ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.39
Committed: Sun Nov 13 02:10:09 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.38: +49 -33 lines
Log Message:
Tolerate reentrant read access in removeIf

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.33 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.24 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.24 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 jsr166 1.33 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.24 * particular file as subject to the "Classpath" exception as provided
9 jsr166 1.33 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.24 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.30 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.1 */
25    
26     package java.util;
27    
28 jsr166 1.33 import java.util.function.Consumer;
29     import java.util.function.Predicate;
30     import java.util.function.UnaryOperator;
31    
32 dl 1.1 /**
33 jsr166 1.33 * Resizable-array implementation of the {@code List} interface. Implements
34 dl 1.1 * all optional list operations, and permits all elements, including
35 jsr166 1.33 * {@code null}. In addition to implementing the {@code List} interface,
36 dl 1.1 * this class provides methods to manipulate the size of the array that is
37     * used internally to store the list. (This class is roughly equivalent to
38 jsr166 1.33 * {@code Vector}, except that it is unsynchronized.)
39 dl 1.1 *
40 jsr166 1.33 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41     * {@code iterator}, and {@code listIterator} operations run in constant
42     * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 dl 1.1 * that is, adding n elements requires O(n) time. All of the other operations
44     * run in linear time (roughly speaking). The constant factor is low compared
45 jsr166 1.33 * to that for the {@code LinkedList} implementation.
46 dl 1.1 *
47 jsr166 1.33 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 dl 1.1 * the size of the array used to store the elements in the list. It is always
49     * at least as large as the list size. As elements are added to an ArrayList,
50     * its capacity grows automatically. The details of the growth policy are not
51     * specified beyond the fact that adding an element has constant amortized
52 jsr166 1.25 * time cost.
53 dl 1.1 *
54 jsr166 1.33 * <p>An application can increase the capacity of an {@code ArrayList} instance
55     * before adding a large number of elements using the {@code ensureCapacity}
56 dl 1.1 * operation. This may reduce the amount of incremental reallocation.
57     *
58     * <p><strong>Note that this implementation is not synchronized.</strong>
59 jsr166 1.33 * If multiple threads access an {@code ArrayList} instance concurrently,
60 dl 1.1 * and at least one of the threads modifies the list structurally, it
61     * <i>must</i> be synchronized externally. (A structural modification is
62     * any operation that adds or deletes one or more elements, or explicitly
63     * resizes the backing array; merely setting the value of an element is not
64     * a structural modification.) This is typically accomplished by
65     * synchronizing on some object that naturally encapsulates the list.
66     *
67     * If no such object exists, the list should be "wrapped" using the
68     * {@link Collections#synchronizedList Collections.synchronizedList}
69     * method. This is best done at creation time, to prevent accidental
70     * unsynchronized access to the list:<pre>
71     * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72     *
73 jsr166 1.33 * <p id="fail-fast">
74 jsr166 1.25 * The iterators returned by this class's {@link #iterator() iterator} and
75     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76     * if the list is structurally modified at any time after the iterator is
77     * created, in any way except through the iterator's own
78     * {@link ListIterator#remove() remove} or
79     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80     * {@link ConcurrentModificationException}. Thus, in the face of
81     * concurrent modification, the iterator fails quickly and cleanly, rather
82     * than risking arbitrary, non-deterministic behavior at an undetermined
83     * time in the future.
84 dl 1.1 *
85 jsr166 1.25 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 dl 1.1 * as it is, generally speaking, impossible to make any hard guarantees in the
87     * presence of unsynchronized concurrent modification. Fail-fast iterators
88 jsr166 1.25 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 dl 1.1 * Therefore, it would be wrong to write a program that depended on this
90 jsr166 1.25 * exception for its correctness: <i>the fail-fast behavior of iterators
91     * should be used only to detect bugs.</i>
92 dl 1.1 *
93 jsr166 1.25 * <p>This class is a member of the
94 jsr166 1.21 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 dl 1.1 * Java Collections Framework</a>.
96     *
97 jsr166 1.33 * @param <E> the type of elements in this list
98     *
99 dl 1.1 * @author Josh Bloch
100     * @author Neal Gafter
101 jsr166 1.26 * @see Collection
102     * @see List
103     * @see LinkedList
104     * @see Vector
105 dl 1.1 * @since 1.2
106     */
107     public class ArrayList<E> extends AbstractList<E>
108     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109     {
110     private static final long serialVersionUID = 8683452581122892189L;
111    
112     /**
113 jsr166 1.33 * Default initial capacity.
114     */
115     private static final int DEFAULT_CAPACITY = 10;
116    
117     /**
118     * Shared empty array instance used for empty instances.
119     */
120     private static final Object[] EMPTY_ELEMENTDATA = {};
121    
122     /**
123     * Shared empty array instance used for default sized empty instances. We
124     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125     * first element is added.
126     */
127     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128    
129     /**
130 dl 1.1 * The array buffer into which the elements of the ArrayList are stored.
131 jsr166 1.33 * The capacity of the ArrayList is the length of this array buffer. Any
132     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 dl 1.1 */
135 jsr166 1.33 transient Object[] elementData; // non-private to simplify nested class access
136 dl 1.1
137     /**
138     * The size of the ArrayList (the number of elements it contains).
139     *
140     * @serial
141     */
142     private int size;
143    
144     /**
145     * Constructs an empty list with the specified initial capacity.
146     *
147 jsr166 1.31 * @param initialCapacity the initial capacity of the list
148     * @throws IllegalArgumentException if the specified initial capacity
149     * is negative
150 dl 1.1 */
151     public ArrayList(int initialCapacity) {
152 jsr166 1.33 if (initialCapacity > 0) {
153     this.elementData = new Object[initialCapacity];
154     } else if (initialCapacity == 0) {
155     this.elementData = EMPTY_ELEMENTDATA;
156     } else {
157 dl 1.1 throw new IllegalArgumentException("Illegal Capacity: "+
158     initialCapacity);
159 jsr166 1.33 }
160 dl 1.1 }
161    
162     /**
163     * Constructs an empty list with an initial capacity of ten.
164     */
165     public ArrayList() {
166 jsr166 1.33 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 dl 1.1 }
168    
169     /**
170     * Constructs a list containing the elements of the specified
171     * collection, in the order they are returned by the collection's
172 jsr166 1.17 * iterator.
173 dl 1.1 *
174     * @param c the collection whose elements are to be placed into this list
175     * @throws NullPointerException if the specified collection is null
176     */
177     public ArrayList(Collection<? extends E> c) {
178 jsr166 1.26 elementData = c.toArray();
179 jsr166 1.33 if ((size = elementData.length) != 0) {
180     // defend against c.toArray (incorrectly) not returning Object[]
181     // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182     if (elementData.getClass() != Object[].class)
183     elementData = Arrays.copyOf(elementData, size, Object[].class);
184     } else {
185     // replace with empty array.
