ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.37
Committed: Fri Nov 4 03:09:27 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.36: +26 -25 lines
Log Message:
use methods from removeIf to improve batchRemove

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.33 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.24 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.24 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 jsr166 1.33 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.24 * particular file as subject to the "Classpath" exception as provided
9 jsr166 1.33 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.24 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.30 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.1 */
25    
26     package java.util;
27    
28 jsr166 1.33 import java.util.function.Consumer;
29     import java.util.function.Predicate;
30     import java.util.function.UnaryOperator;
31    
32 dl 1.1 /**
33 jsr166 1.33 * Resizable-array implementation of the {@code List} interface. Implements
34 dl 1.1 * all optional list operations, and permits all elements, including
35 jsr166 1.33 * {@code null}. In addition to implementing the {@code List} interface,
36 dl 1.1 * this class provides methods to manipulate the size of the array that is
37     * used internally to store the list. (This class is roughly equivalent to
38 jsr166 1.33 * {@code Vector}, except that it is unsynchronized.)
39 dl 1.1 *
40 jsr166 1.33 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41     * {@code iterator}, and {@code listIterator} operations run in constant
42     * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 dl 1.1 * that is, adding n elements requires O(n) time. All of the other operations
44     * run in linear time (roughly speaking). The constant factor is low compared
45 jsr166 1.33 * to that for the {@code LinkedList} implementation.
46 dl 1.1 *
47 jsr166 1.33 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 dl 1.1 * the size of the array used to store the elements in the list. It is always
49     * at least as large as the list size. As elements are added to an ArrayList,
50     * its capacity grows automatically. The details of the growth policy are not
51     * specified beyond the fact that adding an element has constant amortized
52 jsr166 1.25 * time cost.
53 dl 1.1 *
54 jsr166 1.33 * <p>An application can increase the capacity of an {@code ArrayList} instance
55     * before adding a large number of elements using the {@code ensureCapacity}
56 dl 1.1 * operation. This may reduce the amount of incremental reallocation.
57     *
58     * <p><strong>Note that this implementation is not synchronized.</strong>
59 jsr166 1.33 * If multiple threads access an {@code ArrayList} instance concurrently,
60 dl 1.1 * and at least one of the threads modifies the list structurally, it
61     * <i>must</i> be synchronized externally. (A structural modification is
62     * any operation that adds or deletes one or more elements, or explicitly
63     * resizes the backing array; merely setting the value of an element is not
64     * a structural modification.) This is typically accomplished by
65     * synchronizing on some object that naturally encapsulates the list.
66     *
67     * If no such object exists, the list should be "wrapped" using the
68     * {@link Collections#synchronizedList Collections.synchronizedList}
69     * method. This is best done at creation time, to prevent accidental
70     * unsynchronized access to the list:<pre>
71     * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72     *
73 jsr166 1.33 * <p id="fail-fast">
74 jsr166 1.25 * The iterators returned by this class's {@link #iterator() iterator} and
75     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76     * if the list is structurally modified at any time after the iterator is
77     * created, in any way except through the iterator's own
78     * {@link ListIterator#remove() remove} or
79     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80     * {@link ConcurrentModificationException}. Thus, in the face of
81     * concurrent modification, the iterator fails quickly and cleanly, rather
82     * than risking arbitrary, non-deterministic behavior at an undetermined
83     * time in the future.
84 dl 1.1 *
85 jsr166 1.25 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 dl 1.1 * as it is, generally speaking, impossible to make any hard guarantees in the
87     * presence of unsynchronized concurrent modification. Fail-fast iterators
88 jsr166 1.25 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 dl 1.1 * Therefore, it would be wrong to write a program that depended on this
90 jsr166 1.25 * exception for its correctness: <i>the fail-fast behavior of iterators
91     * should be used only to detect bugs.</i>
92 dl 1.1 *
93 jsr166 1.25 * <p>This class is a member of the
94 jsr166 1.21 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 dl 1.1 * Java Collections Framework</a>.
96     *
97 jsr166 1.33 * @param <E> the type of elements in this list
98     *
99 dl 1.1 * @author Josh Bloch
100     * @author Neal Gafter
101 jsr166 1.26 * @see Collection
102     * @see List
103     * @see LinkedList
104     * @see Vector
105 dl 1.1 * @since 1.2
106     */
107     public class ArrayList<E> extends AbstractList<E>
108     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109     {
110     private static final long serialVersionUID = 8683452581122892189L;
111    
112     /**
113 jsr166 1.33 * Default initial capacity.
114     */
115     private static final int DEFAULT_CAPACITY = 10;
116    
117     /**
118     * Shared empty array instance used for empty instances.
119     */
120     private static final Object[] EMPTY_ELEMENTDATA = {};
121    
122     /**
123     * Shared empty array instance used for default sized empty instances. We
124     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125     * first element is added.
126     */
127     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128    
129     /**
130 dl 1.1 * The array buffer into which the elements of the ArrayList are stored.
131 jsr166 1.33 * The capacity of the ArrayList is the length of this array buffer. Any
132     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 dl 1.1 */
135 jsr166 1.33 transient Object[] elementData; // non-private to simplify nested class access
136 dl 1.1
137     /**
138     * The size of the ArrayList (the number of elements it contains).
139     *
140     * @serial
141     */
142     private int size;
143    
144     /**
145     * Constructs an empty list with the specified initial capacity.
146     *
147 jsr166 1.31 * @param initialCapacity the initial capacity of the list
148     * @throws IllegalArgumentException if the specified initial capacity
149     * is negative
150 dl 1.1 */
151     public ArrayList(int initialCapacity) {
152 jsr166 1.33 if (initialCapacity > 0) {
153     this.elementData = new Object[initialCapacity];
154     } else if (initialCapacity == 0) {
155     this.elementData = EMPTY_ELEMENTDATA;
156     } else {
157 dl 1.1 throw new IllegalArgumentException("Illegal Capacity: "+
158     initialCapacity);
159 jsr166 1.33 }
160 dl 1.1 }
161    
162     /**
163     * Constructs an empty list with an initial capacity of ten.
164     */
165     public ArrayList() {
166 jsr166 1.33 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 dl 1.1 }
168    
169     /**
170     * Constructs a list containing the elements of the specified
171     * collection, in the order they are returned by the collection's
172 jsr166 1.17 * iterator.
173 dl 1.1 *
174     * @param c the collection whose elements are to be placed into this list
175     * @throws NullPointerException if the specified collection is null
176     */
177     public ArrayList(Collection<? extends E> c) {
178 jsr166 1.26 elementData = c.toArray();
179 jsr166 1.33 if ((size = elementData.length) != 0) {
180     // defend against c.toArray (incorrectly) not returning Object[]
181     // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182     if (elementData.getClass() != Object[].class)
183     elementData = Arrays.copyOf(elementData, size, Object[].class);
184     } else {
185     // replace with empty array.
