ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.33
Committed: Mon Oct 17 21:46:27 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.32: +647 -184 lines
Log Message:
add ArrayList to improve removeIf

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.33 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.24 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.24 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 jsr166 1.33 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.24 * particular file as subject to the "Classpath" exception as provided
9 jsr166 1.33 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.24 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.30 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.1 */
25    
26     package java.util;
27    
28 jsr166 1.33 import java.util.function.Consumer;
29     import java.util.function.Predicate;
30     import java.util.function.UnaryOperator;
31    
32 dl 1.1 /**
33 jsr166 1.33 * Resizable-array implementation of the {@code List} interface. Implements
34 dl 1.1 * all optional list operations, and permits all elements, including
35 jsr166 1.33 * {@code null}. In addition to implementing the {@code List} interface,
36 dl 1.1 * this class provides methods to manipulate the size of the array that is
37     * used internally to store the list. (This class is roughly equivalent to
38 jsr166 1.33 * {@code Vector}, except that it is unsynchronized.)
39 dl 1.1 *
40 jsr166 1.33 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41     * {@code iterator}, and {@code listIterator} operations run in constant
42     * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 dl 1.1 * that is, adding n elements requires O(n) time. All of the other operations
44     * run in linear time (roughly speaking). The constant factor is low compared
45 jsr166 1.33 * to that for the {@code LinkedList} implementation.
46 dl 1.1 *
47 jsr166 1.33 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 dl 1.1 * the size of the array used to store the elements in the list. It is always
49     * at least as large as the list size. As elements are added to an ArrayList,
50     * its capacity grows automatically. The details of the growth policy are not
51     * specified beyond the fact that adding an element has constant amortized
52 jsr166 1.25 * time cost.
53 dl 1.1 *
54 jsr166 1.33 * <p>An application can increase the capacity of an {@code ArrayList} instance
55     * before adding a large number of elements using the {@code ensureCapacity}
56 dl 1.1 * operation. This may reduce the amount of incremental reallocation.
57     *
58     * <p><strong>Note that this implementation is not synchronized.</strong>
59 jsr166 1.33 * If multiple threads access an {@code ArrayList} instance concurrently,
60 dl 1.1 * and at least one of the threads modifies the list structurally, it
61     * <i>must</i> be synchronized externally. (A structural modification is
62     * any operation that adds or deletes one or more elements, or explicitly
63     * resizes the backing array; merely setting the value of an element is not
64     * a structural modification.) This is typically accomplished by
65     * synchronizing on some object that naturally encapsulates the list.
66     *
67     * If no such object exists, the list should be "wrapped" using the
68     * {@link Collections#synchronizedList Collections.synchronizedList}
69     * method. This is best done at creation time, to prevent accidental
70     * unsynchronized access to the list:<pre>
71     * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72     *
73 jsr166 1.33 * <p id="fail-fast">
74 jsr166 1.25 * The iterators returned by this class's {@link #iterator() iterator} and
75     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76     * if the list is structurally modified at any time after the iterator is
77     * created, in any way except through the iterator's own
78     * {@link ListIterator#remove() remove} or
79     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80     * {@link ConcurrentModificationException}. Thus, in the face of
81     * concurrent modification, the iterator fails quickly and cleanly, rather
82     * than risking arbitrary, non-deterministic behavior at an undetermined
83     * time in the future.
84 dl 1.1 *
85 jsr166 1.25 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 dl 1.1 * as it is, generally speaking, impossible to make any hard guarantees in the
87     * presence of unsynchronized concurrent modification. Fail-fast iterators
88 jsr166 1.25 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 dl 1.1 * Therefore, it would be wrong to write a program that depended on this
90 jsr166 1.25 * exception for its correctness: <i>the fail-fast behavior of iterators
91     * should be used only to detect bugs.</i>
92 dl 1.1 *
93 jsr166 1.25 * <p>This class is a member of the
94 jsr166 1.21 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 dl 1.1 * Java Collections Framework</a>.
96     *
97 jsr166 1.33 * @param <E> the type of elements in this list
98     *
99 dl 1.1 * @author Josh Bloch
100     * @author Neal Gafter
101 jsr166 1.26 * @see Collection
102     * @see List
103     * @see LinkedList
104     * @see Vector
105 dl 1.1 * @since 1.2
106     */
107    
108     public class ArrayList<E> extends AbstractList<E>
109     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
110     {
111     private static final long serialVersionUID = 8683452581122892189L;
112    
113     /**
114 jsr166 1.33 * Default initial capacity.
115     */
116     private static final int DEFAULT_CAPACITY = 10;
117    
118     /**
119     * Shared empty array instance used for empty instances.
120     */
121     private static final Object[] EMPTY_ELEMENTDATA = {};
122    
123     /**
124     * Shared empty array instance used for default sized empty instances. We
125     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
126     * first element is added.
127     */
128     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
129    
130     /**
131 dl 1.1 * The array buffer into which the elements of the ArrayList are stored.
132 jsr166 1.33 * The capacity of the ArrayList is the length of this array buffer. Any
133     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
134     * will be expanded to DEFAULT_CAPACITY when the first element is added.
135 dl 1.1 */
136 jsr166 1.33 transient Object[] elementData; // non-private to simplify nested class access
137 dl 1.1
138     /**
139     * The size of the ArrayList (the number of elements it contains).
140     *
141     * @serial
142     */
143     private int size;
144    
145     /**
146     * Constructs an empty list with the specified initial capacity.
147     *
148 jsr166 1.31 * @param initialCapacity the initial capacity of the list
149     * @throws IllegalArgumentException if the specified initial capacity
150     * is negative
151 dl 1.1 */
152     public ArrayList(int initialCapacity) {
153 jsr166 1.33 if (initialCapacity > 0) {
154     this.elementData = new Object[initialCapacity];
155     } else if (initialCapacity == 0) {
156     this.elementData = EMPTY_ELEMENTDATA;
157     } else {
158 dl 1.1 throw new IllegalArgumentException("Illegal Capacity: "+
159     initialCapacity);
160 jsr166 1.33 }
161 dl 1.1 }
162    
163     /**
164     * Constructs an empty list with an initial capacity of ten.
165     */
166     public ArrayList() {
167 jsr166 1.33 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
168 dl 1.1 }
169    
170     /**
171     * Constructs a list containing the elements of the specified
172     * collection, in the order they are returned by the collection's
173 jsr166 1.17 * iterator.
174 dl 1.1 *
175     * @param c the collection whose elements are to be placed into this list
176     * @throws NullPointerException if the specified collection is null
177     */
178     public ArrayList(Collection<? extends E> c) {
179 jsr166 1.26 elementData = c.toArray();
180 jsr166 1.33 if ((size = elementData.length) != 0) {
181     // defend against c.toArray (incorrectly) not returning Object[]
182     // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
183     if (elementData.getClass() != Object[].class)
184     elementData = Arrays.copyOf(elementData, size, Object[].class);
185     } else {
186     // replace with empty array.