186     this.elementData = EMPTY_ELEMENTDATA;
187     }
188 dl 1.2 }
189 jsr166 1.4
190 dl 1.1 /**
191 jsr166 1.33 * Trims the capacity of this {@code ArrayList} instance to be the
192 dl 1.1 * list's current size. An application can use this operation to minimize
193 jsr166 1.33 * the storage of an {@code ArrayList} instance.
194 dl 1.1 */
195     public void trimToSize() {
196 jsr166 1.26 modCount++;
197 jsr166 1.33 if (size < elementData.length) {
198     elementData = (size == 0)
199     ? EMPTY_ELEMENTDATA
200     : Arrays.copyOf(elementData, size);
201 jsr166 1.26 }
202 dl 1.1 }
203    
204     /**
205 jsr166 1.33 * Increases the capacity of this {@code ArrayList} instance, if
206 dl 1.1 * necessary, to ensure that it can hold at least the number of elements
207     * specified by the minimum capacity argument.
208     *
209 jsr166 1.33 * @param minCapacity the desired minimum capacity
210 dl 1.1 */
211     public void ensureCapacity(int minCapacity) {
212 jsr166 1.33 if (minCapacity > elementData.length
213     && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214     && minCapacity <= DEFAULT_CAPACITY)) {
215     modCount++;
216     grow(minCapacity);
217     }
218     }
219    
220     /**
221     * The maximum size of array to allocate (unless necessary).
222     * Some VMs reserve some header words in an array.
223     * Attempts to allocate larger arrays may result in
224     * OutOfMemoryError: Requested array size exceeds VM limit
225     */
226     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227    
228     /**
229     * Increases the capacity to ensure that it can hold at least the
230     * number of elements specified by the minimum capacity argument.
231     *
232     * @param minCapacity the desired minimum capacity
233     * @throws OutOfMemoryError if minCapacity is less than zero
234     */
235     private Object[] grow(int minCapacity) {
236     return elementData = Arrays.copyOf(elementData,
237     newCapacity(minCapacity));
238     }
239    
240     private Object[] grow() {
241     return grow(size + 1);
242     }
243    
244     /**
245     * Returns a capacity at least as large as the given minimum capacity.
246     * Returns the current capacity increased by 50% if that suffices.
247     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249     *
250     * @param minCapacity the desired minimum capacity
251     * @throws OutOfMemoryError if minCapacity is less than zero
252     */
253     private int newCapacity(int minCapacity) {
254     // overflow-conscious code
255 jsr166 1.26 int oldCapacity = elementData.length;
256 jsr166 1.33 int newCapacity = oldCapacity + (oldCapacity >> 1);
257     if (newCapacity - minCapacity <= 0) {
258     if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259     return Math.max(DEFAULT_CAPACITY, minCapacity);
260     if (minCapacity < 0) // overflow
261     throw new OutOfMemoryError();
262     return minCapacity;
263     }
264     return (newCapacity - MAX_ARRAY_SIZE <= 0)
265     ? newCapacity
266     : hugeCapacity(minCapacity);
267     }
268    
269     private static int hugeCapacity(int minCapacity) {
270     if (minCapacity < 0) // overflow
271     throw new OutOfMemoryError();
272     return (minCapacity > MAX_ARRAY_SIZE)
273     ? Integer.MAX_VALUE
274     : MAX_ARRAY_SIZE;
275 dl 1.1 }
276    
277     /**
278     * Returns the number of elements in this list.
279     *
280     * @return the number of elements in this list
281     */
282     public int size() {
283 jsr166 1.26 return size;
284 dl 1.1 }
285    
286     /**
287 jsr166 1.33 * Returns {@code true} if this list contains no elements.
288 dl 1.1 *
289 jsr166 1.33 * @return {@code true} if this list contains no elements
290 dl 1.1 */
291     public boolean isEmpty() {
292 jsr166 1.26 return size == 0;
293 dl 1.1 }
294    
295     /**
296 jsr166 1.33 * Returns {@code true} if this list contains the specified element.
297     * More formally, returns {@code true} if and only if this list contains
298     * at least one element {@code e} such that
299     * {@code Objects.equals(o, e)}.
300 dl 1.1 *
301     * @param o element whose presence in this list is to be tested
302 jsr166 1.33 * @return {@code true} if this list contains the specified element
303 dl 1.1 */
304     public boolean contains(Object o) {
305 jsr166 1.26 return indexOf(o) >= 0;
306 dl 1.1 }
307    
308     /**
309     * Returns the index of the first occurrence of the specified element
310     * in this list, or -1 if this list does not contain the element.
311 jsr166 1.33 * More formally, returns the lowest index {@code i} such that
312     * {@code Objects.equals(o, get(i))},
313 dl 1.1 * or -1 if there is no such index.
314     */
315     public int indexOf(Object o) {
316 jsr166 1.26 if (o == null) {
317     for (int i = 0; i < size; i++)
318     if (elementData[i]==null)
319     return i;
320     } else {
321     for (int i = 0; i < size; i++)
322     if (o.equals(elementData[i]))
323     return i;
324     }
325     return -1;
326 dl 1.1 }
327    
328     /**
329     * Returns the index of the last occurrence of the specified element
330     * in this list, or -1 if this list does not contain the element.
331 jsr166 1.33 * More formally, returns the highest index {@code i} such that
332     * {@code Objects.equals(o, get(i))},
333 dl 1.1 * or -1 if there is no such index.
334     */
335     public int lastIndexOf(Object o) {
336 jsr166 1.26 if (o == null) {
337     for (int i = size-1; i >= 0; i--)
338     if (elementData[i]==null)
339     return i;
340     } else {
341     for (int i = size-1; i >= 0; i--)
342     if (o.equals(elementData[i]))
343     return i;
344     }
345     return -1;
346 dl 1.1 }
347    
348     /**
349 jsr166 1.33 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 dl 1.1 * elements themselves are not copied.)
351     *
352 jsr166 1.33 * @return a clone of this {@code ArrayList} instance
353 dl 1.1 */
354     public Object clone() {
355 jsr166 1.26 try {
356 jsr166 1.33 ArrayList<?> v = (ArrayList<?>) super.clone();
357 jsr166 1.26 v.elementData = Arrays.copyOf(elementData, size);
358     v.modCount = 0;
359     return v;
360     } catch (CloneNotSupportedException e) {
361     // this shouldn't happen, since we are Cloneable
362 jsr166 1.33 throw new InternalError(e);
363 jsr166 1.26 }
364 dl 1.1 }
365    
366     /**
367     * Returns an array containing all of the elements in this list
368     * in proper sequence (from first to last element).
369     *
370     * <p>The returned array will be "safe" in that no references to it are
371     * maintained by this list. (In other words, this method must allocate
372     * a new array). The caller is thus free to modify the returned array.
373     *
374     * <p>This method acts as bridge between array-based and collection-based
375     * APIs.
376     *
377     * @return an array containing all of the elements in this list in
378     * proper sequence
379     */
380     public Object[] toArray() {
381     return Arrays.copyOf(elementData, size);
382     }
383    
384     /**
385     * Returns an array containing all of the elements in this list in proper
386     * sequence (from first to last element); the runtime type of the returned
387     * array is that of the specified array. If the list fits in the
388     * specified array, it is returned therein. Otherwise, a new array is
389     * allocated with the runtime type of the specified array and the size of
390     * this list.