186     this.elementData = EMPTY_ELEMENTDATA;
187     }
188 dl 1.2 }
189 jsr166 1.4
190 dl 1.1 /**
191 jsr166 1.33 * Trims the capacity of this {@code ArrayList} instance to be the
192 dl 1.1 * list's current size. An application can use this operation to minimize
193 jsr166 1.33 * the storage of an {@code ArrayList} instance.
194 dl 1.1 */
195     public void trimToSize() {
196 jsr166 1.26 modCount++;
197 jsr166 1.33 if (size < elementData.length) {
198     elementData = (size == 0)
199     ? EMPTY_ELEMENTDATA
200     : Arrays.copyOf(elementData, size);
201 jsr166 1.26 }
202 dl 1.1 }
203    
204     /**
205 jsr166 1.33 * Increases the capacity of this {@code ArrayList} instance, if
206 dl 1.1 * necessary, to ensure that it can hold at least the number of elements
207     * specified by the minimum capacity argument.
208     *
209 jsr166 1.33 * @param minCapacity the desired minimum capacity
210 dl 1.1 */
211     public void ensureCapacity(int minCapacity) {
212 jsr166 1.33 if (minCapacity > elementData.length
213     && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214     && minCapacity <= DEFAULT_CAPACITY)) {
215     modCount++;
216     grow(minCapacity);
217     }
218     }
219    
220     /**
221     * The maximum size of array to allocate (unless necessary).
222     * Some VMs reserve some header words in an array.
223     * Attempts to allocate larger arrays may result in
224     * OutOfMemoryError: Requested array size exceeds VM limit
225     */
226     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227    
228     /**
229     * Increases the capacity to ensure that it can hold at least the
230     * number of elements specified by the minimum capacity argument.
231     *
232     * @param minCapacity the desired minimum capacity
233     * @throws OutOfMemoryError if minCapacity is less than zero
234     */
235     private Object[] grow(int minCapacity) {
236     return elementData = Arrays.copyOf(elementData,
237     newCapacity(minCapacity));
238     }
239    
240     private Object[] grow() {
241     return grow(size + 1);
242     }
243    
244     /**
245     * Returns a capacity at least as large as the given minimum capacity.
246     * Returns the current capacity increased by 50% if that suffices.
247     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249     *
250     * @param minCapacity the desired minimum capacity
251     * @throws OutOfMemoryError if minCapacity is less than zero
252     */
253     private int newCapacity(int minCapacity) {
254     // overflow-conscious code
255 jsr166 1.26 int oldCapacity = elementData.length;
256 jsr166 1.33 int newCapacity = oldCapacity + (oldCapacity >> 1);
257     if (newCapacity - minCapacity <= 0) {
258     if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259     return Math.max(DEFAULT_CAPACITY, minCapacity);
260     if (minCapacity < 0) // overflow
261     throw new OutOfMemoryError();
262     return minCapacity;
263     }
264     return (newCapacity - MAX_ARRAY_SIZE <= 0)
265     ? newCapacity
266     : hugeCapacity(minCapacity);
267     }
268    
269     private static int hugeCapacity(int minCapacity) {
270     if (minCapacity < 0) // overflow
271     throw new OutOfMemoryError();
272     return (minCapacity > MAX_ARRAY_SIZE)
273     ? Integer.MAX_VALUE
274     : MAX_ARRAY_SIZE;
275 dl 1.1 }
276    
277     /**
278     * Returns the number of elements in this list.
279     *
280     * @return the number of elements in this list
281     */
282     public int size() {
283 jsr166 1.26 return size;
284 dl 1.1 }
285    
286     /**
287 jsr166 1.33 * Returns {@code true} if this list contains no elements.
288 dl 1.1 *
289 jsr166 1.33 * @return {@code true} if this list contains no elements
290 dl 1.1 */
291     public boolean isEmpty() {
292 jsr166 1.26 return size == 0;
293 dl 1.1 }
294    
295     /**
296 jsr166 1.33 * Returns {@code true} if this list contains the specified element.
297     * More formally, returns {@code true} if and only if this list contains
298     * at least one element {@code e} such that
299     * {@code Objects.equals(o, e)}.
300 dl 1.1 *
301     * @param o element whose presence in this list is to be tested
302 jsr166 1.33 * @return {@code true} if this list contains the specified element
303 dl 1.1 */
304     public boolean contains(Object o) {
305 jsr166 1.26 return indexOf(o) >= 0;
306 dl 1.1 }
307    
308     /**
309     * Returns the index of the first occurrence of the specified element
310     * in this list, or -1 if this list does not contain the element.
311 jsr166 1.33 * More formally, returns the lowest index {@code i} such that
312     * {@code Objects.equals(o, get(i))},
313 dl 1.1 * or -1 if there is no such index.
314     */
315     public int indexOf(Object o) {
316 jsr166 1.26 if (o == null) {
317     for (int i = 0; i < size; i++)
318     if (elementData[i]==null)
319     return i;
320     } else {
321     for (int i = 0; i < size; i++)
322     if (o.equals(elementData[i]))
323     return i;
324     }
325     return -1;
326 dl 1.1 }
327    
328     /**
329     * Returns the index of the last occurrence of the specified element
330     * in this list, or -1 if this list does not contain the element.
331 jsr166 1.33 * More formally, returns the highest index {@code i} such that
332     * {@code Objects.equals(o, get(i))},
333 dl 1.1 * or -1 if there is no such index.
334     */
335     public int lastIndexOf(Object o) {
336 jsr166 1.26 if (o == null) {
337     for (int i = size-1; i >= 0; i--)
338     if (elementData[i]==null)
339     return i;
340     } else {
341     for (int i = size-1; i >= 0; i--)
342     if (o.equals(elementData[i]))
343     return i;
344     }
345     return -1;
346 dl 1.1 }
347    
348     /**
349 jsr166 1.33 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 dl 1.1 * elements themselves are not copied.)
351     *
352 jsr166 1.33 * @return a clone of this {@code ArrayList} instance
353 dl 1.1 */
354     public Object clone() {
355 jsr166 1.26 try {
356 jsr166 1.33 ArrayList<?> v = (ArrayList<?>) super.clone();
357 jsr166 1.26 v.elementData = Arrays.copyOf(elementData, size);
358     v.modCount = 0;
359     return v;
360     } catch (CloneNotSupportedException e) {
361     // this shouldn't happen, since we are Cloneable
362 jsr166 1.33 throw new InternalError(e);
363 jsr166 1.26 }
364 dl 1.1 }
365    
366     /**
367     * Returns an array containing all of the elements in this list
368     * in proper sequence (from first to last element).
369     *
370     * <p>The returned array will be "safe" in that no references to it are
371     * maintained by this list. (In other words, this method must allocate
372     * a new array). The caller is thus free to modify the returned array.
373     *
374     * <p>This method acts as bridge between array-based and collection-based
375     * APIs.
