ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.45
Committed: Wed Nov 30 03:31:47 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.44: +21 -32 lines
Log Message:
convert Spliterator implementations to inner classes

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.33 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.24 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.24 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 jsr166 1.33 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.24 * particular file as subject to the "Classpath" exception as provided
9 jsr166 1.33 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.24 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.30 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.1 */
25    
26     package java.util;
27    
28 jsr166 1.33 import java.util.function.Consumer;
29     import java.util.function.Predicate;
30     import java.util.function.UnaryOperator;
31    
32 dl 1.1 /**
33 jsr166 1.33 * Resizable-array implementation of the {@code List} interface. Implements
34 dl 1.1 * all optional list operations, and permits all elements, including
35 jsr166 1.33 * {@code null}. In addition to implementing the {@code List} interface,
36 dl 1.1 * this class provides methods to manipulate the size of the array that is
37     * used internally to store the list. (This class is roughly equivalent to
38 jsr166 1.33 * {@code Vector}, except that it is unsynchronized.)
39 dl 1.1 *
40 jsr166 1.33 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41     * {@code iterator}, and {@code listIterator} operations run in constant
42     * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 dl 1.1 * that is, adding n elements requires O(n) time. All of the other operations
44     * run in linear time (roughly speaking). The constant factor is low compared
45 jsr166 1.33 * to that for the {@code LinkedList} implementation.
46 dl 1.1 *
47 jsr166 1.33 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 dl 1.1 * the size of the array used to store the elements in the list. It is always
49     * at least as large as the list size. As elements are added to an ArrayList,
50     * its capacity grows automatically. The details of the growth policy are not
51     * specified beyond the fact that adding an element has constant amortized
52 jsr166 1.25 * time cost.
53 dl 1.1 *
54 jsr166 1.33 * <p>An application can increase the capacity of an {@code ArrayList} instance
55     * before adding a large number of elements using the {@code ensureCapacity}
56 dl 1.1 * operation. This may reduce the amount of incremental reallocation.
57     *
58     * <p><strong>Note that this implementation is not synchronized.</strong>
59 jsr166 1.33 * If multiple threads access an {@code ArrayList} instance concurrently,
60 dl 1.1 * and at least one of the threads modifies the list structurally, it
61     * <i>must</i> be synchronized externally. (A structural modification is
62     * any operation that adds or deletes one or more elements, or explicitly
63     * resizes the backing array; merely setting the value of an element is not
64     * a structural modification.) This is typically accomplished by
65     * synchronizing on some object that naturally encapsulates the list.
66     *
67     * If no such object exists, the list should be "wrapped" using the
68     * {@link Collections#synchronizedList Collections.synchronizedList}
69     * method. This is best done at creation time, to prevent accidental
70     * unsynchronized access to the list:<pre>
71     * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72     *
73 jsr166 1.33 * <p id="fail-fast">
74 jsr166 1.25 * The iterators returned by this class's {@link #iterator() iterator} and
75     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76     * if the list is structurally modified at any time after the iterator is
77     * created, in any way except through the iterator's own
78     * {@link ListIterator#remove() remove} or
79     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80     * {@link ConcurrentModificationException}. Thus, in the face of
81     * concurrent modification, the iterator fails quickly and cleanly, rather
82     * than risking arbitrary, non-deterministic behavior at an undetermined
83     * time in the future.
84 dl 1.1 *
85 jsr166 1.25 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 dl 1.1 * as it is, generally speaking, impossible to make any hard guarantees in the
87     * presence of unsynchronized concurrent modification. Fail-fast iterators
88 jsr166 1.25 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 dl 1.1 * Therefore, it would be wrong to write a program that depended on this
90 jsr166 1.25 * exception for its correctness: <i>the fail-fast behavior of iterators
91     * should be used only to detect bugs.</i>
92 dl 1.1 *
93 jsr166 1.25 * <p>This class is a member of the
94 jsr166 1.21 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 dl 1.1 * Java Collections Framework</a>.
96     *
97 jsr166 1.33 * @param <E> the type of elements in this list
98     *
99 dl 1.1 * @author Josh Bloch
100     * @author Neal Gafter
101 jsr166 1.26 * @see Collection
102     * @see List
103     * @see LinkedList
104     * @see Vector
105 dl 1.1 * @since 1.2
106     */
107     public class ArrayList<E> extends AbstractList<E>
108     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109     {
110     private static final long serialVersionUID = 8683452581122892189L;
111    
112     /**
113 jsr166 1.33 * Default initial capacity.
114     */
115     private static final int DEFAULT_CAPACITY = 10;
116    
117     /**
118     * Shared empty array instance used for empty instances.
119     */
120     private static final Object[] EMPTY_ELEMENTDATA = {};
121    
122     /**
123     * Shared empty array instance used for default sized empty instances. We
124     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125     * first element is added.
126     */
127     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128    
129     /**
130 dl 1.1 * The array buffer into which the elements of the ArrayList are stored.
131 jsr166 1.33 * The capacity of the ArrayList is the length of this array buffer. Any
132     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 dl 1.1 */
135 jsr166 1.33 transient Object[] elementData; // non-private to simplify nested class access
136 dl 1.1
137     /**
138     * The size of the ArrayList (the number of elements it contains).
139     *
140     * @serial
141     */
142     private int size;
143    
144     /**
145     * Constructs an empty list with the specified initial capacity.