391     *
392     * <p>If the list fits in the specified array with room to spare
393     * (i.e., the array has more elements than the list), the element in
394     * the array immediately following the end of the collection is set to
395 jsr166 1.33 * {@code null}. (This is useful in determining the length of the
396 dl 1.1 * list <i>only</i> if the caller knows that the list does not contain
397     * any null elements.)
398     *
399     * @param a the array into which the elements of the list are to
400     * be stored, if it is big enough; otherwise, a new array of the
401     * same runtime type is allocated for this purpose.
402     * @return an array containing the elements of the list
403     * @throws ArrayStoreException if the runtime type of the specified array
404     * is not a supertype of the runtime type of every element in
405     * this list
406     * @throws NullPointerException if the specified array is null
407     */
408 jsr166 1.25 @SuppressWarnings("unchecked")
409 dl 1.1 public <T> T[] toArray(T[] a) {
410     if (a.length < size)
411     // Make a new array of a's runtime type, but my contents:
412     return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 jsr166 1.26 System.arraycopy(elementData, 0, a, 0, size);
414 dl 1.1 if (a.length > size)
415     a[size] = null;
416     return a;
417     }
418    
419     // Positional Access Operations
420    
421 jsr166 1.25 @SuppressWarnings("unchecked")
422     E elementData(int index) {
423 jsr166 1.26 return (E) elementData[index];
424 dl 1.1 }
425    
426 jsr166 1.39 @SuppressWarnings("unchecked")
427     static <E> E elementAt(Object[] es, int index) {
428     return (E) es[index];
429     }
430    
431 dl 1.1 /**
432     * Returns the element at the specified position in this list.
433     *
434     * @param index index of the element to return
435     * @return the element at the specified position in this list
436     * @throws IndexOutOfBoundsException {@inheritDoc}
437     */
438     public E get(int index) {
439 jsr166 1.33 Objects.checkIndex(index, size);
440 jsr166 1.26 return elementData(index);
441 dl 1.1 }
442    
443     /**
444     * Replaces the element at the specified position in this list with
445     * the specified element.
446     *
447     * @param index index of the element to replace
448     * @param element element to be stored at the specified position
449     * @return the element previously at the specified position
450     * @throws IndexOutOfBoundsException {@inheritDoc}
451     */
452     public E set(int index, E element) {
453 jsr166 1.33 Objects.checkIndex(index, size);
454 jsr166 1.26 E oldValue = elementData(index);
455     elementData[index] = element;
456     return oldValue;
457 dl 1.1 }
458    
459     /**
460 jsr166 1.33 * This helper method split out from add(E) to keep method
461     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462     * which helps when add(E) is called in a C1-compiled loop.
463     */
464     private void add(E e, Object[] elementData, int s) {
465     if (s == elementData.length)
466     elementData = grow();
467     elementData[s] = e;
468     size = s + 1;
469     }
470    
471     /**
472 dl 1.1 * Appends the specified element to the end of this list.
473     *
474     * @param e element to be appended to this list
475 jsr166 1.33 * @return {@code true} (as specified by {@link Collection#add})
476 dl 1.1 */
477     public boolean add(E e) {
478 jsr166 1.33 modCount++;
479     add(e, elementData, size);
480 jsr166 1.26 return true;
481 dl 1.1 }
482    
483     /**
484     * Inserts the specified element at the specified position in this
485     * list. Shifts the element currently at that position (if any) and
486     * any subsequent elements to the right (adds one to their indices).
487     *
488     * @param index index at which the specified element is to be inserted
489     * @param element element to be inserted
490     * @throws IndexOutOfBoundsException {@inheritDoc}
491     */
492     public void add(int index, E element) {
493 jsr166 1.26 rangeCheckForAdd(index);
494 jsr166 1.33 modCount++;
495     final int s;
496     Object[] elementData;
497     if ((s = size) == (elementData = this.elementData).length)
498     elementData = grow();
499     System.arraycopy(elementData, index,
500     elementData, index + 1,
501     s - index);
502 jsr166 1.26 elementData[index] = element;
503 jsr166 1.33 size = s + 1;
504 dl 1.1 }
505    
506     /**
507     * Removes the element at the specified position in this list.
508     * Shifts any subsequent elements to the left (subtracts one from their
509     * indices).
510     *
511     * @param index the index of the element to be removed
512     * @return the element that was removed from the list
513     * @throws IndexOutOfBoundsException {@inheritDoc}
514     */
515     public E remove(int index) {
516 jsr166 1.33 Objects.checkIndex(index, size);
517 jsr166 1.25
518 jsr166 1.26 modCount++;
519     E oldValue = elementData(index);
520 jsr166 1.25
521 jsr166 1.26 int numMoved = size - index - 1;
522     if (numMoved > 0)
523     System.arraycopy(elementData, index+1, elementData, index,
524     numMoved);
525 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
526 jsr166 1.25
527 jsr166 1.26 return oldValue;
528 dl 1.1 }
529    
530     /**
531     * Removes the first occurrence of the specified element from this list,
532     * if it is present. If the list does not contain the element, it is
533     * unchanged. More formally, removes the element with the lowest index
534 jsr166 1.33 * {@code i} such that
535     * {@code Objects.equals(o, get(i))}
536     * (if such an element exists). Returns {@code true} if this list
537 dl 1.1 * contained the specified element (or equivalently, if this list
538     * changed as a result of the call).
539     *
540     * @param o element to be removed from this list, if present
541 jsr166 1.33 * @return {@code true} if this list contained the specified element
542 dl 1.1 */
543     public boolean remove(Object o) {
544 jsr166 1.26 if (o == null) {
545     for (int index = 0; index < size; index++)
546     if (elementData[index] == null) {
547     fastRemove(index);
548     return true;
549     }
550     } else {
551 dl 1.1 for (int index = 0; index < size; index++)
552 jsr166 1.26 if (o.equals(elementData[index])) {
553     fastRemove(index);
554     return true;
555     }
556 dl 1.1 }
557 jsr166 1.26 return false;
558 dl 1.1 }
559    
560     /*
561     * Private remove method that skips bounds checking and does not
562     * return the value removed.
563     */
564     private void fastRemove(int index) {
565     modCount++;
566     int numMoved = size - index - 1;
567     if (numMoved > 0)
568     System.arraycopy(elementData, index+1, elementData, index,
569     numMoved);
570 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
571 dl 1.1 }
572    
573     /**
574     * Removes all of the elements from this list. The list will
575     * be empty after this call returns.
576     */
577     public void clear() {
578 jsr166 1.26 modCount++;
579 dl 1.1
580 jsr166 1.33 // clear to let GC do its work
581 jsr166 1.26 for (int i = 0; i < size; i++)
582     elementData[i] = null;
583 dl 1.1
584 jsr166 1.26 size = 0;
585 dl 1.1 }
586    
587     /**
588     * Appends all of the elements in the specified collection to the end of
589     * this list, in the order that they are returned by the
590     * specified collection's Iterator. The behavior of this operation is
591     * undefined if the specified collection is modified while the operation
592     * is in progress. (This implies that the behavior of this call is
593     * undefined if the specified collection is this list, and this
594     * list is nonempty.)