376     *
377     * @return an array containing all of the elements in this list in
378     * proper sequence
379     */
380     public Object[] toArray() {
381     return Arrays.copyOf(elementData, size);
382     }
383    
384     /**
385     * Returns an array containing all of the elements in this list in proper
386     * sequence (from first to last element); the runtime type of the returned
387     * array is that of the specified array. If the list fits in the
388     * specified array, it is returned therein. Otherwise, a new array is
389     * allocated with the runtime type of the specified array and the size of
390     * this list.
391     *
392     * <p>If the list fits in the specified array with room to spare
393     * (i.e., the array has more elements than the list), the element in
394     * the array immediately following the end of the collection is set to
395 jsr166 1.33 * {@code null}. (This is useful in determining the length of the
396 dl 1.1 * list <i>only</i> if the caller knows that the list does not contain
397     * any null elements.)
398     *
399     * @param a the array into which the elements of the list are to
400     * be stored, if it is big enough; otherwise, a new array of the
401     * same runtime type is allocated for this purpose.
402     * @return an array containing the elements of the list
403     * @throws ArrayStoreException if the runtime type of the specified array
404     * is not a supertype of the runtime type of every element in
405     * this list
406     * @throws NullPointerException if the specified array is null
407     */
408 jsr166 1.25 @SuppressWarnings("unchecked")
409 dl 1.1 public <T> T[] toArray(T[] a) {
410     if (a.length < size)
411     // Make a new array of a's runtime type, but my contents:
412     return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 jsr166 1.26 System.arraycopy(elementData, 0, a, 0, size);
414 dl 1.1 if (a.length > size)
415     a[size] = null;
416     return a;
417     }
418    
419     // Positional Access Operations
420    
421 jsr166 1.25 @SuppressWarnings("unchecked")
422     E elementData(int index) {
423 jsr166 1.26 return (E) elementData[index];
424 dl 1.1 }
425    
426     /**
427     * Returns the element at the specified position in this list.
428     *
429     * @param index index of the element to return
430     * @return the element at the specified position in this list
431     * @throws IndexOutOfBoundsException {@inheritDoc}
432     */
433     public E get(int index) {
434 jsr166 1.33 Objects.checkIndex(index, size);
435 jsr166 1.26 return elementData(index);
436 dl 1.1 }
437    
438     /**
439     * Replaces the element at the specified position in this list with
440     * the specified element.
441     *
442     * @param index index of the element to replace
443     * @param element element to be stored at the specified position
444     * @return the element previously at the specified position
445     * @throws IndexOutOfBoundsException {@inheritDoc}
446     */
447     public E set(int index, E element) {
448 jsr166 1.33 Objects.checkIndex(index, size);
449 jsr166 1.26 E oldValue = elementData(index);
450     elementData[index] = element;
451     return oldValue;
452 dl 1.1 }
453    
454     /**
455 jsr166 1.33 * This helper method split out from add(E) to keep method
456     * bytecode size under 35 (the -XX:MaxInlineSize default value),
457     * which helps when add(E) is called in a C1-compiled loop.
458     */
459     private void add(E e, Object[] elementData, int s) {
460     if (s == elementData.length)
461     elementData = grow();
462     elementData[s] = e;
463     size = s + 1;
464     }
465    
466     /**
467 dl 1.1 * Appends the specified element to the end of this list.
468     *
469     * @param e element to be appended to this list
470 jsr166 1.33 * @return {@code true} (as specified by {@link Collection#add})
471 dl 1.1 */
472     public boolean add(E e) {
473 jsr166 1.33 modCount++;
474     add(e, elementData, size);
475 jsr166 1.26 return true;
476 dl 1.1 }
477    
478     /**
479     * Inserts the specified element at the specified position in this
480     * list. Shifts the element currently at that position (if any) and
481     * any subsequent elements to the right (adds one to their indices).
482     *
483     * @param index index at which the specified element is to be inserted
484     * @param element element to be inserted
485     * @throws IndexOutOfBoundsException {@inheritDoc}
486     */
487     public void add(int index, E element) {
488 jsr166 1.26 rangeCheckForAdd(index);
489 jsr166 1.33 modCount++;
490     final int s;
491     Object[] elementData;
492     if ((s = size) == (elementData = this.elementData).length)
493     elementData = grow();
494     System.arraycopy(elementData, index,
495     elementData, index + 1,
496     s - index);
497 jsr166 1.26 elementData[index] = element;
498 jsr166 1.33 size = s + 1;
499 dl 1.1 }
500    
501     /**
502     * Removes the element at the specified position in this list.
503     * Shifts any subsequent elements to the left (subtracts one from their
504     * indices).
505     *
506     * @param index the index of the element to be removed
507     * @return the element that was removed from the list
508     * @throws IndexOutOfBoundsException {@inheritDoc}
509     */
510     public E remove(int index) {
511 jsr166 1.33 Objects.checkIndex(index, size);
512 jsr166 1.25
513 jsr166 1.26 modCount++;
514     E oldValue = elementData(index);
515 jsr166 1.25
516 jsr166 1.26 int numMoved = size - index - 1;
517     if (numMoved > 0)
518     System.arraycopy(elementData, index+1, elementData, index,
519     numMoved);
520 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
521 jsr166 1.25
522 jsr166 1.26 return oldValue;
523 dl 1.1 }
524    
525     /**
526     * Removes the first occurrence of the specified element from this list,
527     * if it is present. If the list does not contain the element, it is
528     * unchanged. More formally, removes the element with the lowest index
529 jsr166 1.33 * {@code i} such that
530     * {@code Objects.equals(o, get(i))}
531     * (if such an element exists). Returns {@code true} if this list
532 dl 1.1 * contained the specified element (or equivalently, if this list
533     * changed as a result of the call).
534     *
535     * @param o element to be removed from this list, if present
536 jsr166 1.33 * @return {@code true} if this list contained the specified element
537 dl 1.1 */
538     public boolean remove(Object o) {
539 jsr166 1.26 if (o == null) {
540     for (int index = 0; index < size; index++)
541     if (elementData[index] == null) {
542     fastRemove(index);
543     return true;
544     }
545     } else {
546 dl 1.1 for (int index = 0; index < size; index++)
547 jsr166 1.26 if (o.equals(elementData[index])) {
548     fastRemove(index);
549     return true;
550     }
551 dl 1.1 }
552 jsr166 1.26 return false;
553 dl 1.1 }
554    
555     /*
556     * Private remove method that skips bounds checking and does not
557     * return the value removed.
558     */
559     private void fastRemove(int index) {
560     modCount++;
561     int numMoved = size - index - 1;
562     if (numMoved > 0)
563     System.arraycopy(elementData, index+1, elementData, index,
564     numMoved);
565 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
566 dl 1.1 }
567    
568     /**
569     * Removes all of the elements from this list. The list will
570     * be empty after this call returns.
