARRIVAL;
1012 long s;
1013 int p;
1014 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1015 if (node == null) { // spinning in noninterruptible mode
1016 int unarrived = (int)s & UNARRIVED_MASK;
1017 if (unarrived != lastUnarrived &&
1018 (lastUnarrived = unarrived) < NCPU)
1019 spins += SPINS_PER_ARRIVAL;
1020 boolean interrupted = Thread.interrupted();
1021 if (interrupted || --spins < 0) { // need node to record intr
1022 node = new QNode(this, phase, false, false, 0L);
1023 node.wasInterrupted = interrupted;
1024 }
1025 }
1026 else if (node.isReleasable()) // done or aborted
1027 break;
1028 else if (!queued) { // push onto queue
1029 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1030 QNode q = node.next = head.get();
1031 if ((q == null || q.phase == phase) &&
1032 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1033 queued = head.compareAndSet(q, node);
1034 }
1035 else {
1036 try {
1037 ForkJoinPool.managedBlock(node);
1038 } catch (InterruptedException ie) {
1039 node.wasInterrupted = true;
1040 }
1041 }
1042 }
1043
1044 if (node != null) {
1045 if (node.thread != null)
1046 node.thread = null; // avoid need for unpark()
1047 if (node.wasInterrupted && !node.interruptible)
1048 Thread.currentThread().interrupt();
1049 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1050 return abortWait(phase); // possibly clean up on abort
1051 }
1052 releaseWaiters(phase);
1053 return p;
1054 }
1055
1056 /**
1057 * Wait nodes for Treiber stack representing wait queue
1058 */
1059 static final class QNode implements ForkJoinPool.ManagedBlocker {
1060 final Phaser phaser;
1061 final int phase;
1062 final boolean interruptible;
1063 final boolean timed;
1064 boolean wasInterrupted;
1065 long nanos;
1066 long lastTime;
1067 volatile Thread thread; // nulled to cancel wait
1068 QNode next;
1069
1070 QNode(Phaser phaser, int phase, boolean interruptible,
1071 boolean timed, long nanos) {
1072 this.phaser = phaser;
1073 this.phase = phase;
1074 this.interruptible = interruptible;
1075 this.nanos = nanos;
1076 this.timed = timed;
1077 this.lastTime = timed ? System.nanoTime() : 0L;
1078 thread = Thread.currentThread();
1079 }
1080
1081 public boolean isReleasable() {
1082 if (thread == null)
1083 return true;
1084 if (phaser.getPhase() != phase) {
1085 thread = null;
1086 return true;
1087 }
1088 if (Thread.interrupted())
1089 wasInterrupted = true;
1090 if (wasInterrupted && interruptible) {
1091 thread = null;
1092 return true;
1093 }
1094 if (timed) {
1095 if (nanos > 0L) {
1096 long now = System.nanoTime();
1097 nanos -= now - lastTime;
1098 lastTime = now;
1099 }
1100 if (nanos <= 0L) {
1101 thread = null;
1102 return true;
1103 }
1104 }
1105 return false;
1106 }
1107
1108 public boolean block() {
1109 if (isReleasable())
1110 return true;
1111 else if (!timed)
1112 LockSupport.park(this);
1113 else if (nanos > 0)
1114 LockSupport.parkNanos(this, nanos);
1115 return isReleasable();
1116 }
1117 }
1118
1119 // Unsafe mechanics
1120
1121 private static final sun.misc.Unsafe UNSAFE;
1122 private static final long stateOffset;
1123 static {
1124 try {
1125 UNSAFE = getUnsafe();
1126 Class<?> k = Phaser.class;
1127 stateOffset = UNSAFE.objectFieldOffset
1128 (k.getDeclaredField("state"));
1129 } catch (Exception e) {
1130 throw new Error(e);
1131 }
1132 }
1133
1134 /**
1135 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1136 * Replace with a simple call to Unsafe.getUnsafe when integrating
1137 * into a jdk.
1138 *
1139 * @return a sun.misc.Unsafe
1140 */
1141 private static sun.misc.Unsafe getUnsafe() {
1142 try {
1143 return sun.misc.Unsafe.getUnsafe();
1144 } catch (SecurityException tryReflectionInstead) {}
1145 try {
1146 return java.security.AccessController.doPrivileged
1147 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1148 public sun.misc.Unsafe run() throws Exception {
1149 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1150 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1151 f.setAccessible(true);
1152 Object x = f.get(null);
1153 if (k.isInstance(x))
1154 return k.cast(x);
1155 }
1156 throw new NoSuchFieldError("the Unsafe");
1157 }});
1158 } catch (java.security.PrivilegedActionException e) {
1159 throw new RuntimeException("Could not initialize intrinsics",
1160 e.getCause());
1161 }
1162 }
1163 }