595     *
596     * @param c collection containing elements to be added to this list
597 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
598 dl 1.1 * @throws NullPointerException if the specified collection is null
599     */
600     public boolean addAll(Collection<? extends E> c) {
601 jsr166 1.26 Object[] a = c.toArray();
602 jsr166 1.33 modCount++;
603 dl 1.1 int numNew = a.length;
604 jsr166 1.33 if (numNew == 0)
605     return false;
606     Object[] elementData;
607     final int s;
608     if (numNew > (elementData = this.elementData).length - (s = size))
609     elementData = grow(s + numNew);
610     System.arraycopy(a, 0, elementData, s, numNew);
611     size = s + numNew;
612     return true;
613 dl 1.1 }
614    
615     /**
616     * Inserts all of the elements in the specified collection into this
617     * list, starting at the specified position. Shifts the element
618     * currently at that position (if any) and any subsequent elements to
619     * the right (increases their indices). The new elements will appear
620     * in the list in the order that they are returned by the
621     * specified collection's iterator.
622     *
623     * @param index index at which to insert the first element from the
624     * specified collection
625     * @param c collection containing elements to be added to this list
626 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
627 dl 1.1 * @throws IndexOutOfBoundsException {@inheritDoc}
628     * @throws NullPointerException if the specified collection is null
629     */
630     public boolean addAll(int index, Collection<? extends E> c) {
631 jsr166 1.26 rangeCheckForAdd(index);
632 dl 1.1
633 jsr166 1.26 Object[] a = c.toArray();
634 jsr166 1.33 modCount++;
635 jsr166 1.26 int numNew = a.length;
636 jsr166 1.33 if (numNew == 0)
637     return false;
638     Object[] elementData;
639     final int s;
640     if (numNew > (elementData = this.elementData).length - (s = size))
641     elementData = grow(s + numNew);
642 jsr166 1.26
643 jsr166 1.33 int numMoved = s - index;
644 jsr166 1.26 if (numMoved > 0)
645 jsr166 1.33 System.arraycopy(elementData, index,
646     elementData, index + numNew,
647 jsr166 1.26 numMoved);
648 dl 1.1 System.arraycopy(a, 0, elementData, index, numNew);
649 jsr166 1.33 size = s + numNew;
650     return true;
651 dl 1.1 }
652    
653     /**
654     * Removes from this list all of the elements whose index is between
655 jsr166 1.25 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
656 dl 1.1 * Shifts any succeeding elements to the left (reduces their index).
657 jsr166 1.25 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
658     * (If {@code toIndex==fromIndex}, this operation has no effect.)
659 dl 1.1 *
660 jsr166 1.25 * @throws IndexOutOfBoundsException if {@code fromIndex} or
661     * {@code toIndex} is out of range
662     * ({@code fromIndex < 0 ||
663     * toIndex > size() ||
664     * toIndex < fromIndex})
665 dl 1.1 */
666     protected void removeRange(int fromIndex, int toIndex) {
667 jsr166 1.33 if (fromIndex > toIndex) {
668     throw new IndexOutOfBoundsException(
669     outOfBoundsMsg(fromIndex, toIndex));
670     }
671 jsr166 1.26 modCount++;
672     int numMoved = size - toIndex;
673 dl 1.1 System.arraycopy(elementData, toIndex, elementData, fromIndex,
674     numMoved);
675    
676 jsr166 1.33 // clear to let GC do its work
677 jsr166 1.26 int newSize = size - (toIndex-fromIndex);
678 jsr166 1.33 for (int i = newSize; i < size; i++) {
679     elementData[i] = null;
680     }
681     size = newSize;
682 jsr166 1.25 }
683    
684     /**
685     * A version of rangeCheck used by add and addAll.
686     */
687     private void rangeCheckForAdd(int index) {
688 jsr166 1.26 if (index > size || index < 0)
689     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
690 jsr166 1.25 }
691    
692     /**
693     * Constructs an IndexOutOfBoundsException detail message.
694     * Of the many possible refactorings of the error handling code,
695     * this "outlining" performs best with both server and client VMs.
696     */
697     private String outOfBoundsMsg(int index) {
698 jsr166 1.26 return "Index: "+index+", Size: "+size;
699 jsr166 1.25 }
700    
701     /**
702 jsr166 1.33 * A version used in checking (fromIndex > toIndex) condition
703     */
704     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
705     return "From Index: " + fromIndex + " > To Index: " + toIndex;
706     }
707    
708     /**
709 jsr166 1.25 * Removes from this list all of its elements that are contained in the
710     * specified collection.
711     *
712     * @param c collection containing elements to be removed from this list
713     * @return {@code true} if this list changed as a result of the call
714     * @throws ClassCastException if the class of an element of this list
715 jsr166 1.33 * is incompatible with the specified collection
716     * (<a href="Collection.html#optional-restrictions">optional</a>)
717 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
718 jsr166 1.33 * specified collection does not permit null elements
719     * (<a href="Collection.html#optional-restrictions">optional</a>),
720 jsr166 1.25 * or if the specified collection is null
721     * @see Collection#contains(Object)
722     */
723     public boolean removeAll(Collection<?> c) {
724 jsr166 1.26 return batchRemove(c, false);
725 jsr166 1.25 }
726    
727     /**
728     * Retains only the elements in this list that are contained in the
729     * specified collection. In other words, removes from this list all
730     * of its elements that are not contained in the specified collection.
731     *
732     * @param c collection containing elements to be retained in this list
733     * @return {@code true} if this list changed as a result of the call
734     * @throws ClassCastException if the class of an element of this list
735 jsr166 1.33 * is incompatible with the specified collection
736     * (<a href="Collection.html#optional-restrictions">optional</a>)
737 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
738 jsr166 1.33 * specified collection does not permit null elements
739     * (<a href="Collection.html#optional-restrictions">optional</a>),
740 jsr166 1.25 * or if the specified collection is null
741     * @see Collection#contains(Object)
742     */
743     public boolean retainAll(Collection<?> c) {
744 jsr166 1.26 return batchRemove(c, true);
745 jsr166 1.25 }
746    
747     private boolean batchRemove(Collection<?> c, boolean complement) {
748 jsr166 1.37 Objects.requireNonNull(c);
749     final Object[] es = elementData;
750 jsr166 1.39 final int end = size;
751 jsr166 1.37 final boolean modified;
752     int r;
753     // Optimize for initial run of survivors
754 jsr166 1.39 for (r = 0; r < end && c.contains(es[r]) == complement; r++)
755 jsr166 1.38 ;
756 jsr166 1.39 if (modified = (r < end)) {
757 jsr166 1.37 int w = r++;
758     try {
759 jsr166 1.39 for (Object e; r < end; r++)
760 jsr166 1.37 if (c.contains(e = es[r]) == complement)
761     es[w++] = e;
762     } catch (Throwable ex) {
763     // Preserve behavioral compatibility with AbstractCollection,
764     // even if c.contains() throws.