571     */
572     public void clear() {
573 jsr166 1.26 modCount++;
574 dl 1.1
575 jsr166 1.33 // clear to let GC do its work
576 jsr166 1.26 for (int i = 0; i < size; i++)
577     elementData[i] = null;
578 dl 1.1
579 jsr166 1.26 size = 0;
580 dl 1.1 }
581    
582     /**
583     * Appends all of the elements in the specified collection to the end of
584     * this list, in the order that they are returned by the
585     * specified collection's Iterator. The behavior of this operation is
586     * undefined if the specified collection is modified while the operation
587     * is in progress. (This implies that the behavior of this call is
588     * undefined if the specified collection is this list, and this
589     * list is nonempty.)
590     *
591     * @param c collection containing elements to be added to this list
592 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
593 dl 1.1 * @throws NullPointerException if the specified collection is null
594     */
595     public boolean addAll(Collection<? extends E> c) {
596 jsr166 1.26 Object[] a = c.toArray();
597 jsr166 1.33 modCount++;
598 dl 1.1 int numNew = a.length;
599 jsr166 1.33 if (numNew == 0)
600     return false;
601     Object[] elementData;
602     final int s;
603     if (numNew > (elementData = this.elementData).length - (s = size))
604     elementData = grow(s + numNew);
605     System.arraycopy(a, 0, elementData, s, numNew);
606     size = s + numNew;
607     return true;
608 dl 1.1 }
609    
610     /**
611     * Inserts all of the elements in the specified collection into this
612     * list, starting at the specified position. Shifts the element
613     * currently at that position (if any) and any subsequent elements to
614     * the right (increases their indices). The new elements will appear
615     * in the list in the order that they are returned by the
616     * specified collection's iterator.
617     *
618     * @param index index at which to insert the first element from the
619     * specified collection
620     * @param c collection containing elements to be added to this list
621 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
622 dl 1.1 * @throws IndexOutOfBoundsException {@inheritDoc}
623     * @throws NullPointerException if the specified collection is null
624     */
625     public boolean addAll(int index, Collection<? extends E> c) {
626 jsr166 1.26 rangeCheckForAdd(index);
627 dl 1.1
628 jsr166 1.26 Object[] a = c.toArray();
629 jsr166 1.33 modCount++;
630 jsr166 1.26 int numNew = a.length;
631 jsr166 1.33 if (numNew == 0)
632     return false;
633     Object[] elementData;
634     final int s;
635     if (numNew > (elementData = this.elementData).length - (s = size))
636     elementData = grow(s + numNew);
637 jsr166 1.26
638 jsr166 1.33 int numMoved = s - index;
639 jsr166 1.26 if (numMoved > 0)
640 jsr166 1.33 System.arraycopy(elementData, index,
641     elementData, index + numNew,
642 jsr166 1.26 numMoved);
643 dl 1.1 System.arraycopy(a, 0, elementData, index, numNew);
644 jsr166 1.33 size = s + numNew;
645     return true;
646 dl 1.1 }
647    
648     /**
649     * Removes from this list all of the elements whose index is between
650 jsr166 1.25 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
651 dl 1.1 * Shifts any succeeding elements to the left (reduces their index).
652 jsr166 1.25 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
653     * (If {@code toIndex==fromIndex}, this operation has no effect.)
654 dl 1.1 *
655 jsr166 1.25 * @throws IndexOutOfBoundsException if {@code fromIndex} or
656     * {@code toIndex} is out of range
657     * ({@code fromIndex < 0 ||
658     * toIndex > size() ||
659     * toIndex < fromIndex})
660 dl 1.1 */
661     protected void removeRange(int fromIndex, int toIndex) {
662 jsr166 1.33 if (fromIndex > toIndex) {
663     throw new IndexOutOfBoundsException(
664     outOfBoundsMsg(fromIndex, toIndex));
665     }
666 jsr166 1.26 modCount++;
667     int numMoved = size - toIndex;
668 dl 1.1 System.arraycopy(elementData, toIndex, elementData, fromIndex,
669     numMoved);
670    
671 jsr166 1.33 // clear to let GC do its work
672 jsr166 1.26 int newSize = size - (toIndex-fromIndex);
673 jsr166 1.33 for (int i = newSize; i < size; i++) {
674     elementData[i] = null;
675     }
676     size = newSize;
677 jsr166 1.25 }
678    
679     /**
680     * A version of rangeCheck used by add and addAll.
681     */
682     private void rangeCheckForAdd(int index) {
683 jsr166 1.26 if (index > size || index < 0)
684     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
685 jsr166 1.25 }
686    
687     /**
688     * Constructs an IndexOutOfBoundsException detail message.
689     * Of the many possible refactorings of the error handling code,
690     * this "outlining" performs best with both server and client VMs.
691     */
692     private String outOfBoundsMsg(int index) {
693 jsr166 1.26 return "Index: "+index+", Size: "+size;
694 jsr166 1.25 }
695    
696     /**
697 jsr166 1.33 * A version used in checking (fromIndex > toIndex) condition
698     */
699     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
700     return "From Index: " + fromIndex + " > To Index: " + toIndex;
701     }
702    
703     /**
704 jsr166 1.25 * Removes from this list all of its elements that are contained in the
705     * specified collection.
706     *
707     * @param c collection containing elements to be removed from this list
708     * @return {@code true} if this list changed as a result of the call
709     * @throws ClassCastException if the class of an element of this list
710 jsr166 1.33 * is incompatible with the specified collection
711     * (<a href="Collection.html#optional-restrictions">optional</a>)
712 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
713 jsr166 1.33 * specified collection does not permit null elements
714     * (<a href="Collection.html#optional-restrictions">optional</a>),
715 jsr166 1.25 * or if the specified collection is null
716     * @see Collection#contains(Object)
717     */
718     public boolean removeAll(Collection<?> c) {
719 jsr166 1.26 return batchRemove(c, false);
720 jsr166 1.25 }
721    
722     /**
723     * Retains only the elements in this list that are contained in the
724     * specified collection. In other words, removes from this list all
725     * of its elements that are not contained in the specified collection.
726     *
727     * @param c collection containing elements to be retained in this list
728     * @return {@code true} if this list changed as a result of the call
729     * @throws ClassCastException if the class of an element of this list
730 jsr166 1.33 * is incompatible with the specified collection
731     * (<a href="Collection.html#optional-restrictions">optional</a>)
732 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
733 jsr166 1.33 * specified collection does not permit null elements
734     * (<a href="Collection.html#optional-restrictions">optional</a>),
735 jsr166 1.25 * or if the specified collection is null
736     * @see Collection#contains(Object)
737     */
738     public boolean retainAll(Collection<?> c) {
739 jsr166 1.26 return batchRemove(c, true);
740 jsr166 1.25 }
741    
742     private boolean batchRemove(Collection<?> c, boolean complement) {
743 jsr166 1.37 Objects.requireNonNull(c);
744     final Object[] es = elementData;
745     final int size = this.size;
746     final boolean modified;
747     int r;
748     // Optimize for initial run of survivors
749     for (r = 0; r < size; r++)
750     if (c.contains(es[r]) != complement)
751     break;
752     if (modified = (r < size)) {
753     int w = r++;
754     try {
755     for (Object e; r < size; r++)
756     if (c.contains(e = es[r]) == complement)
757     es[w++] = e;
758     } catch (Throwable ex) {
759     // Preserve behavioral compatibility with AbstractCollection,
760     // even if c.contains() throws.