187     this.elementData = EMPTY_ELEMENTDATA;
188     }
189 dl 1.2 }
190 jsr166 1.4
191 dl 1.1 /**
192 jsr166 1.33 * Trims the capacity of this {@code ArrayList} instance to be the
193 dl 1.1 * list's current size. An application can use this operation to minimize
194 jsr166 1.33 * the storage of an {@code ArrayList} instance.
195 dl 1.1 */
196     public void trimToSize() {
197 jsr166 1.26 modCount++;
198 jsr166 1.33 if (size < elementData.length) {
199     elementData = (size == 0)
200     ? EMPTY_ELEMENTDATA
201     : Arrays.copyOf(elementData, size);
202 jsr166 1.26 }
203 dl 1.1 }
204    
205     /**
206 jsr166 1.33 * Increases the capacity of this {@code ArrayList} instance, if
207 dl 1.1 * necessary, to ensure that it can hold at least the number of elements
208     * specified by the minimum capacity argument.
209     *
210 jsr166 1.33 * @param minCapacity the desired minimum capacity
211 dl 1.1 */
212     public void ensureCapacity(int minCapacity) {
213 jsr166 1.33 if (minCapacity > elementData.length
214     && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
215     && minCapacity <= DEFAULT_CAPACITY)) {
216     modCount++;
217     grow(minCapacity);
218     }
219     }
220    
221     /**
222     * The maximum size of array to allocate (unless necessary).
223     * Some VMs reserve some header words in an array.
224     * Attempts to allocate larger arrays may result in
225     * OutOfMemoryError: Requested array size exceeds VM limit
226     */
227     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
228    
229     /**
230     * Increases the capacity to ensure that it can hold at least the
231     * number of elements specified by the minimum capacity argument.
232     *
233     * @param minCapacity the desired minimum capacity
234     * @throws OutOfMemoryError if minCapacity is less than zero
235     */
236     private Object[] grow(int minCapacity) {
237     return elementData = Arrays.copyOf(elementData,
238     newCapacity(minCapacity));
239     }
240    
241     private Object[] grow() {
242     return grow(size + 1);
243     }
244    
245     /**
246     * Returns a capacity at least as large as the given minimum capacity.
247     * Returns the current capacity increased by 50% if that suffices.
248     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
249     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
250     *
251     * @param minCapacity the desired minimum capacity
252     * @throws OutOfMemoryError if minCapacity is less than zero
253     */
254     private int newCapacity(int minCapacity) {
255     // overflow-conscious code
256 jsr166 1.26 int oldCapacity = elementData.length;
257 jsr166 1.33 int newCapacity = oldCapacity + (oldCapacity >> 1);
258     if (newCapacity - minCapacity <= 0) {
259     if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
260     return Math.max(DEFAULT_CAPACITY, minCapacity);
261     if (minCapacity < 0) // overflow
262     throw new OutOfMemoryError();
263     return minCapacity;
264     }
265     return (newCapacity - MAX_ARRAY_SIZE <= 0)
266     ? newCapacity
267     : hugeCapacity(minCapacity);
268     }
269    
270     private static int hugeCapacity(int minCapacity) {
271     if (minCapacity < 0) // overflow
272     throw new OutOfMemoryError();
273     return (minCapacity > MAX_ARRAY_SIZE)
274     ? Integer.MAX_VALUE
275     : MAX_ARRAY_SIZE;
276 dl 1.1 }
277    
278     /**
279     * Returns the number of elements in this list.
280     *
281     * @return the number of elements in this list
282     */
283     public int size() {
284 jsr166 1.26 return size;
285 dl 1.1 }
286    
287     /**
288 jsr166 1.33 * Returns {@code true} if this list contains no elements.
289 dl 1.1 *
290 jsr166 1.33 * @return {@code true} if this list contains no elements
291 dl 1.1 */
292     public boolean isEmpty() {
293 jsr166 1.26 return size == 0;
294 dl 1.1 }
295    
296     /**
297 jsr166 1.33 * Returns {@code true} if this list contains the specified element.
298     * More formally, returns {@code true} if and only if this list contains
299     * at least one element {@code e} such that
300     * {@code Objects.equals(o, e)}.
301 dl 1.1 *
302     * @param o element whose presence in this list is to be tested
303 jsr166 1.33 * @return {@code true} if this list contains the specified element
304 dl 1.1 */
305     public boolean contains(Object o) {
306 jsr166 1.26 return indexOf(o) >= 0;
307 dl 1.1 }
308    
309     /**
310     * Returns the index of the first occurrence of the specified element
311     * in this list, or -1 if this list does not contain the element.
312 jsr166 1.33 * More formally, returns the lowest index {@code i} such that
313     * {@code Objects.equals(o, get(i))},
314 dl 1.1 * or -1 if there is no such index.
315     */
316     public int indexOf(Object o) {
317 jsr166 1.26 if (o == null) {
318     for (int i = 0; i < size; i++)
319     if (elementData[i]==null)
320     return i;
321     } else {
322     for (int i = 0; i < size; i++)
323     if (o.equals(elementData[i]))
324     return i;
325     }
326     return -1;
327 dl 1.1 }
328    
329     /**
330     * Returns the index of the last occurrence of the specified element
331     * in this list, or -1 if this list does not contain the element.
332 jsr166 1.33 * More formally, returns the highest index {@code i} such that
333     * {@code Objects.equals(o, get(i))},
334 dl 1.1 * or -1 if there is no such index.
335     */
336     public int lastIndexOf(Object o) {
337 jsr166 1.26 if (o == null) {
338     for (int i = size-1; i >= 0; i--)
339     if (elementData[i]==null)
340     return i;
341     } else {
342     for (int i = size-1; i >= 0; i--)
343     if (o.equals(elementData[i]))
344     return i;
345     }
346     return -1;
347 dl 1.1 }
348    
349     /**
350 jsr166 1.33 * Returns a shallow copy of this {@code ArrayList} instance. (The
351 dl 1.1 * elements themselves are not copied.)
352     *
353 jsr166 1.33 * @return a clone of this {@code ArrayList} instance
354 dl 1.1 */
355     public Object clone() {
356 jsr166 1.26 try {
357 jsr166 1.33 ArrayList<?> v = (ArrayList<?>) super.clone();
358 jsr166 1.26 v.elementData = Arrays.copyOf(elementData, size);
359     v.modCount = 0;
360     return v;
361     } catch (CloneNotSupportedException e) {
362     // this shouldn't happen, since we are Cloneable
363 jsr166 1.33 throw new InternalError(e);
364 jsr166 1.26 }
365 dl 1.1 }
366    
367     /**
368     * Returns an array containing all of the elements in this list
369     * in proper sequence (from first to last element).
370     *
371     * <p>The returned array will be "safe" in that no references to it are
372     * maintained by this list. (In other words, this method must allocate
373     * a new array). The caller is thus free to modify the returned array.