765 jsr166 1.39 System.arraycopy(es, r, es, w, end - r);
766     w += end - r;
767 jsr166 1.37 throw ex;
768     } finally {
769 jsr166 1.39 modCount += end - w;
770     Arrays.fill(es, size = w, end, null);
771 jsr166 1.26 }
772     }
773     return modified;
774 jsr166 1.25 }
775    
776     /**
777 jsr166 1.33 * Save the state of the {@code ArrayList} instance to a stream (that
778 dl 1.1 * is, serialize it).
779     *
780 jsr166 1.33 * @serialData The length of the array backing the {@code ArrayList}
781 dl 1.1 * instance is emitted (int), followed by all of its elements
782 jsr166 1.33 * (each an {@code Object}) in the proper order.
783 dl 1.1 */
784     private void writeObject(java.io.ObjectOutputStream s)
785     throws java.io.IOException{
786 jsr166 1.26 // Write out element count, and any hidden stuff
787     int expectedModCount = modCount;
788     s.defaultWriteObject();
789 dl 1.1
790 jsr166 1.33 // Write out size as capacity for behavioural compatibility with clone()
791     s.writeInt(size);
792 dl 1.1
793 jsr166 1.26 // Write out all elements in the proper order.
794 jsr166 1.33 for (int i=0; i<size; i++) {
795 dl 1.1 s.writeObject(elementData[i]);
796 jsr166 1.33 }
797 dl 1.1
798 jsr166 1.26 if (modCount != expectedModCount) {
799 dl 1.1 throw new ConcurrentModificationException();
800     }
801     }
802    
803     /**
804 jsr166 1.33 * Reconstitute the {@code ArrayList} instance from a stream (that is,
805 dl 1.1 * deserialize it).
806     */
807     private void readObject(java.io.ObjectInputStream s)
808     throws java.io.IOException, ClassNotFoundException {
809 jsr166 1.33
810 jsr166 1.26 // Read in size, and any hidden stuff
811     s.defaultReadObject();
812 dl 1.1
813 jsr166 1.33 // Read in capacity
814     s.readInt(); // ignored
815    
816     if (size > 0) {
817     // like clone(), allocate array based upon size not capacity
818     Object[] elements = new Object[size];
819    
820     // Read in all elements in the proper order.
821     for (int i = 0; i < size; i++) {
822     elements[i] = s.readObject();
823     }
824    
825     elementData = elements;
826     } else if (size == 0) {
827     elementData = EMPTY_ELEMENTDATA;
828     } else {
829     throw new java.io.InvalidObjectException("Invalid size: " + size);
830     }
831 dl 1.1 }
832 jsr166 1.25
833     /**
834     * Returns a list iterator over the elements in this list (in proper
835     * sequence), starting at the specified position in the list.
836     * The specified index indicates the first element that would be
837     * returned by an initial call to {@link ListIterator#next next}.
838     * An initial call to {@link ListIterator#previous previous} would
839     * return the element with the specified index minus one.
840     *
841     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
842     *
843     * @throws IndexOutOfBoundsException {@inheritDoc}
844     */
845     public ListIterator<E> listIterator(int index) {
846 jsr166 1.33 rangeCheckForAdd(index);
847 jsr166 1.26 return new ListItr(index);
848 jsr166 1.25 }
849    
850     /**
851     * Returns a list iterator over the elements in this list (in proper
852     * sequence).
853     *
854     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
855     *
856     * @see #listIterator(int)
857     */
858     public ListIterator<E> listIterator() {
859 jsr166 1.26 return new ListItr(0);
860 jsr166 1.25 }
861    
862     /**
863     * Returns an iterator over the elements in this list in proper sequence.
864     *
865     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
866     *
867     * @return an iterator over the elements in this list in proper sequence
868     */
869     public Iterator<E> iterator() {
870 jsr166 1.26 return new Itr();
871 jsr166 1.25 }
872    
873     /**
874     * An optimized version of AbstractList.Itr
875     */
876     private class Itr implements Iterator<E> {
877 jsr166 1.26 int cursor; // index of next element to return
878     int lastRet = -1; // index of last element returned; -1 if no such
879     int expectedModCount = modCount;
880 jsr166 1.25
881 jsr166 1.33 // prevent creating a synthetic constructor
882     Itr() {}
883    
884 jsr166 1.26 public boolean hasNext() {
885 jsr166 1.25 return cursor != size;
886 jsr166 1.26 }
887    
888     @SuppressWarnings("unchecked")
889     public E next() {
890     checkForComodification();
891     int i = cursor;
892     if (i >= size)
893     throw new NoSuchElementException();
894     Object[] elementData = ArrayList.this.elementData;
895     if (i >= elementData.length)
896     throw new ConcurrentModificationException();
897     cursor = i + 1;
898     return (E) elementData[lastRet = i];
899     }
900 jsr166 1.25
901 jsr166 1.26 public void remove() {
902     if (lastRet < 0)
903     throw new IllegalStateException();
904 jsr166 1.25 checkForComodification();
905 jsr166 1.26
906     try {
907     ArrayList.this.remove(lastRet);
908     cursor = lastRet;
909     lastRet = -1;
910     expectedModCount = modCount;
911     } catch (IndexOutOfBoundsException ex) {
912     throw new ConcurrentModificationException();
913     }
914     }
915    
916 jsr166 1.33 @Override
917     @SuppressWarnings("unchecked")
918     public void forEachRemaining(Consumer<? super E> consumer) {
919     Objects.requireNonNull(consumer);
920     final int size = ArrayList.this.size;
921     int i = cursor;
922     if (i >= size) {
923     return;
924     }
925     final Object[] elementData = ArrayList.this.elementData;
926     if (i >= elementData.length) {
927     throw new ConcurrentModificationException();
928     }
929     while (i != size && modCount == expectedModCount) {
930     consumer.accept((E) elementData[i++]);
931     }
932     // update once at end of iteration to reduce heap write traffic
933     cursor = i;
934     lastRet = i - 1;
935     checkForComodification();
936     }
937    
938 jsr166 1.26 final void checkForComodification() {
939     if (modCount != expectedModCount)
940     throw new ConcurrentModificationException();
941     }
942 jsr166 1.25 }
943    
944     /**
945     * An optimized version of AbstractList.ListItr
946     */
947     private class ListItr extends Itr implements ListIterator<E> {
948 jsr166 1.26 ListItr(int index) {
949     super();
950     cursor = index;
951     }
952    
953     public boolean hasPrevious() {
954     return cursor != 0;
955     }
956 jsr166 1.25
957 jsr166 1.26 public int nextIndex() {
958     return cursor;
959     }
960    
961     public int previousIndex() {
962     return cursor - 1;
963     }
964    
965     @SuppressWarnings("unchecked")
966 jsr166 1.25 public E previous() {
967 jsr166 1.26 checkForComodification();
968     int i = cursor - 1;
969     if (i < 0)
970     throw new NoSuchElementException();
971     Object[] elementData = ArrayList.this.elementData;
972     if (i >= elementData.length)
973     throw new ConcurrentModificationException();
974     cursor = i;
975     return (E) elementData[lastRet = i];
976     }
977    
978     public void set(E e) {
979     if (lastRet < 0)
980     throw new IllegalStateException();
981     checkForComodification();
982    
983     try {
984     ArrayList.this.set(lastRet, e);
985     } catch (IndexOutOfBoundsException ex) {
986     throw new ConcurrentModificationException();
987     }
988     }
989    
990     public void add(E e) {
991     checkForComodification();
992    
993     try {
994     int i = cursor;
995     ArrayList.this.add(i, e);
996     cursor = i + 1;
997     lastRet = -1;
998     expectedModCount = modCount;
999     } catch (IndexOutOfBoundsException ex) {
1000     throw new ConcurrentModificationException();
1001     }
1002     }
1003 jsr166 1.25 }
1004    
1005     /**
1006     * Returns a view of the portion of this list between the specified
1007     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1008     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1009     * empty.) The returned list is backed by this list, so non-structural
1010     * changes in the returned list are reflected in this list, and vice-versa.