761     System.arraycopy(es, r, es, w, size - r);
762 jsr166 1.26 w += size - r;
763 jsr166 1.37 throw ex;
764     } finally {
765 jsr166 1.26 modCount += size - w;
766 jsr166 1.37 Arrays.fill(es, (this.size = w), size, null);
767 jsr166 1.26 }
768     }
769     return modified;
770 jsr166 1.25 }
771    
772     /**
773 jsr166 1.33 * Save the state of the {@code ArrayList} instance to a stream (that
774 dl 1.1 * is, serialize it).
775     *
776 jsr166 1.33 * @serialData The length of the array backing the {@code ArrayList}
777 dl 1.1 * instance is emitted (int), followed by all of its elements
778 jsr166 1.33 * (each an {@code Object}) in the proper order.
779 dl 1.1 */
780     private void writeObject(java.io.ObjectOutputStream s)
781     throws java.io.IOException{
782 jsr166 1.26 // Write out element count, and any hidden stuff
783     int expectedModCount = modCount;
784     s.defaultWriteObject();
785 dl 1.1
786 jsr166 1.33 // Write out size as capacity for behavioural compatibility with clone()
787     s.writeInt(size);
788 dl 1.1
789 jsr166 1.26 // Write out all elements in the proper order.
790 jsr166 1.33 for (int i=0; i<size; i++) {
791 dl 1.1 s.writeObject(elementData[i]);
792 jsr166 1.33 }
793 dl 1.1
794 jsr166 1.26 if (modCount != expectedModCount) {
795 dl 1.1 throw new ConcurrentModificationException();
796     }
797     }
798    
799     /**
800 jsr166 1.33 * Reconstitute the {@code ArrayList} instance from a stream (that is,
801 dl 1.1 * deserialize it).
802     */
803     private void readObject(java.io.ObjectInputStream s)
804     throws java.io.IOException, ClassNotFoundException {
805 jsr166 1.33
806 jsr166 1.26 // Read in size, and any hidden stuff
807     s.defaultReadObject();
808 dl 1.1
809 jsr166 1.33 // Read in capacity
810     s.readInt(); // ignored
811    
812     if (size > 0) {
813     // like clone(), allocate array based upon size not capacity
814     Object[] elements = new Object[size];
815    
816     // Read in all elements in the proper order.
817     for (int i = 0; i < size; i++) {
818     elements[i] = s.readObject();
819     }
820    
821     elementData = elements;
822     } else if (size == 0) {
823     elementData = EMPTY_ELEMENTDATA;
824     } else {
825     throw new java.io.InvalidObjectException("Invalid size: " + size);
826     }
827 dl 1.1 }
828 jsr166 1.25
829     /**
830     * Returns a list iterator over the elements in this list (in proper
831     * sequence), starting at the specified position in the list.
832     * The specified index indicates the first element that would be
833     * returned by an initial call to {@link ListIterator#next next}.
834     * An initial call to {@link ListIterator#previous previous} would
835     * return the element with the specified index minus one.
836     *
837     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
838     *
839     * @throws IndexOutOfBoundsException {@inheritDoc}
840     */
841     public ListIterator<E> listIterator(int index) {
842 jsr166 1.33 rangeCheckForAdd(index);
843 jsr166 1.26 return new ListItr(index);
844 jsr166 1.25 }
845    
846     /**
847     * Returns a list iterator over the elements in this list (in proper
848     * sequence).
849     *
850     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
851     *
852     * @see #listIterator(int)
853     */
854     public ListIterator<E> listIterator() {
855 jsr166 1.26 return new ListItr(0);
856 jsr166 1.25 }
857    
858     /**
859     * Returns an iterator over the elements in this list in proper sequence.
860     *
861     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
862     *
863     * @return an iterator over the elements in this list in proper sequence
864     */
865     public Iterator<E> iterator() {
866 jsr166 1.26 return new Itr();
867 jsr166 1.25 }
868    
869     /**
870     * An optimized version of AbstractList.Itr
871     */
872     private class Itr implements Iterator<E> {
873 jsr166 1.26 int cursor; // index of next element to return
874     int lastRet = -1; // index of last element returned; -1 if no such
875     int expectedModCount = modCount;
876 jsr166 1.25
877 jsr166 1.33 // prevent creating a synthetic constructor
878     Itr() {}
879    
880 jsr166 1.26 public boolean hasNext() {
881 jsr166 1.25 return cursor != size;
882 jsr166 1.26 }
883    
884     @SuppressWarnings("unchecked")
885     public E next() {
886     checkForComodification();
887     int i = cursor;
888     if (i >= size)
889     throw new NoSuchElementException();
890     Object[] elementData = ArrayList.this.elementData;
891     if (i >= elementData.length)
892     throw new ConcurrentModificationException();
893     cursor = i + 1;
894     return (E) elementData[lastRet = i];
895     }
896 jsr166 1.25
897 jsr166 1.26 public void remove() {
898     if (lastRet < 0)
899     throw new IllegalStateException();
900 jsr166 1.25 checkForComodification();
901 jsr166 1.26
902     try {
903     ArrayList.this.remove(lastRet);
904     cursor = lastRet;
905     lastRet = -1;
906     expectedModCount = modCount;
907     } catch (IndexOutOfBoundsException ex) {
908     throw new ConcurrentModificationException();
909     }
910     }
911    
912 jsr166 1.33 @Override
913     @SuppressWarnings("unchecked")
914     public void forEachRemaining(Consumer<? super E> consumer) {
915     Objects.requireNonNull(consumer);
916     final int size = ArrayList.this.size;
917     int i = cursor;
918     if (i >= size) {
919     return;
920     }
921     final Object[] elementData = ArrayList.this.elementData;
922     if (i >= elementData.length) {
923     throw new ConcurrentModificationException();
924     }
925     while (i != size && modCount == expectedModCount) {
926     consumer.accept((E) elementData[i++]);
927     }
928     // update once at end of iteration to reduce heap write traffic
929     cursor = i;
930     lastRet = i - 1;
931     checkForComodification();
932     }
933    
934 jsr166 1.26 final void checkForComodification() {
935     if (modCount != expectedModCount)
936     throw new ConcurrentModificationException();
937     }
938 jsr166 1.25 }
939    
940     /**
941     * An optimized version of AbstractList.ListItr
942     */
943     private class ListItr extends Itr implements ListIterator<E> {
944 jsr166 1.26 ListItr(int index) {
945     super();
946     cursor = index;
947     }
948    
949     public boolean hasPrevious() {
950     return cursor != 0;
951     }
952 jsr166 1.25
953 jsr166 1.26 public int nextIndex() {
954     return cursor;
955     }
956    
957     public int previousIndex() {
958     return cursor - 1;
959     }
960    
961     @SuppressWarnings("unchecked")
962 jsr166 1.25 public E previous() {
963 jsr166 1.26 checkForComodification();
964     int i = cursor - 1;
965     if (i < 0)
966     throw new NoSuchElementException();
967     Object[] elementData = ArrayList.this.elementData;
968     if (i >= elementData.length)
969     throw new ConcurrentModificationException();
970     cursor = i;
971     return (E) elementData[lastRet = i];
972     }
973    
974     public void set(E e) {
975     if (lastRet < 0)
976     throw new IllegalStateException();
977     checkForComodification();
978    
979     try {
980     ArrayList.this.set(lastRet, e);
981     } catch (IndexOutOfBoundsException ex) {
982     throw new ConcurrentModificationException();
983     }
984     }
985    
986     public void add(E e) {
987     checkForComodification();
988    
989     try {
990     int i = cursor;
991     ArrayList.this.add(i, e);
992     cursor = i + 1;
993     lastRet = -1;
994     expectedModCount = modCount;
995     } catch (IndexOutOfBoundsException ex) {
996     throw new ConcurrentModificationException();
997     }
998     }
999 jsr166 1.25 }
1000    
1001     /**
1002     * Returns a view of the portion of this list between the specified
1003     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1004     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1005     * empty.) The returned list is backed by this list, so non-structural
1006     * changes in the returned list are reflected in this list, and vice-versa.