374     *
375     * <p>This method acts as bridge between array-based and collection-based
376     * APIs.
377     *
378     * @return an array containing all of the elements in this list in
379     * proper sequence
380     */
381     public Object[] toArray() {
382     return Arrays.copyOf(elementData, size);
383     }
384    
385     /**
386     * Returns an array containing all of the elements in this list in proper
387     * sequence (from first to last element); the runtime type of the returned
388     * array is that of the specified array. If the list fits in the
389     * specified array, it is returned therein. Otherwise, a new array is
390     * allocated with the runtime type of the specified array and the size of
391     * this list.
392     *
393     * <p>If the list fits in the specified array with room to spare
394     * (i.e., the array has more elements than the list), the element in
395     * the array immediately following the end of the collection is set to
396 jsr166 1.33 * {@code null}. (This is useful in determining the length of the
397 dl 1.1 * list <i>only</i> if the caller knows that the list does not contain
398     * any null elements.)
399     *
400     * @param a the array into which the elements of the list are to
401     * be stored, if it is big enough; otherwise, a new array of the
402     * same runtime type is allocated for this purpose.
403     * @return an array containing the elements of the list
404     * @throws ArrayStoreException if the runtime type of the specified array
405     * is not a supertype of the runtime type of every element in
406     * this list
407     * @throws NullPointerException if the specified array is null
408     */
409 jsr166 1.25 @SuppressWarnings("unchecked")
410 dl 1.1 public <T> T[] toArray(T[] a) {
411     if (a.length < size)
412     // Make a new array of a's runtime type, but my contents:
413     return (T[]) Arrays.copyOf(elementData, size, a.getClass());
414 jsr166 1.26 System.arraycopy(elementData, 0, a, 0, size);
415 dl 1.1 if (a.length > size)
416     a[size] = null;
417     return a;
418     }
419    
420     // Positional Access Operations
421    
422 jsr166 1.25 @SuppressWarnings("unchecked")
423     E elementData(int index) {
424 jsr166 1.26 return (E) elementData[index];
425 dl 1.1 }
426    
427     /**
428     * Returns the element at the specified position in this list.
429     *
430     * @param index index of the element to return
431     * @return the element at the specified position in this list
432     * @throws IndexOutOfBoundsException {@inheritDoc}
433     */
434     public E get(int index) {
435 jsr166 1.33 Objects.checkIndex(index, size);
436 jsr166 1.26 return elementData(index);
437 dl 1.1 }
438    
439     /**
440     * Replaces the element at the specified position in this list with
441     * the specified element.
442     *
443     * @param index index of the element to replace
444     * @param element element to be stored at the specified position
445     * @return the element previously at the specified position
446     * @throws IndexOutOfBoundsException {@inheritDoc}
447     */
448     public E set(int index, E element) {
449 jsr166 1.33 Objects.checkIndex(index, size);
450 jsr166 1.26 E oldValue = elementData(index);
451     elementData[index] = element;
452     return oldValue;
453 dl 1.1 }
454    
455     /**
456 jsr166 1.33 * This helper method split out from add(E) to keep method
457     * bytecode size under 35 (the -XX:MaxInlineSize default value),
458     * which helps when add(E) is called in a C1-compiled loop.
459     */
460     private void add(E e, Object[] elementData, int s) {
461     if (s == elementData.length)
462     elementData = grow();
463     elementData[s] = e;
464     size = s + 1;
465     }
466    
467     /**
468 dl 1.1 * Appends the specified element to the end of this list.
469     *
470     * @param e element to be appended to this list
471 jsr166 1.33 * @return {@code true} (as specified by {@link Collection#add})
472 dl 1.1 */
473     public boolean add(E e) {
474 jsr166 1.33 modCount++;
475     add(e, elementData, size);
476 jsr166 1.26 return true;
477 dl 1.1 }
478    
479     /**
480     * Inserts the specified element at the specified position in this
481     * list. Shifts the element currently at that position (if any) and
482     * any subsequent elements to the right (adds one to their indices).
483     *
484     * @param index index at which the specified element is to be inserted
485     * @param element element to be inserted
486     * @throws IndexOutOfBoundsException {@inheritDoc}
487     */
488     public void add(int index, E element) {
489 jsr166 1.26 rangeCheckForAdd(index);
490 jsr166 1.33 modCount++;
491     final int s;
492     Object[] elementData;
493     if ((s = size) == (elementData = this.elementData).length)
494     elementData = grow();
495     System.arraycopy(elementData, index,
496     elementData, index + 1,
497     s - index);
498 jsr166 1.26 elementData[index] = element;
499 jsr166 1.33 size = s + 1;
500 dl 1.1 }
501    
502     /**
503     * Removes the element at the specified position in this list.
504     * Shifts any subsequent elements to the left (subtracts one from their
505     * indices).
506     *
507     * @param index the index of the element to be removed
508     * @return the element that was removed from the list
509     * @throws IndexOutOfBoundsException {@inheritDoc}
510     */
511     public E remove(int index) {
512 jsr166 1.33 Objects.checkIndex(index, size);
513 jsr166 1.25
514 jsr166 1.26 modCount++;
515     E oldValue = elementData(index);
516 jsr166 1.25
517 jsr166 1.26 int numMoved = size - index - 1;
518     if (numMoved > 0)
519     System.arraycopy(elementData, index+1, elementData, index,
520     numMoved);
521 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
522 jsr166 1.25
523 jsr166 1.26 return oldValue;
524 dl 1.1 }
525    
526     /**
527     * Removes the first occurrence of the specified element from this list,
528     * if it is present. If the list does not contain the element, it is
529     * unchanged. More formally, removes the element with the lowest index
530 jsr166 1.33 * {@code i} such that
531     * {@code Objects.equals(o, get(i))}
532     * (if such an element exists). Returns {@code true} if this list
533 dl 1.1 * contained the specified element (or equivalently, if this list
534     * changed as a result of the call).
535     *
536     * @param o element to be removed from this list, if present
537 jsr166 1.33 * @return {@code true} if this list contained the specified element
538 dl 1.1 */
539     public boolean remove(Object o) {
540 jsr166 1.26 if (o == null) {
541     for (int index = 0; index < size; index++)
542     if (elementData[index] == null) {
543     fastRemove(index);
544     return true;
545     }
546     } else {
547 dl 1.1 for (int index = 0; index < size; index++)
548 jsr166 1.26 if (o.equals(elementData[index])) {
549     fastRemove(index);
550     return true;
551     }
552 dl 1.1 }
553 jsr166 1.26 return false;
554 dl 1.1 }
555    
556     /*
557     * Private remove method that skips bounds checking and does not
558     * return the value removed.
559     */
560     private void fastRemove(int index) {
561     modCount++;
562     int numMoved = size - index - 1;
563     if (numMoved > 0)
564     System.arraycopy(elementData, index+1, elementData, index,
565     numMoved);
566 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
567 dl 1.1 }
568    
569     /**
570     * Removes all of the elements from this list. The list will
571     * be empty after this call returns.