1011     * The returned list supports all of the optional list operations.
1012     *
1013     * <p>This method eliminates the need for explicit range operations (of
1014     * the sort that commonly exist for arrays). Any operation that expects
1015     * a list can be used as a range operation by passing a subList view
1016     * instead of a whole list. For example, the following idiom
1017     * removes a range of elements from a list:
1018     * <pre>
1019     * list.subList(from, to).clear();
1020     * </pre>
1021     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1022     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1023     * {@link Collections} class can be applied to a subList.
1024     *
1025     * <p>The semantics of the list returned by this method become undefined if
1026     * the backing list (i.e., this list) is <i>structurally modified</i> in
1027     * any way other than via the returned list. (Structural modifications are
1028     * those that change the size of this list, or otherwise perturb it in such
1029     * a fashion that iterations in progress may yield incorrect results.)
1030     *
1031     * @throws IndexOutOfBoundsException {@inheritDoc}
1032     * @throws IllegalArgumentException {@inheritDoc}
1033     */
1034     public List<E> subList(int fromIndex, int toIndex) {
1035 jsr166 1.26 subListRangeCheck(fromIndex, toIndex, size);
1036 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1037 jsr166 1.25 }
1038    
1039 jsr166 1.33 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1040     private final ArrayList<E> root;
1041     private final SubList<E> parent;
1042 jsr166 1.26 private final int offset;
1043 jsr166 1.33 private int size;
1044 jsr166 1.26
1045 jsr166 1.33 /**
1046     * Constructs a sublist of an arbitrary ArrayList.
1047     */
1048     public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1049     this.root = root;
1050     this.parent = null;
1051     this.offset = fromIndex;
1052     this.size = toIndex - fromIndex;
1053     this.modCount = root.modCount;
1054     }
1055    
1056     /**
1057     * Constructs a sublist of another SubList.
1058     */
1059     private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1060     this.root = parent.root;
1061 jsr166 1.26 this.parent = parent;
1062 jsr166 1.33 this.offset = parent.offset + fromIndex;
1063 jsr166 1.26 this.size = toIndex - fromIndex;
1064 jsr166 1.33 this.modCount = root.modCount;
1065 jsr166 1.26 }
1066    
1067 jsr166 1.33 public E set(int index, E element) {
1068     Objects.checkIndex(index, size);
1069 jsr166 1.26 checkForComodification();
1070 jsr166 1.33 E oldValue = root.elementData(offset + index);
1071     root.elementData[offset + index] = element;
1072 jsr166 1.26 return oldValue;
1073     }
1074    
1075     public E get(int index) {
1076 jsr166 1.33 Objects.checkIndex(index, size);
1077 jsr166 1.26 checkForComodification();
1078 jsr166 1.33 return root.elementData(offset + index);
1079 jsr166 1.26 }
1080    
1081     public int size() {
1082     checkForComodification();
1083 jsr166 1.33 return size;
1084 jsr166 1.26 }
1085    
1086 jsr166 1.33 public void add(int index, E element) {
1087 jsr166 1.26 rangeCheckForAdd(index);
1088     checkForComodification();
1089 jsr166 1.33 root.add(offset + index, element);
1090     updateSizeAndModCount(1);
1091 jsr166 1.26 }
1092    
1093     public E remove(int index) {
1094 jsr166 1.33 Objects.checkIndex(index, size);
1095 jsr166 1.26 checkForComodification();
1096 jsr166 1.33 E result = root.remove(offset + index);
1097     updateSizeAndModCount(-1);
1098 jsr166 1.26 return result;
1099     }
1100    
1101     protected void removeRange(int fromIndex, int toIndex) {
1102     checkForComodification();
1103 jsr166 1.33 root.removeRange(offset + fromIndex, offset + toIndex);
1104     updateSizeAndModCount(fromIndex - toIndex);
1105 jsr166 1.26 }
1106    
1107     public boolean addAll(Collection<? extends E> c) {
1108     return addAll(this.size, c);
1109     }
1110    
1111     public boolean addAll(int index, Collection<? extends E> c) {
1112     rangeCheckForAdd(index);
1113     int cSize = c.size();
1114     if (cSize==0)
1115     return false;
1116     checkForComodification();
1117 jsr166 1.33 root.addAll(offset + index, c);
1118     updateSizeAndModCount(cSize);
1119 jsr166 1.26 return true;
1120     }
1121    
1122     public Iterator<E> iterator() {
1123     return listIterator();
1124     }
1125    
1126 jsr166 1.33 public ListIterator<E> listIterator(int index) {
1127 jsr166 1.26 checkForComodification();
1128     rangeCheckForAdd(index);
1129    
1130     return new ListIterator<E>() {
1131     int cursor = index;
1132     int lastRet = -1;
1133 jsr166 1.33 int expectedModCount = root.modCount;
1134 jsr166 1.26
1135     public boolean hasNext() {
1136     return cursor != SubList.this.size;
1137     }
1138    
1139     @SuppressWarnings("unchecked")
1140     public E next() {
1141     checkForComodification();
1142     int i = cursor;
1143     if (i >= SubList.this.size)
1144     throw new NoSuchElementException();
1145 jsr166 1.33 Object[] elementData = root.elementData;
1146 jsr166 1.26 if (offset + i >= elementData.length)
1147     throw new ConcurrentModificationException();
1148     cursor = i + 1;
1149     return (E) elementData[offset + (lastRet = i)];
1150     }
1151    
1152     public boolean hasPrevious() {
1153     return cursor != 0;
1154     }
1155    
1156     @SuppressWarnings("unchecked")
1157     public E previous() {
1158     checkForComodification();
1159     int i = cursor - 1;
1160     if (i < 0)
1161     throw new NoSuchElementException();
1162 jsr166 1.33 Object[] elementData = root.elementData;
1163 jsr166 1.26 if (offset + i >= elementData.length)
1164     throw new ConcurrentModificationException();
1165     cursor = i;
1166     return (E) elementData[offset + (lastRet = i)];
1167     }
1168    
1169 jsr166 1.33 @SuppressWarnings("unchecked")
1170     public void forEachRemaining(Consumer<? super E> consumer) {
1171     Objects.requireNonNull(consumer);
1172     final int size = SubList.this.size;
1173     int i = cursor;
1174     if (i >= size) {
1175     return;
1176     }
1177     final Object[] elementData = root.elementData;
1178     if (offset + i >= elementData.length) {
1179     throw new ConcurrentModificationException();
1180     }