1007     * The returned list supports all of the optional list operations.
1008     *
1009     * <p>This method eliminates the need for explicit range operations (of
1010     * the sort that commonly exist for arrays). Any operation that expects
1011     * a list can be used as a range operation by passing a subList view
1012     * instead of a whole list. For example, the following idiom
1013     * removes a range of elements from a list:
1014     * <pre>
1015     * list.subList(from, to).clear();
1016     * </pre>
1017     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1018     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1019     * {@link Collections} class can be applied to a subList.
1020     *
1021     * <p>The semantics of the list returned by this method become undefined if
1022     * the backing list (i.e., this list) is <i>structurally modified</i> in
1023     * any way other than via the returned list. (Structural modifications are
1024     * those that change the size of this list, or otherwise perturb it in such
1025     * a fashion that iterations in progress may yield incorrect results.)
1026     *
1027     * @throws IndexOutOfBoundsException {@inheritDoc}
1028     * @throws IllegalArgumentException {@inheritDoc}
1029     */
1030     public List<E> subList(int fromIndex, int toIndex) {
1031 jsr166 1.26 subListRangeCheck(fromIndex, toIndex, size);
1032 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1033 jsr166 1.25 }
1034    
1035 jsr166 1.33 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1036     private final ArrayList<E> root;
1037     private final SubList<E> parent;
1038 jsr166 1.26 private final int offset;
1039 jsr166 1.33 private int size;
1040 jsr166 1.26
1041 jsr166 1.33 /**
1042     * Constructs a sublist of an arbitrary ArrayList.
1043     */
1044     public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1045     this.root = root;
1046     this.parent = null;
1047     this.offset = fromIndex;
1048     this.size = toIndex - fromIndex;
1049     this.modCount = root.modCount;
1050     }
1051    
1052     /**
1053     * Constructs a sublist of another SubList.
1054     */
1055     private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1056     this.root = parent.root;
1057 jsr166 1.26 this.parent = parent;
1058 jsr166 1.33 this.offset = parent.offset + fromIndex;
1059 jsr166 1.26 this.size = toIndex - fromIndex;
1060 jsr166 1.33 this.modCount = root.modCount;
1061 jsr166 1.26 }
1062    
1063 jsr166 1.33 public E set(int index, E element) {
1064     Objects.checkIndex(index, size);
1065 jsr166 1.26 checkForComodification();
1066 jsr166 1.33 E oldValue = root.elementData(offset + index);
1067     root.elementData[offset + index] = element;
1068 jsr166 1.26 return oldValue;
1069     }
1070    
1071     public E get(int index) {
1072 jsr166 1.33 Objects.checkIndex(index, size);
1073 jsr166 1.26 checkForComodification();
1074 jsr166 1.33 return root.elementData(offset + index);
1075 jsr166 1.26 }
1076    
1077     public int size() {
1078     checkForComodification();
1079 jsr166 1.33 return size;
1080 jsr166 1.26 }
1081    
1082 jsr166 1.33 public void add(int index, E element) {
1083 jsr166 1.26 rangeCheckForAdd(index);
1084     checkForComodification();
1085 jsr166 1.33 root.add(offset + index, element);
1086     updateSizeAndModCount(1);
1087 jsr166 1.26 }
1088    
1089     public E remove(int index) {
1090 jsr166 1.33 Objects.checkIndex(index, size);
1091 jsr166 1.26 checkForComodification();
1092 jsr166 1.33 E result = root.remove(offset + index);
1093     updateSizeAndModCount(-1);
1094 jsr166 1.26 return result;
1095     }
1096    
1097     protected void removeRange(int fromIndex, int toIndex) {
1098     checkForComodification();
1099 jsr166 1.33 root.removeRange(offset + fromIndex, offset + toIndex);
1100     updateSizeAndModCount(fromIndex - toIndex);
1101 jsr166 1.26 }
1102    
1103     public boolean addAll(Collection<? extends E> c) {
1104     return addAll(this.size, c);
1105     }
1106    
1107     public boolean addAll(int index, Collection<? extends E> c) {
1108     rangeCheckForAdd(index);
1109     int cSize = c.size();
1110     if (cSize==0)
1111     return false;
1112     checkForComodification();
1113 jsr166 1.33 root.addAll(offset + index, c);
1114     updateSizeAndModCount(cSize);
1115 jsr166 1.26 return true;
1116     }
1117    
1118     public Iterator<E> iterator() {
1119     return listIterator();
1120     }
1121    
1122 jsr166 1.33 public ListIterator<E> listIterator(int index) {
1123 jsr166 1.26 checkForComodification();
1124     rangeCheckForAdd(index);
1125    
1126     return new ListIterator<E>() {
1127     int cursor = index;
1128     int lastRet = -1;
1129 jsr166 1.33 int expectedModCount = root.modCount;
1130 jsr166 1.26
1131     public boolean hasNext() {
1132     return cursor != SubList.this.size;
1133     }
1134    
1135     @SuppressWarnings("unchecked")
1136     public E next() {
1137     checkForComodification();
1138     int i = cursor;
1139     if (i >= SubList.this.size)
1140     throw new NoSuchElementException();
1141 jsr166 1.33 Object[] elementData = root.elementData;
1142 jsr166 1.26 if (offset + i >= elementData.length)
1143     throw new ConcurrentModificationException();
1144     cursor = i + 1;
1145     return (E) elementData[offset + (lastRet = i)];
1146     }
1147    
1148     public boolean hasPrevious() {
1149     return cursor != 0;
1150     }
1151    
1152     @SuppressWarnings("unchecked")
1153     public E previous() {
1154     checkForComodification();
1155     int i = cursor - 1;
1156     if (i < 0)
1157     throw new NoSuchElementException();
1158 jsr166 1.33 Object[] elementData = root.elementData;
1159 jsr166 1.26 if (offset + i >= elementData.length)
1160     throw new ConcurrentModificationException();
1161     cursor = i;
1162     return (E) elementData[offset + (lastRet = i)];
1163     }
1164    
1165 jsr166 1.33 @SuppressWarnings("unchecked")
1166     public void forEachRemaining(Consumer<? super E> consumer) {
1167     Objects.requireNonNull(consumer);
1168     final int size = SubList.this.size;
1169     int i = cursor;
1170     if (i >= size) {
1171     return;
1172     }
1173     final Object[] elementData = root.elementData;
1174     if (offset + i >= elementData.length) {
1175     throw new ConcurrentModificationException();
1176     }