572     */
573     public void clear() {
574 jsr166 1.26 modCount++;
575 dl 1.1
576 jsr166 1.33 // clear to let GC do its work
577 jsr166 1.26 for (int i = 0; i < size; i++)
578     elementData[i] = null;
579 dl 1.1
580 jsr166 1.26 size = 0;
581 dl 1.1 }
582    
583     /**
584     * Appends all of the elements in the specified collection to the end of
585     * this list, in the order that they are returned by the
586     * specified collection's Iterator. The behavior of this operation is
587     * undefined if the specified collection is modified while the operation
588     * is in progress. (This implies that the behavior of this call is
589     * undefined if the specified collection is this list, and this
590     * list is nonempty.)
591     *
592     * @param c collection containing elements to be added to this list
593 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
594 dl 1.1 * @throws NullPointerException if the specified collection is null
595     */
596     public boolean addAll(Collection<? extends E> c) {
597 jsr166 1.26 Object[] a = c.toArray();
598 jsr166 1.33 modCount++;
599 dl 1.1 int numNew = a.length;
600 jsr166 1.33 if (numNew == 0)
601     return false;
602     Object[] elementData;
603     final int s;
604     if (numNew > (elementData = this.elementData).length - (s = size))
605     elementData = grow(s + numNew);
606     System.arraycopy(a, 0, elementData, s, numNew);
607     size = s + numNew;
608     return true;
609 dl 1.1 }
610    
611     /**
612     * Inserts all of the elements in the specified collection into this
613     * list, starting at the specified position. Shifts the element
614     * currently at that position (if any) and any subsequent elements to
615     * the right (increases their indices). The new elements will appear
616     * in the list in the order that they are returned by the
617     * specified collection's iterator.
618     *
619     * @param index index at which to insert the first element from the
620     * specified collection
621     * @param c collection containing elements to be added to this list
622 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
623 dl 1.1 * @throws IndexOutOfBoundsException {@inheritDoc}
624     * @throws NullPointerException if the specified collection is null
625     */
626     public boolean addAll(int index, Collection<? extends E> c) {
627 jsr166 1.26 rangeCheckForAdd(index);
628 dl 1.1
629 jsr166 1.26 Object[] a = c.toArray();
630 jsr166 1.33 modCount++;
631 jsr166 1.26 int numNew = a.length;
632 jsr166 1.33 if (numNew == 0)
633     return false;
634     Object[] elementData;
635     final int s;
636     if (numNew > (elementData = this.elementData).length - (s = size))
637     elementData = grow(s + numNew);
638 jsr166 1.26
639 jsr166 1.33 int numMoved = s - index;
640 jsr166 1.26 if (numMoved > 0)
641 jsr166 1.33 System.arraycopy(elementData, index,
642     elementData, index + numNew,
643 jsr166 1.26 numMoved);
644 dl 1.1 System.arraycopy(a, 0, elementData, index, numNew);
645 jsr166 1.33 size = s + numNew;
646     return true;
647 dl 1.1 }
648    
649     /**
650     * Removes from this list all of the elements whose index is between
651 jsr166 1.25 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
652 dl 1.1 * Shifts any succeeding elements to the left (reduces their index).
653 jsr166 1.25 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
654     * (If {@code toIndex==fromIndex}, this operation has no effect.)
655 dl 1.1 *
656 jsr166 1.25 * @throws IndexOutOfBoundsException if {@code fromIndex} or
657     * {@code toIndex} is out of range
658     * ({@code fromIndex < 0 ||
659     * toIndex > size() ||
660     * toIndex < fromIndex})
661 dl 1.1 */
662     protected void removeRange(int fromIndex, int toIndex) {
663 jsr166 1.33 if (fromIndex > toIndex) {
664     throw new IndexOutOfBoundsException(
665     outOfBoundsMsg(fromIndex, toIndex));
666     }
667 jsr166 1.26 modCount++;
668     int numMoved = size - toIndex;
669 dl 1.1 System.arraycopy(elementData, toIndex, elementData, fromIndex,
670     numMoved);
671    
672 jsr166 1.33 // clear to let GC do its work
673 jsr166 1.26 int newSize = size - (toIndex-fromIndex);
674 jsr166 1.33 for (int i = newSize; i < size; i++) {
675     elementData[i] = null;
676     }
677     size = newSize;
678 jsr166 1.25 }
679    
680     /**
681     * A version of rangeCheck used by add and addAll.
682     */
683     private void rangeCheckForAdd(int index) {
684 jsr166 1.26 if (index > size || index < 0)
685     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
686 jsr166 1.25 }
687    
688     /**
689     * Constructs an IndexOutOfBoundsException detail message.
690     * Of the many possible refactorings of the error handling code,
691     * this "outlining" performs best with both server and client VMs.
692     */
693     private String outOfBoundsMsg(int index) {
694 jsr166 1.26 return "Index: "+index+", Size: "+size;
695 jsr166 1.25 }
696    
697     /**
698 jsr166 1.33 * A version used in checking (fromIndex > toIndex) condition
699     */
700     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
701     return "From Index: " + fromIndex + " > To Index: " + toIndex;
702     }
703    
704     /**
705 jsr166 1.25 * Removes from this list all of its elements that are contained in the
706     * specified collection.
707     *
708     * @param c collection containing elements to be removed from this list
709     * @return {@code true} if this list changed as a result of the call
710     * @throws ClassCastException if the class of an element of this list
711 jsr166 1.33 * is incompatible with the specified collection
712     * (<a href="Collection.html#optional-restrictions">optional</a>)
713 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
714 jsr166 1.33 * specified collection does not permit null elements
715     * (<a href="Collection.html#optional-restrictions">optional</a>),
716 jsr166 1.25 * or if the specified collection is null
717     * @see Collection#contains(Object)
718     */
719     public boolean removeAll(Collection<?> c) {
720 jsr166 1.33 Objects.requireNonNull(c);
721 jsr166 1.26 return batchRemove(c, false);
722 jsr166 1.25 }
723    
724     /**
725     * Retains only the elements in this list that are contained in the
726     * specified collection. In other words, removes from this list all
727     * of its elements that are not contained in the specified collection.
728     *
729     * @param c collection containing elements to be retained in this list
730     * @return {@code true} if this list changed as a result of the call
731     * @throws ClassCastException if the class of an element of this list
732 jsr166 1.33 * is incompatible with the specified collection
733     * (<a href="Collection.html#optional-restrictions">optional</a>)
734 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
735 jsr166 1.33 * specified collection does not permit null elements
736     * (<a href="Collection.html#optional-restrictions">optional</a>),
737 jsr166 1.25 * or if the specified collection is null
738     * @see Collection#contains(Object)
739     */
740     public boolean retainAll(Collection<?> c) {
741 jsr166 1.33 Objects.requireNonNull(c);
742 jsr166 1.26 return batchRemove(c, true);
743 jsr166 1.25 }
744    
745     private boolean batchRemove(Collection<?> c, boolean complement) {
746 jsr166 1.26 final Object[] elementData = this.elementData;
747     int r = 0, w = 0;
748     boolean modified = false;
749     try {
750     for (; r < size; r++)
751     if (c.contains(elementData[r]) == complement)
752     elementData[w++] = elementData[r];
753     } finally {
754     // Preserve behavioral compatibility with AbstractCollection,
755     // even if c.contains() throws.