1181     while (i != size && modCount == expectedModCount) {
1182     consumer.accept((E) elementData[offset + (i++)]);
1183     }
1184     // update once at end of iteration to reduce heap write traffic
1185     lastRet = cursor = i;
1186     checkForComodification();
1187     }
1188    
1189 jsr166 1.26 public int nextIndex() {
1190     return cursor;
1191     }
1192    
1193     public int previousIndex() {
1194     return cursor - 1;
1195     }
1196    
1197     public void remove() {
1198     if (lastRet < 0)
1199     throw new IllegalStateException();
1200     checkForComodification();
1201    
1202     try {
1203     SubList.this.remove(lastRet);
1204     cursor = lastRet;
1205     lastRet = -1;
1206 jsr166 1.33 expectedModCount = root.modCount;
1207 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1208     throw new ConcurrentModificationException();
1209     }
1210     }
1211    
1212     public void set(E e) {
1213     if (lastRet < 0)
1214     throw new IllegalStateException();
1215     checkForComodification();
1216    
1217     try {
1218 jsr166 1.33 root.set(offset + lastRet, e);
1219 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1220     throw new ConcurrentModificationException();
1221     }
1222     }
1223    
1224     public void add(E e) {
1225     checkForComodification();
1226    
1227     try {
1228     int i = cursor;
1229     SubList.this.add(i, e);
1230     cursor = i + 1;
1231     lastRet = -1;
1232 jsr166 1.33 expectedModCount = root.modCount;
1233 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1234     throw new ConcurrentModificationException();
1235     }
1236     }
1237    
1238     final void checkForComodification() {
1239 jsr166 1.33 if (root.modCount != expectedModCount)
1240 jsr166 1.26 throw new ConcurrentModificationException();
1241     }
1242     };
1243     }
1244    
1245     public List<E> subList(int fromIndex, int toIndex) {
1246     subListRangeCheck(fromIndex, toIndex, size);
1247 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1248 jsr166 1.26 }
1249    
1250     private void rangeCheckForAdd(int index) {
1251     if (index < 0 || index > this.size)
1252     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1253     }
1254    
1255     private String outOfBoundsMsg(int index) {
1256     return "Index: "+index+", Size: "+this.size;
1257     }
1258    
1259     private void checkForComodification() {
1260 jsr166 1.33 if (root.modCount != modCount)
1261 jsr166 1.26 throw new ConcurrentModificationException();
1262     }
1263 jsr166 1.33
1264     private void updateSizeAndModCount(int sizeChange) {
1265     SubList<E> slist = this;
1266     do {
1267     slist.size += sizeChange;
1268     slist.modCount = root.modCount;
1269     slist = slist.parent;
1270     } while (slist != null);
1271     }
1272    
1273     public Spliterator<E> spliterator() {
1274     checkForComodification();
1275    
1276     // ArrayListSpliterator is not used because late-binding logic
1277     // is different here
1278     return new Spliterator<>() {
1279     private int index = offset; // current index, modified on advance/split
1280     private int fence = -1; // -1 until used; then one past last index
1281     private int expectedModCount; // initialized when fence set
1282    
1283     private int getFence() { // initialize fence to size on first use
1284     int hi; // (a specialized variant appears in method forEach)
1285     if ((hi = fence) < 0) {
1286     expectedModCount = modCount;
1287     hi = fence = offset + size;
1288     }
1289     return hi;
1290     }
1291    
1292     public ArrayListSpliterator<E> trySplit() {
1293     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1294     // ArrayListSpliterator could be used here as the source is already bound
1295     return (lo >= mid) ? null : // divide range in half unless too small
1296     new ArrayListSpliterator<>(root, lo, index = mid,
1297     expectedModCount);
1298     }
1299    
1300     public boolean tryAdvance(Consumer<? super E> action) {
1301     Objects.requireNonNull(action);
1302     int hi = getFence(), i = index;
1303     if (i < hi) {
1304     index = i + 1;
1305     @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1306     action.accept(e);
1307     if (root.modCount != expectedModCount)
1308     throw new ConcurrentModificationException();
1309     return true;
1310     }
1311     return false;
1312     }
1313    
1314     public void forEachRemaining(Consumer<? super E> action) {
1315     Objects.requireNonNull(action);
1316     int i, hi, mc; // hoist accesses and checks from loop
1317     ArrayList<E> lst = root;
1318     Object[] a;
1319     if ((a = lst.elementData) != null) {
1320     if ((hi = fence) < 0) {
1321     mc = modCount;
1322     hi = offset + size;
1323     }
1324     else
1325     mc = expectedModCount;
1326     if ((i = index) >= 0 && (index = hi) <= a.length) {
1327     for (; i < hi; ++i) {
1328     @SuppressWarnings("unchecked") E e = (E) a[i];
1329     action.accept(e);
1330     }
1331     if (lst.modCount == mc)
1332     return;
1333     }
1334     }
1335     throw new ConcurrentModificationException();
1336     }
1337    
1338     public long estimateSize() {
1339     return (long) (getFence() - index);
1340     }
1341    
1342     public int characteristics() {
1343     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1344     }
1345     };
1346     }
1347     }
1348    
1349     @Override
1350     public void forEach(Consumer<? super E> action) {
1351     Objects.requireNonNull(action);
1352     final int expectedModCount = modCount;
1353 jsr166 1.39 final Object[] es = elementData;
1354 jsr166 1.33 final int size = this.size;
1355 jsr166 1.39 for (int i = 0; modCount == expectedModCount && i < size; i++) {
1356     action.accept(elementAt(es, i));
1357 jsr166 1.33 }
1358     if (modCount != expectedModCount) {
1359     throw new ConcurrentModificationException();
1360     }
1361     }
1362    
1363     /**
1364     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1365     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1366     * list.
1367     *
1368     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1369     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1370     * Overriding implementations should document the reporting of additional
1371     * characteristic values.