1177     while (i != size && modCount == expectedModCount) {
1178     consumer.accept((E) elementData[offset + (i++)]);
1179     }
1180     // update once at end of iteration to reduce heap write traffic
1181     lastRet = cursor = i;
1182     checkForComodification();
1183     }
1184    
1185 jsr166 1.26 public int nextIndex() {
1186     return cursor;
1187     }
1188    
1189     public int previousIndex() {
1190     return cursor - 1;
1191     }
1192    
1193     public void remove() {
1194     if (lastRet < 0)
1195     throw new IllegalStateException();
1196     checkForComodification();
1197    
1198     try {
1199     SubList.this.remove(lastRet);
1200     cursor = lastRet;
1201     lastRet = -1;
1202 jsr166 1.33 expectedModCount = root.modCount;
1203 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1204     throw new ConcurrentModificationException();
1205     }
1206     }
1207    
1208     public void set(E e) {
1209     if (lastRet < 0)
1210     throw new IllegalStateException();
1211     checkForComodification();
1212    
1213     try {
1214 jsr166 1.33 root.set(offset + lastRet, e);
1215 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1216     throw new ConcurrentModificationException();
1217     }
1218     }
1219    
1220     public void add(E e) {
1221     checkForComodification();
1222    
1223     try {
1224     int i = cursor;
1225     SubList.this.add(i, e);
1226     cursor = i + 1;
1227     lastRet = -1;
1228 jsr166 1.33 expectedModCount = root.modCount;
1229 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1230     throw new ConcurrentModificationException();
1231     }
1232     }
1233    
1234     final void checkForComodification() {
1235 jsr166 1.33 if (root.modCount != expectedModCount)
1236 jsr166 1.26 throw new ConcurrentModificationException();
1237     }
1238     };
1239     }
1240    
1241     public List<E> subList(int fromIndex, int toIndex) {
1242     subListRangeCheck(fromIndex, toIndex, size);
1243 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1244 jsr166 1.26 }
1245    
1246     private void rangeCheckForAdd(int index) {
1247     if (index < 0 || index > this.size)
1248     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1249     }
1250    
1251     private String outOfBoundsMsg(int index) {
1252     return "Index: "+index+", Size: "+this.size;
1253     }
1254    
1255     private void checkForComodification() {
1256 jsr166 1.33 if (root.modCount != modCount)
1257 jsr166 1.26 throw new ConcurrentModificationException();
1258     }
1259 jsr166 1.33
1260     private void updateSizeAndModCount(int sizeChange) {
1261     SubList<E> slist = this;
1262     do {
1263     slist.size += sizeChange;
1264     slist.modCount = root.modCount;
1265     slist = slist.parent;
1266     } while (slist != null);
1267     }
1268    
1269     public Spliterator<E> spliterator() {
1270     checkForComodification();
1271    
1272     // ArrayListSpliterator is not used because late-binding logic
1273     // is different here
1274     return new Spliterator<>() {
1275     private int index = offset; // current index, modified on advance/split
1276     private int fence = -1; // -1 until used; then one past last index
1277     private int expectedModCount; // initialized when fence set
1278    
1279     private int getFence() { // initialize fence to size on first use
1280     int hi; // (a specialized variant appears in method forEach)
1281     if ((hi = fence) < 0) {
1282     expectedModCount = modCount;
1283     hi = fence = offset + size;
1284     }
1285     return hi;
1286     }
1287    
1288     public ArrayListSpliterator<E> trySplit() {
1289     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1290     // ArrayListSpliterator could be used here as the source is already bound
1291     return (lo >= mid) ? null : // divide range in half unless too small
1292     new ArrayListSpliterator<>(root, lo, index = mid,
1293     expectedModCount);
1294     }
1295    
1296     public boolean tryAdvance(Consumer<? super E> action) {
1297     Objects.requireNonNull(action);
1298     int hi = getFence(), i = index;
1299     if (i < hi) {
1300     index = i + 1;
1301     @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1302     action.accept(e);
1303     if (root.modCount != expectedModCount)
1304     throw new ConcurrentModificationException();
1305     return true;
1306     }
1307     return false;
1308     }
1309    
1310     public void forEachRemaining(Consumer<? super E> action) {
1311     Objects.requireNonNull(action);
1312     int i, hi, mc; // hoist accesses and checks from loop
1313     ArrayList<E> lst = root;
1314     Object[] a;
1315     if ((a = lst.elementData) != null) {
1316     if ((hi = fence) < 0) {
1317     mc = modCount;
1318     hi = offset + size;
1319     }
1320     else
1321     mc = expectedModCount;
1322     if ((i = index) >= 0 && (index = hi) <= a.length) {
1323     for (; i < hi; ++i) {
1324     @SuppressWarnings("unchecked") E e = (E) a[i];
1325     action.accept(e);
1326     }
1327     if (lst.modCount == mc)
1328     return;
1329     }
1330     }
1331     throw new ConcurrentModificationException();
1332     }
1333    
1334     public long estimateSize() {
1335     return (long) (getFence() - index);
1336     }
1337    
1338     public int characteristics() {
1339     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1340     }
1341     };
1342     }
1343     }
1344    
1345     @Override
1346     public void forEach(Consumer<? super E> action) {
1347     Objects.requireNonNull(action);
1348     final int expectedModCount = modCount;
1349     @SuppressWarnings("unchecked")
1350     final E[] elementData = (E[]) this.elementData;
1351     final int size = this.size;
1352     for (int i=0; modCount == expectedModCount && i < size; i++) {
1353     action.accept(elementData[i]);
1354     }
1355     if (modCount != expectedModCount) {
1356     throw new ConcurrentModificationException();
1357     }
1358     }
1359    
1360     /**
1361     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1362     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1363     * list.
1364     *
1365     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1366     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1367     * Overriding implementations should document the reporting of additional
1368     * characteristic values.