756     if (r != size) {
757     System.arraycopy(elementData, r,
758     elementData, w,
759     size - r);
760     w += size - r;
761     }
762     if (w != size) {
763 jsr166 1.33 // clear to let GC do its work
764 jsr166 1.26 for (int i = w; i < size; i++)
765     elementData[i] = null;
766     modCount += size - w;
767     size = w;
768     modified = true;
769     }
770     }
771     return modified;
772 jsr166 1.25 }
773    
774     /**
775 jsr166 1.33 * Save the state of the {@code ArrayList} instance to a stream (that
776 dl 1.1 * is, serialize it).
777     *
778 jsr166 1.33 * @serialData The length of the array backing the {@code ArrayList}
779 dl 1.1 * instance is emitted (int), followed by all of its elements
780 jsr166 1.33 * (each an {@code Object}) in the proper order.
781 dl 1.1 */
782     private void writeObject(java.io.ObjectOutputStream s)
783     throws java.io.IOException{
784 jsr166 1.26 // Write out element count, and any hidden stuff
785     int expectedModCount = modCount;
786     s.defaultWriteObject();
787 dl 1.1
788 jsr166 1.33 // Write out size as capacity for behavioural compatibility with clone()
789     s.writeInt(size);
790 dl 1.1
791 jsr166 1.26 // Write out all elements in the proper order.
792 jsr166 1.33 for (int i=0; i<size; i++) {
793 dl 1.1 s.writeObject(elementData[i]);
794 jsr166 1.33 }
795 dl 1.1
796 jsr166 1.26 if (modCount != expectedModCount) {
797 dl 1.1 throw new ConcurrentModificationException();
798     }
799     }
800    
801     /**
802 jsr166 1.33 * Reconstitute the {@code ArrayList} instance from a stream (that is,
803 dl 1.1 * deserialize it).
804     */
805     private void readObject(java.io.ObjectInputStream s)
806     throws java.io.IOException, ClassNotFoundException {
807 jsr166 1.33
808 jsr166 1.26 // Read in size, and any hidden stuff
809     s.defaultReadObject();
810 dl 1.1
811 jsr166 1.33 // Read in capacity
812     s.readInt(); // ignored
813    
814     if (size > 0) {
815     // like clone(), allocate array based upon size not capacity
816     Object[] elements = new Object[size];
817    
818     // Read in all elements in the proper order.
819     for (int i = 0; i < size; i++) {
820     elements[i] = s.readObject();
821     }
822    
823     elementData = elements;
824     } else if (size == 0) {
825     elementData = EMPTY_ELEMENTDATA;
826     } else {
827     throw new java.io.InvalidObjectException("Invalid size: " + size);
828     }
829 dl 1.1 }
830 jsr166 1.25
831     /**
832     * Returns a list iterator over the elements in this list (in proper
833     * sequence), starting at the specified position in the list.
834     * The specified index indicates the first element that would be
835     * returned by an initial call to {@link ListIterator#next next}.
836     * An initial call to {@link ListIterator#previous previous} would
837     * return the element with the specified index minus one.
838     *
839     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
840     *
841     * @throws IndexOutOfBoundsException {@inheritDoc}
842     */
843     public ListIterator<E> listIterator(int index) {
844 jsr166 1.33 rangeCheckForAdd(index);
845 jsr166 1.26 return new ListItr(index);
846 jsr166 1.25 }
847    
848     /**
849     * Returns a list iterator over the elements in this list (in proper
850     * sequence).
851     *
852     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
853     *
854     * @see #listIterator(int)
855     */
856     public ListIterator<E> listIterator() {
857 jsr166 1.26 return new ListItr(0);
858 jsr166 1.25 }
859    
860     /**
861     * Returns an iterator over the elements in this list in proper sequence.
862     *
863     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
864     *
865     * @return an iterator over the elements in this list in proper sequence
866     */
867     public Iterator<E> iterator() {
868 jsr166 1.26 return new Itr();
869 jsr166 1.25 }
870    
871     /**
872     * An optimized version of AbstractList.Itr
873     */
874     private class Itr implements Iterator<E> {
875 jsr166 1.26 int cursor; // index of next element to return
876     int lastRet = -1; // index of last element returned; -1 if no such
877     int expectedModCount = modCount;
878 jsr166 1.25
879 jsr166 1.33 // prevent creating a synthetic constructor
880     Itr() {}
881    
882 jsr166 1.26 public boolean hasNext() {
883 jsr166 1.25 return cursor != size;
884 jsr166 1.26 }
885    
886     @SuppressWarnings("unchecked")
887     public E next() {
888     checkForComodification();
889     int i = cursor;
890     if (i >= size)
891     throw new NoSuchElementException();
892     Object[] elementData = ArrayList.this.elementData;
893     if (i >= elementData.length)
894     throw new ConcurrentModificationException();
895     cursor = i + 1;
896     return (E) elementData[lastRet = i];
897     }
898 jsr166 1.25
899 jsr166 1.26 public void remove() {
900     if (lastRet < 0)
901     throw new IllegalStateException();
902 jsr166 1.25 checkForComodification();
903 jsr166 1.26
904     try {
905     ArrayList.this.remove(lastRet);
906     cursor = lastRet;
907     lastRet = -1;
908     expectedModCount = modCount;
909     } catch (IndexOutOfBoundsException ex) {
910     throw new ConcurrentModificationException();
911     }
912     }
913    
914 jsr166 1.33 @Override
915     @SuppressWarnings("unchecked")
916     public void forEachRemaining(Consumer<? super E> consumer) {
917     Objects.requireNonNull(consumer);
918     final int size = ArrayList.this.size;
919     int i = cursor;
920     if (i >= size) {
921     return;
922     }
923     final Object[] elementData = ArrayList.this.elementData;
924     if (i >= elementData.length) {
925     throw new ConcurrentModificationException();
926     }
927     while (i != size && modCount == expectedModCount) {
928     consumer.accept((E) elementData[i++]);
929     }
930     // update once at end of iteration to reduce heap write traffic
931     cursor = i;
932     lastRet = i - 1;
933     checkForComodification();
934     }
935    
936 jsr166 1.26 final void checkForComodification() {
937     if (modCount != expectedModCount)
938     throw new ConcurrentModificationException();
939     }
940 jsr166 1.25 }
941    
942     /**
943     * An optimized version of AbstractList.ListItr
944     */
945     private class ListItr extends Itr implements ListIterator<E> {
946 jsr166 1.26 ListItr(int index) {
947     super();
948     cursor = index;
949     }
950    
951     public boolean hasPrevious() {
952     return cursor != 0;
953     }
954 jsr166 1.25
955 jsr166 1.26 public int nextIndex() {
956     return cursor;
957     }
958    
959     public int previousIndex() {
960     return cursor - 1;
961     }
962    
963     @SuppressWarnings("unchecked")
964 jsr166 1.25 public E previous() {
965 jsr166 1.26 checkForComodification();
966     int i = cursor - 1;
967     if (i < 0)
968     throw new NoSuchElementException();
969     Object[] elementData = ArrayList.this.elementData;
970     if (i >= elementData.length)
971     throw new ConcurrentModificationException();
972     cursor = i;
973     return (E) elementData[lastRet = i];
974     }
975    
976     public void set(E e) {
977     if (lastRet < 0)
978     throw new IllegalStateException();
979     checkForComodification();
980    
981     try {
982     ArrayList.this.set(lastRet, e);
983     } catch (IndexOutOfBoundsException ex) {
984     throw new ConcurrentModificationException();
985     }
986     }
987    
988     public void add(E e) {
989     checkForComodification();
990    
991     try {
992     int i = cursor;
993     ArrayList.this.add(i, e);
994     cursor = i + 1;
995     lastRet = -1;
996     expectedModCount = modCount;
997     } catch (IndexOutOfBoundsException ex) {
998     throw new ConcurrentModificationException();
999     }
1000     }
1001 jsr166 1.25 }
1002    
1003     /**
1004     * Returns a view of the portion of this list between the specified
1005     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1006     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1007     * empty.) The returned list is backed by this list, so non-structural
1008     * changes in the returned list are reflected in this list, and vice-versa.