1372     *
1373     * @return a {@code Spliterator} over the elements in this list
1374     * @since 1.8
1375     */
1376     @Override
1377     public Spliterator<E> spliterator() {
1378     return new ArrayListSpliterator<>(this, 0, -1, 0);
1379     }
1380    
1381     /** Index-based split-by-two, lazily initialized Spliterator */
1382     static final class ArrayListSpliterator<E> implements Spliterator<E> {
1383    
1384     /*
1385     * If ArrayLists were immutable, or structurally immutable (no
1386     * adds, removes, etc), we could implement their spliterators
1387     * with Arrays.spliterator. Instead we detect as much
1388     * interference during traversal as practical without
1389     * sacrificing much performance. We rely primarily on
1390     * modCounts. These are not guaranteed to detect concurrency
1391     * violations, and are sometimes overly conservative about
1392     * within-thread interference, but detect enough problems to
1393     * be worthwhile in practice. To carry this out, we (1) lazily
1394     * initialize fence and expectedModCount until the latest
1395     * point that we need to commit to the state we are checking
1396     * against; thus improving precision. (This doesn't apply to
1397     * SubLists, that create spliterators with current non-lazy
1398     * values). (2) We perform only a single
1399     * ConcurrentModificationException check at the end of forEach
1400     * (the most performance-sensitive method). When using forEach
1401     * (as opposed to iterators), we can normally only detect
1402     * interference after actions, not before. Further
1403     * CME-triggering checks apply to all other possible
1404     * violations of assumptions for example null or too-small
1405     * elementData array given its size(), that could only have
1406     * occurred due to interference. This allows the inner loop
1407     * of forEach to run without any further checks, and
1408     * simplifies lambda-resolution. While this does entail a
1409     * number of checks, note that in the common case of
1410     * list.stream().forEach(a), no checks or other computation
1411     * occur anywhere other than inside forEach itself. The other
1412     * less-often-used methods cannot take advantage of most of
1413     * these streamlinings.
1414     */
1415    
1416     private final ArrayList<E> list;
1417     private int index; // current index, modified on advance/split
1418     private int fence; // -1 until used; then one past last index
1419     private int expectedModCount; // initialized when fence set
1420    
1421     /** Create new spliterator covering the given range */
1422     ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1423     int expectedModCount) {
1424     this.list = list; // OK if null unless traversed
1425     this.index = origin;
1426     this.fence = fence;
1427     this.expectedModCount = expectedModCount;
1428     }
1429    
1430     private int getFence() { // initialize fence to size on first use
1431     int hi; // (a specialized variant appears in method forEach)
1432     ArrayList<E> lst;
1433     if ((hi = fence) < 0) {
1434     if ((lst = list) == null)
1435     hi = fence = 0;
1436     else {
1437     expectedModCount = lst.modCount;
1438     hi = fence = lst.size;
1439     }
1440     }
1441     return hi;
1442     }
1443    
1444     public ArrayListSpliterator<E> trySplit() {
1445     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1446     return (lo >= mid) ? null : // divide range in half unless too small
1447     new ArrayListSpliterator<>(list, lo, index = mid,
1448     expectedModCount);
1449     }
1450    
1451     public boolean tryAdvance(Consumer<? super E> action) {
1452     if (action == null)
1453     throw new NullPointerException();
1454     int hi = getFence(), i = index;
1455     if (i < hi) {
1456     index = i + 1;
1457     @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1458     action.accept(e);
1459     if (list.modCount != expectedModCount)
1460     throw new ConcurrentModificationException();
1461     return true;
1462     }
1463     return false;
1464     }
1465    
1466     public void forEachRemaining(Consumer<? super E> action) {
1467     int i, hi, mc; // hoist accesses and checks from loop
1468     ArrayList<E> lst; Object[] a;
1469     if (action == null)
1470     throw new NullPointerException();
1471     if ((lst = list) != null && (a = lst.elementData) != null) {
1472     if ((hi = fence) < 0) {
1473     mc = lst.modCount;
1474     hi = lst.size;
1475     }
1476     else
1477     mc = expectedModCount;
1478     if ((i = index) >= 0 && (index = hi) <= a.length) {
1479     for (; i < hi; ++i) {
1480     @SuppressWarnings("unchecked") E e = (E) a[i];
1481     action.accept(e);
1482     }
1483     if (lst.modCount == mc)
1484     return;
1485     }
1486     }
1487     throw new ConcurrentModificationException();
1488     }
1489    
1490     public long estimateSize() {
1491     return (long) (getFence() - index);
1492     }
1493    
1494     public int characteristics() {
1495     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1496     }
1497     }
1498    
1499 jsr166 1.39 // A tiny bit set implementation
1500    
1501     private static long[] nBits(int n) {
1502     return new long[((n - 1) >> 6) + 1];
1503     }
1504     private static void setBit(long[] bits, int i) {
1505     bits[i >> 6] |= 1L << i;
1506     }
1507     private static boolean isClear(long[] bits, int i) {
1508     return (bits[i >> 6] & (1L << i)) == 0;
1509     }
1510    
1511 jsr166 1.33 @Override
1512 jsr166 1.39 public boolean removeIf(Predicate<? super E> filter) {
1513 jsr166 1.33 Objects.requireNonNull(filter);
1514 jsr166 1.36 int expectedModCount = modCount;
1515     final Object[] es = elementData;
1516 jsr166 1.39 final int end = size;
1517 jsr166 1.36 final boolean modified;
1518 jsr166 1.39 int i;
1519 jsr166 1.37 // Optimize for initial run of survivors
1520 jsr166 1.39 for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1521 jsr166 1.38 ;
1522 jsr166 1.39 // Tolerate predicates that reentrantly access the collection for
1523     // read (but writers still get CME), so traverse once to find
1524     // elements to delete, a second pass to physically expunge.
1525     if (modified = (i < end)) {
1526 jsr166 1.36 expectedModCount++;
1527     modCount++;
1528 jsr166 1.39 final int beg = i;
1529     final long[] deathRow = nBits(end - beg);
1530     deathRow[0] = 1L; // set bit 0
1531     for (i = beg + 1; i < end; i++)
1532     if (filter.test(elementAt(es, i)))
1533     setBit(deathRow, i - beg);
1534     int w = beg;
1535     for (i = beg; i < end; i++)
1536     if (isClear(deathRow, i - beg))
1537     es[w++] = es[i];
1538     Arrays.fill(es, size = w, end, null);
1539 jsr166 1.33 }
1540 jsr166 1.36 if (modCount != expectedModCount)
1541     throw new ConcurrentModificationException();
1542     return modified;
1543 jsr166 1.33 }
1544    
1545     @Override
1546     public void replaceAll(UnaryOperator<E> operator) {
1547     Objects.requireNonNull(operator);
1548     final int expectedModCount = modCount;
1549 jsr166 1.39 final Object[] es = elementData;
1550 jsr166 1.33 final int size = this.size;
1551     for (int i=0; modCount == expectedModCount && i < size; i++) {
1552 jsr166 1.39 es[i] = operator.apply(elementAt(es, i));
1553 jsr166 1.33 }
1554     if (modCount != expectedModCount) {
1555     throw new ConcurrentModificationException();
1556     }
1557     modCount++;
1558     }
1559    
1560     @Override
1561     @SuppressWarnings("unchecked")
1562     public void sort(Comparator<? super E> c) {
1563     final int expectedModCount = modCount;
1564     Arrays.sort((E[]) elementData, 0, size, c);
1565     if (modCount != expectedModCount) {
1566     throw new ConcurrentModificationException();
1567     }
1568     modCount++;
1569 jsr166 1.25 }
1570 dl 1.1 }