1369     *
1370     * @return a {@code Spliterator} over the elements in this list
1371     * @since 1.8
1372     */
1373     @Override
1374     public Spliterator<E> spliterator() {
1375     return new ArrayListSpliterator<>(this, 0, -1, 0);
1376     }
1377    
1378     /** Index-based split-by-two, lazily initialized Spliterator */
1379     static final class ArrayListSpliterator<E> implements Spliterator<E> {
1380    
1381     /*
1382     * If ArrayLists were immutable, or structurally immutable (no
1383     * adds, removes, etc), we could implement their spliterators
1384     * with Arrays.spliterator. Instead we detect as much
1385     * interference during traversal as practical without
1386     * sacrificing much performance. We rely primarily on
1387     * modCounts. These are not guaranteed to detect concurrency
1388     * violations, and are sometimes overly conservative about
1389     * within-thread interference, but detect enough problems to
1390     * be worthwhile in practice. To carry this out, we (1) lazily
1391     * initialize fence and expectedModCount until the latest
1392     * point that we need to commit to the state we are checking
1393     * against; thus improving precision. (This doesn't apply to
1394     * SubLists, that create spliterators with current non-lazy
1395     * values). (2) We perform only a single
1396     * ConcurrentModificationException check at the end of forEach
1397     * (the most performance-sensitive method). When using forEach
1398     * (as opposed to iterators), we can normally only detect
1399     * interference after actions, not before. Further
1400     * CME-triggering checks apply to all other possible
1401     * violations of assumptions for example null or too-small
1402     * elementData array given its size(), that could only have
1403     * occurred due to interference. This allows the inner loop
1404     * of forEach to run without any further checks, and
1405     * simplifies lambda-resolution. While this does entail a
1406     * number of checks, note that in the common case of
1407     * list.stream().forEach(a), no checks or other computation
1408     * occur anywhere other than inside forEach itself. The other
1409     * less-often-used methods cannot take advantage of most of
1410     * these streamlinings.
1411     */
1412    
1413     private final ArrayList<E> list;
1414     private int index; // current index, modified on advance/split
1415     private int fence; // -1 until used; then one past last index
1416     private int expectedModCount; // initialized when fence set
1417    
1418     /** Create new spliterator covering the given range */
1419     ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1420     int expectedModCount) {
1421     this.list = list; // OK if null unless traversed
1422     this.index = origin;
1423     this.fence = fence;
1424     this.expectedModCount = expectedModCount;
1425     }
1426    
1427     private int getFence() { // initialize fence to size on first use
1428     int hi; // (a specialized variant appears in method forEach)
1429     ArrayList<E> lst;
1430     if ((hi = fence) < 0) {
1431     if ((lst = list) == null)
1432     hi = fence = 0;
1433     else {
1434     expectedModCount = lst.modCount;
1435     hi = fence = lst.size;
1436     }
1437     }
1438     return hi;
1439     }
1440    
1441     public ArrayListSpliterator<E> trySplit() {
1442     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1443     return (lo >= mid) ? null : // divide range in half unless too small
1444     new ArrayListSpliterator<>(list, lo, index = mid,
1445     expectedModCount);
1446     }
1447    
1448     public boolean tryAdvance(Consumer<? super E> action) {
1449     if (action == null)
1450     throw new NullPointerException();
1451     int hi = getFence(), i = index;
1452     if (i < hi) {
1453     index = i + 1;
1454     @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1455     action.accept(e);
1456     if (list.modCount != expectedModCount)
1457     throw new ConcurrentModificationException();
1458     return true;
1459     }
1460     return false;
1461     }
1462    
1463     public void forEachRemaining(Consumer<? super E> action) {
1464     int i, hi, mc; // hoist accesses and checks from loop
1465     ArrayList<E> lst; Object[] a;
1466     if (action == null)
1467     throw new NullPointerException();
1468     if ((lst = list) != null && (a = lst.elementData) != null) {
1469     if ((hi = fence) < 0) {
1470     mc = lst.modCount;
1471     hi = lst.size;
1472     }
1473     else
1474     mc = expectedModCount;
1475     if ((i = index) >= 0 && (index = hi) <= a.length) {
1476     for (; i < hi; ++i) {
1477     @SuppressWarnings("unchecked") E e = (E) a[i];
1478     action.accept(e);
1479     }
1480     if (lst.modCount == mc)
1481     return;
1482     }
1483     }
1484     throw new ConcurrentModificationException();
1485     }
1486    
1487     public long estimateSize() {
1488     return (long) (getFence() - index);
1489     }
1490    
1491     public int characteristics() {
1492     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1493     }
1494     }
1495    
1496 jsr166 1.36 @SuppressWarnings("unchecked")
1497 jsr166 1.33 @Override
1498     public boolean removeIf(Predicate<? super E> filter) {
1499     Objects.requireNonNull(filter);
1500 jsr166 1.36 int expectedModCount = modCount;
1501     final Object[] es = elementData;
1502     final int size = this.size;
1503     final boolean modified;
1504     int r;
1505 jsr166 1.37 // Optimize for initial run of survivors
1506 jsr166 1.36 for (r = 0; r < size; r++)
1507     if (filter.test((E) es[r]))
1508     break;
1509     if (modified = (r < size)) {
1510     expectedModCount++;
1511     modCount++;
1512     int w = r++;
1513     try {
1514     for (E e; r < size; r++)
1515     if (!filter.test(e = (E) es[r]))
1516     es[w++] = e;
1517     } catch (Throwable ex) {
1518     // copy remaining elements
1519     System.arraycopy(es, r, es, w, size - r);
1520 jsr166 1.37 w += size - r;
1521 jsr166 1.36 throw ex;
1522 jsr166 1.37 } finally {
1523     Arrays.fill(es, (this.size = w), size, null);
1524 jsr166 1.33 }
1525     }
1526 jsr166 1.36 if (modCount != expectedModCount)
1527     throw new ConcurrentModificationException();
1528     return modified;
1529 jsr166 1.33 }
1530    
1531     @Override
1532     @SuppressWarnings("unchecked")
1533     public void replaceAll(UnaryOperator<E> operator) {
1534     Objects.requireNonNull(operator);
1535     final int expectedModCount = modCount;
1536     final int size = this.size;
1537     for (int i=0; modCount == expectedModCount && i < size; i++) {
1538     elementData[i] = operator.apply((E) elementData[i]);
1539     }
1540     if (modCount != expectedModCount) {
1541     throw new ConcurrentModificationException();
1542     }
1543     modCount++;
1544     }
1545    
1546     @Override
1547     @SuppressWarnings("unchecked")
1548     public void sort(Comparator<? super E> c) {
1549     final int expectedModCount = modCount;
1550     Arrays.sort((E[]) elementData, 0, size, c);
1551     if (modCount != expectedModCount) {
1552     throw new ConcurrentModificationException();
1553     }
1554     modCount++;
1555 jsr166 1.25 }
1556 dl 1.1 }