1009     * The returned list supports all of the optional list operations.
1010     *
1011     * <p>This method eliminates the need for explicit range operations (of
1012     * the sort that commonly exist for arrays). Any operation that expects
1013     * a list can be used as a range operation by passing a subList view
1014     * instead of a whole list. For example, the following idiom
1015     * removes a range of elements from a list:
1016     * <pre>
1017     * list.subList(from, to).clear();
1018     * </pre>
1019     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1020     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1021     * {@link Collections} class can be applied to a subList.
1022     *
1023     * <p>The semantics of the list returned by this method become undefined if
1024     * the backing list (i.e., this list) is <i>structurally modified</i> in
1025     * any way other than via the returned list. (Structural modifications are
1026     * those that change the size of this list, or otherwise perturb it in such
1027     * a fashion that iterations in progress may yield incorrect results.)
1028     *
1029     * @throws IndexOutOfBoundsException {@inheritDoc}
1030     * @throws IllegalArgumentException {@inheritDoc}
1031     */
1032     public List<E> subList(int fromIndex, int toIndex) {
1033 jsr166 1.26 subListRangeCheck(fromIndex, toIndex, size);
1034 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1035 jsr166 1.25 }
1036    
1037 jsr166 1.33 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1038     private final ArrayList<E> root;
1039     private final SubList<E> parent;
1040 jsr166 1.26 private final int offset;
1041 jsr166 1.33 private int size;
1042 jsr166 1.26
1043 jsr166 1.33 /**
1044     * Constructs a sublist of an arbitrary ArrayList.
1045     */
1046     public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1047     this.root = root;
1048     this.parent = null;
1049     this.offset = fromIndex;
1050     this.size = toIndex - fromIndex;
1051     this.modCount = root.modCount;
1052     }
1053    
1054     /**
1055     * Constructs a sublist of another SubList.
1056     */
1057     private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1058     this.root = parent.root;
1059 jsr166 1.26 this.parent = parent;
1060 jsr166 1.33 this.offset = parent.offset + fromIndex;
1061 jsr166 1.26 this.size = toIndex - fromIndex;
1062 jsr166 1.33 this.modCount = root.modCount;
1063 jsr166 1.26 }
1064    
1065 jsr166 1.33 public E set(int index, E element) {
1066     Objects.checkIndex(index, size);
1067 jsr166 1.26 checkForComodification();
1068 jsr166 1.33 E oldValue = root.elementData(offset + index);
1069     root.elementData[offset + index] = element;
1070 jsr166 1.26 return oldValue;
1071     }
1072    
1073     public E get(int index) {
1074 jsr166 1.33 Objects.checkIndex(index, size);
1075 jsr166 1.26 checkForComodification();
1076 jsr166 1.33 return root.elementData(offset + index);
1077 jsr166 1.26 }
1078    
1079     public int size() {
1080     checkForComodification();
1081 jsr166 1.33 return size;
1082 jsr166 1.26 }
1083    
1084 jsr166 1.33 public void add(int index, E element) {
1085 jsr166 1.26 rangeCheckForAdd(index);
1086     checkForComodification();
1087 jsr166 1.33 root.add(offset + index, element);
1088     updateSizeAndModCount(1);
1089 jsr166 1.26 }
1090    
1091     public E remove(int index) {
1092 jsr166 1.33 Objects.checkIndex(index, size);
1093 jsr166 1.26 checkForComodification();
1094 jsr166 1.33 E result = root.remove(offset + index);
1095     updateSizeAndModCount(-1);
1096 jsr166 1.26 return result;
1097     }
1098    
1099     protected void removeRange(int fromIndex, int toIndex) {
1100     checkForComodification();
1101 jsr166 1.33 root.removeRange(offset + fromIndex, offset + toIndex);
1102     updateSizeAndModCount(fromIndex - toIndex);
1103 jsr166 1.26 }
1104    
1105     public boolean addAll(Collection<? extends E> c) {
1106     return addAll(this.size, c);
1107     }
1108    
1109     public boolean addAll(int index, Collection<? extends E> c) {
1110     rangeCheckForAdd(index);
1111     int cSize = c.size();
1112     if (cSize==0)
1113     return false;
1114     checkForComodification();
1115 jsr166 1.33 root.addAll(offset + index, c);
1116     updateSizeAndModCount(cSize);
1117 jsr166 1.26 return true;
1118     }
1119    
1120     public Iterator<E> iterator() {
1121     return listIterator();
1122     }
1123    
1124 jsr166 1.33 public ListIterator<E> listIterator(int index) {
1125 jsr166 1.26 checkForComodification();
1126     rangeCheckForAdd(index);
1127    
1128     return new ListIterator<E>() {
1129     int cursor = index;
1130     int lastRet = -1;
1131 jsr166 1.33 int expectedModCount = root.modCount;
1132 jsr166 1.26
1133     public boolean hasNext() {
1134     return cursor != SubList.this.size;
1135     }
1136    
1137     @SuppressWarnings("unchecked")
1138     public E next() {
1139     checkForComodification();
1140     int i = cursor;
1141     if (i >= SubList.this.size)
1142     throw new NoSuchElementException();
1143 jsr166 1.33 Object[] elementData = root.elementData;
1144 jsr166 1.26 if (offset + i >= elementData.length)
1145     throw new ConcurrentModificationException();
1146     cursor = i + 1;
1147     return (E) elementData[offset + (lastRet = i)];
1148     }
1149    
1150     public boolean hasPrevious() {
1151     return cursor != 0;
1152     }
1153    
1154     @SuppressWarnings("unchecked")
1155     public E previous() {
1156     checkForComodification();
1157     int i = cursor - 1;
1158     if (i < 0)
1159     throw new NoSuchElementException();
1160 jsr166 1.33 Object[] elementData = root.elementData;
1161 jsr166 1.26 if (offset + i >= elementData.length)
1162     throw new ConcurrentModificationException();
1163     cursor = i;
1164     return (E) elementData[offset + (lastRet = i)];
1165     }
1166    
1167 jsr166 1.33 @SuppressWarnings("unchecked")
1168     public void forEachRemaining(Consumer<? super E> consumer) {
1169     Objects.requireNonNull(consumer);
1170     final int size = SubList.this.size;
1171     int i = cursor;
1172     if (i >= size) {
1173     return;
1174     }
1175     final Object[] elementData = root.elementData;
1176     if (offset + i >= elementData.length) {
1177     throw new ConcurrentModificationException();
1178     }
1179     while (i != size && modCount == expectedModCount) {
1180     consumer.accept((E) elementData[offset + (i++)]);
1181     }
1182     // update once at end of iteration to reduce heap write traffic
1183     lastRet = cursor = i;
1184     checkForComodification();
1185     }
1186    
1187 jsr166 1.26 public int nextIndex() {
1188     return cursor;
1189     }
1190    
1191     public int previousIndex() {
1192     return cursor - 1;
1193     }
1194    
1195     public void remove() {
1196     if (lastRet < 0)
1197     throw new IllegalStateException();
1198     checkForComodification();
1199    
1200     try {
1201     SubList.this.remove(lastRet);
1202     cursor = lastRet;
1203     lastRet = -1;
1204 jsr166 1.33 expectedModCount = root.modCount;
1205 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1206     throw new ConcurrentModificationException();
1207     }
1208     }
1209    
1210     public void set(E e) {
1211     if (lastRet < 0)
1212     throw new IllegalStateException();
1213     checkForComodification();
1214    
1215     try {
1216 jsr166 1.33 root.set(offset + lastRet, e);
1217 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1218     throw new ConcurrentModificationException();
1219     }
1220     }
1221    
1222     public void add(E e) {
1223     checkForComodification();
1224    
1225     try {
1226     int i = cursor;
1227     SubList.this.add(i, e);
1228     cursor = i + 1;
1229     lastRet = -1;
1230 jsr166 1.33 expectedModCount = root.modCount;
1231 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1232     throw new ConcurrentModificationException();
1233     }
1234     }
1235    
1236     final void checkForComodification() {
1237 jsr166 1.33 if (root.modCount != expectedModCount)
1238 jsr166 1.26 throw new ConcurrentModificationException();
1239     }
1240     };
1241     }
1242    
1243     public List<E> subList(int fromIndex, int toIndex) {
1244     subListRangeCheck(fromIndex, toIndex, size);
1245 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1246 jsr166 1.26 }
1247    
1248     private void rangeCheckForAdd(int index) {
1249     if (index < 0 || index > this.size)
1250     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1251     }
1252    
1253     private String outOfBoundsMsg(int index) {
1254     return "Index: "+index+", Size: "+this.size;
1255     }
1256    
1257     private void checkForComodification() {
1258 jsr166 1.33 if (root.modCount != modCount)
1259 jsr166 1.26 throw new ConcurrentModificationException();
1260     }
1261 jsr166 1.33
1262     private void updateSizeAndModCount(int sizeChange) {
1263     SubList<E> slist = this;
1264     do {
1265     slist.size += sizeChange;
1266     slist.modCount = root.modCount;
1267     slist = slist.parent;
1268     } while (slist != null);
1269     }
1270    
1271     public Spliterator<E> spliterator() {
1272     checkForComodification();
1273    
1274     // ArrayListSpliterator is not used because late-binding logic
1275     // is different here
1276     return new Spliterator<>() {
1277     private int index = offset; // current index, modified on advance/split
1278     private int fence = -1; // -1 until used; then one past last index
1279     private int expectedModCount; // initialized when fence set
1280    
1281     private int getFence() { // initialize fence to size on first use
1282     int hi; // (a specialized variant appears in method forEach)
1283     if ((hi = fence) < 0) {
1284     expectedModCount = modCount;
1285     hi = fence = offset + size;
1286     }
1287     return hi;
1288     }
1289    
1290     public ArrayListSpliterator<E> trySplit() {
1291     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1292     // ArrayListSpliterator could be used here as the source is already bound
1293     return (lo >= mid) ? null : // divide range in half unless too small
1294     new ArrayListSpliterator<>(root, lo, index = mid,
1295     expectedModCount);
1296     }
1297    
1298     public boolean tryAdvance(Consumer<? super E> action) {
1299     Objects.requireNonNull(action);
1300     int hi = getFence(), i = index;
1301     if (i < hi) {
1302     index = i + 1;
1303     @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1304     action.accept(e);
1305     if (root.modCount != expectedModCount)
1306     throw new ConcurrentModificationException();
1307     return true;
1308     }
1309     return false;
1310     }
1311    
1312     public void forEachRemaining(Consumer<? super E> action) {
1313     Objects.requireNonNull(action);
1314     int i, hi, mc; // hoist accesses and checks from loop
1315     ArrayList<E> lst = root;
1316     Object[] a;
1317     if ((a = lst.elementData) != null) {
1318     if ((hi = fence) < 0) {
1319     mc = modCount;
1320     hi = offset + size;
1321     }
1322     else
1323     mc = expectedModCount;
1324     if ((i = index) >= 0 && (index = hi) <= a.length) {
1325     for (; i < hi; ++i) {
1326     @SuppressWarnings("unchecked") E e = (E) a[i];
1327     action.accept(e);
1328     }
1329     if (lst.modCount == mc)
1330     return;
1331     }
1332     }
1333     throw new ConcurrentModificationException();
1334     }
1335    
1336     public long estimateSize() {
1337     return (long) (getFence() - index);
1338     }
1339    
1340     public int characteristics() {
1341     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1342     }
1343     };
1344     }
1345     }
1346    
1347     @Override
1348     public void forEach(Consumer<? super E> action) {
1349     Objects.requireNonNull(action);
1350     final int expectedModCount = modCount;
1351     @SuppressWarnings("unchecked")
1352     final E[] elementData = (E[]) this.elementData;
1353     final int size = this.size;
1354     for (int i=0; modCount == expectedModCount && i < size; i++) {
1355     action.accept(elementData[i]);
1356     }
1357     if (modCount != expectedModCount) {
1358     throw new ConcurrentModificationException();
1359     }
1360     }
1361    
1362     /**
1363     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1364     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1365     * list.
1366     *
1367     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1368     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1369     * Overriding implementations should document the reporting of additional
1370     * characteristic values.
1371     *
1372     * @return a {@code Spliterator} over the elements in this list
1373     * @since 1.8
1374     */
1375     @Override
1376     public Spliterator<E> spliterator() {
1377     return new ArrayListSpliterator<>(this, 0, -1, 0);
1378     }
1379    
1380     /** Index-based split-by-two, lazily initialized Spliterator */
1381     static final class ArrayListSpliterator<E> implements Spliterator<E> {
1382    
1383     /*
1384     * If ArrayLists were immutable, or structurally immutable (no
1385     * adds, removes, etc), we could implement their spliterators
1386     * with Arrays.spliterator. Instead we detect as much
1387     * interference during traversal as practical without
1388     * sacrificing much performance. We rely primarily on
1389     * modCounts. These are not guaranteed to detect concurrency
1390     * violations, and are sometimes overly conservative about
1391     * within-thread interference, but detect enough problems to
1392     * be worthwhile in practice. To carry this out, we (1) lazily
1393     * initialize fence and expectedModCount until the latest
1394     * point that we need to commit to the state we are checking
1395     * against; thus improving precision. (This doesn't apply to
1396     * SubLists, that create spliterators with current non-lazy
1397     * values). (2) We perform only a single
1398     * ConcurrentModificationException check at the end of forEach
1399     * (the most performance-sensitive method). When using forEach
1400     * (as opposed to iterators), we can normally only detect
1401     * interference after actions, not before. Further
1402     * CME-triggering checks apply to all other possible
1403     * violations of assumptions for example null or too-small
1404     * elementData array given its size(), that could only have
1405     * occurred due to interference. This allows the inner loop
1406     * of forEach to run without any further checks, and
1407     * simplifies lambda-resolution. While this does entail a
1408     * number of checks, note that in the common case of
1409     * list.stream().forEach(a), no checks or other computation
1410     * occur anywhere other than inside forEach itself. The other
1411     * less-often-used methods cannot take advantage of most of
1412     * these streamlinings.
1413     */
1414    
1415     private final ArrayList<E> list;
1416     private int index; // current index, modified on advance/split
1417     private int fence; // -1 until used; then one past last index
1418     private int expectedModCount; // initialized when fence set
1419    
1420     /** Create new spliterator covering the given range */
1421     ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1422     int expectedModCount) {
1423     this.list = list; // OK if null unless traversed
1424     this.index = origin;
1425     this.fence = fence;
1426     this.expectedModCount = expectedModCount;
1427     }
1428    
1429     private int getFence() { // initialize fence to size on first use
1430     int hi; // (a specialized variant appears in method forEach)
1431     ArrayList<E> lst;
1432     if ((hi = fence) < 0) {
1433     if ((lst = list) == null)
1434     hi = fence = 0;
1435     else {
1436     expectedModCount = lst.modCount;
1437     hi = fence = lst.size;
1438     }
1439     }
1440     return hi;
1441     }
1442    
1443     public ArrayListSpliterator<E> trySplit() {
1444     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1445     return (lo >= mid) ? null : // divide range in half unless too small
1446     new ArrayListSpliterator<>(list, lo, index = mid,
1447     expectedModCount);
1448     }
1449    
1450     public boolean tryAdvance(Consumer<? super E> action) {
1451     if (action == null)
1452     throw new NullPointerException();
1453     int hi = getFence(), i = index;
1454     if (i < hi) {
1455     index = i + 1;
1456     @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1457     action.accept(e);
1458     if (list.modCount != expectedModCount)
1459     throw new ConcurrentModificationException();
1460     return true;
1461     }
1462     return false;
1463     }
1464    
1465     public void forEachRemaining(Consumer<? super E> action) {
1466     int i, hi, mc; // hoist accesses and checks from loop
1467     ArrayList<E> lst; Object[] a;
1468     if (action == null)
1469     throw new NullPointerException();
1470     if ((lst = list) != null && (a = lst.elementData) != null) {
1471     if ((hi = fence) < 0) {
1472     mc = lst.modCount;
1473     hi = lst.size;
1474     }
1475     else
1476     mc = expectedModCount;
1477     if ((i = index) >= 0 && (index = hi) <= a.length) {
1478     for (; i < hi; ++i) {
1479     @SuppressWarnings("unchecked") E e = (E) a[i];
1480     action.accept(e);
1481     }
1482     if (lst.modCount == mc)
1483     return;
1484     }
1485     }
1486     throw new ConcurrentModificationException();
1487     }
1488    
1489     public long estimateSize() {
1490     return (long) (getFence() - index);
1491     }
1492    
1493     public int characteristics() {
1494     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1495     }
1496     }
1497    
1498     @Override
1499     public boolean removeIf(Predicate<? super E> filter) {
1500     Objects.requireNonNull(filter);
1501     final int expectedModCount = modCount;
1502     final Object[] elementData = this.elementData;
1503     int r = 0, w = 0, remaining = size, deleted = 0;
1504     try {
1505     for (; remaining > 0; remaining--, r++) {
1506     @SuppressWarnings("unchecked") E e = (E) elementData[r];
1507     if (filter.test(e))
1508     deleted++;
1509     else {
1510     if (r != w)
1511     elementData[w] = e;
1512     w++;
1513     }
1514     }
1515     if (modCount != expectedModCount)
1516     throw new ConcurrentModificationException();
1517     return deleted > 0;
1518     } catch (Throwable ex) {
1519     for (; remaining > 0; remaining--, r++, w++)
1520     elementData[w] = elementData[r];
1521     throw ex;
1522     } finally {
1523     if (deleted > 0) {
1524     modCount++;
1525     size -= deleted;
1526     while (--deleted >= 0)
1527     elementData[w++] = null;
1528     }
1529     }
1530     }
1531    
1532     @Override
1533     @SuppressWarnings("unchecked")
1534     public void replaceAll(UnaryOperator<E> operator) {
1535     Objects.requireNonNull(operator);
1536     final int expectedModCount = modCount;
1537     final int size = this.size;
1538     for (int i=0; modCount == expectedModCount && i < size; i++) {
1539     elementData[i] = operator.apply((E) elementData[i]);
1540     }
1541     if (modCount != expectedModCount) {
1542     throw new ConcurrentModificationException();
1543     }
1544     modCount++;
1545     }
1546    
1547     @Override
1548     @SuppressWarnings("unchecked")
1549     public void sort(Comparator<? super E> c) {
1550     final int expectedModCount = modCount;
1551     Arrays.sort((E[]) elementData, 0, size, c);
1552     if (modCount != expectedModCount) {
1553     throw new ConcurrentModificationException();
1554     }
1555     modCount++;
1556 jsr166 1.25 }
1557 dl 1.1 }