146     *
147 jsr166 1.31 * @param initialCapacity the initial capacity of the list
148     * @throws IllegalArgumentException if the specified initial capacity
149     * is negative
150 dl 1.1 */
151     public ArrayList(int initialCapacity) {
152 jsr166 1.33 if (initialCapacity > 0) {
153     this.elementData = new Object[initialCapacity];
154     } else if (initialCapacity == 0) {
155     this.elementData = EMPTY_ELEMENTDATA;
156     } else {
157 dl 1.1 throw new IllegalArgumentException("Illegal Capacity: "+
158     initialCapacity);
159 jsr166 1.33 }
160 dl 1.1 }
161    
162     /**
163     * Constructs an empty list with an initial capacity of ten.
164     */
165     public ArrayList() {
166 jsr166 1.33 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 dl 1.1 }
168    
169     /**
170     * Constructs a list containing the elements of the specified
171     * collection, in the order they are returned by the collection's
172 jsr166 1.17 * iterator.
173 dl 1.1 *
174     * @param c the collection whose elements are to be placed into this list
175     * @throws NullPointerException if the specified collection is null
176     */
177     public ArrayList(Collection<? extends E> c) {
178 jsr166 1.26 elementData = c.toArray();
179 jsr166 1.33 if ((size = elementData.length) != 0) {
180     // defend against c.toArray (incorrectly) not returning Object[]
181     // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182     if (elementData.getClass() != Object[].class)
183     elementData = Arrays.copyOf(elementData, size, Object[].class);
184     } else {
185     // replace with empty array.
186     this.elementData = EMPTY_ELEMENTDATA;
187     }
188 dl 1.2 }
189 jsr166 1.4
190 dl 1.1 /**
191 jsr166 1.33 * Trims the capacity of this {@code ArrayList} instance to be the
192 dl 1.1 * list's current size. An application can use this operation to minimize
193 jsr166 1.33 * the storage of an {@code ArrayList} instance.
194 dl 1.1 */
195     public void trimToSize() {
196 jsr166 1.26 modCount++;
197 jsr166 1.33 if (size < elementData.length) {
198     elementData = (size == 0)
199     ? EMPTY_ELEMENTDATA
200     : Arrays.copyOf(elementData, size);
201 jsr166 1.26 }
202 dl 1.1 }
203    
204     /**
205 jsr166 1.33 * Increases the capacity of this {@code ArrayList} instance, if
206 dl 1.1 * necessary, to ensure that it can hold at least the number of elements
207     * specified by the minimum capacity argument.
208     *
209 jsr166 1.33 * @param minCapacity the desired minimum capacity
210 dl 1.1 */
211     public void ensureCapacity(int minCapacity) {
212 jsr166 1.33 if (minCapacity > elementData.length
213     && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214     && minCapacity <= DEFAULT_CAPACITY)) {
215     modCount++;
216     grow(minCapacity);
217     }
218     }
219    
220     /**
221     * The maximum size of array to allocate (unless necessary).
222     * Some VMs reserve some header words in an array.
223     * Attempts to allocate larger arrays may result in
224     * OutOfMemoryError: Requested array size exceeds VM limit
225     */
226     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227    
228     /**
229     * Increases the capacity to ensure that it can hold at least the
230     * number of elements specified by the minimum capacity argument.
231     *
232     * @param minCapacity the desired minimum capacity
233     * @throws OutOfMemoryError if minCapacity is less than zero
234     */
235     private Object[] grow(int minCapacity) {
236     return elementData = Arrays.copyOf(elementData,
237     newCapacity(minCapacity));
238     }
239    
240     private Object[] grow() {
241     return grow(size + 1);
242     }
243    
244     /**
245     * Returns a capacity at least as large as the given minimum capacity.
246     * Returns the current capacity increased by 50% if that suffices.
247     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249     *
250     * @param minCapacity the desired minimum capacity
251     * @throws OutOfMemoryError if minCapacity is less than zero
252     */
253     private int newCapacity(int minCapacity) {
254     // overflow-conscious code
255 jsr166 1.26 int oldCapacity = elementData.length;
256 jsr166 1.33 int newCapacity = oldCapacity + (oldCapacity >> 1);
257     if (newCapacity - minCapacity <= 0) {
258     if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259     return Math.max(DEFAULT_CAPACITY, minCapacity);
260     if (minCapacity < 0) // overflow
261     throw new OutOfMemoryError();
262     return minCapacity;
263     }
264     return (newCapacity - MAX_ARRAY_SIZE <= 0)
265     ? newCapacity
266     : hugeCapacity(minCapacity);
267     }
268    
269     private static int hugeCapacity(int minCapacity) {
270     if (minCapacity < 0) // overflow
271     throw new OutOfMemoryError();
272     return (minCapacity > MAX_ARRAY_SIZE)
273     ? Integer.MAX_VALUE
274     : MAX_ARRAY_SIZE;
275 dl 1.1 }
276    
277     /**
278     * Returns the number of elements in this list.
279     *
280     * @return the number of elements in this list
281     */
282     public int size() {
283 jsr166 1.26 return size;
284 dl 1.1 }
285    
286     /**
287 jsr166 1.33 * Returns {@code true} if this list contains no elements.
288 dl 1.1 *
289 jsr166 1.33 * @return {@code true} if this list contains no elements
290 dl 1.1 */
291     public boolean isEmpty() {
292 jsr166 1.26 return size == 0;
293 dl 1.1 }
294    
295     /**
296 jsr166 1.33 * Returns {@code true} if this list contains the specified element.
297     * More formally, returns {@code true} if and only if this list contains
298     * at least one element {@code e} such that
299     * {@code Objects.equals(o, e)}.
300 dl 1.1 *
301     * @param o element whose presence in this list is to be tested
302 jsr166 1.33 * @return {@code true} if this list contains the specified element
303 dl 1.1 */
304     public boolean contains(Object o) {
305 jsr166 1.26 return indexOf(o) >= 0;
306 dl 1.1 }
307    
308     /**
309     * Returns the index of the first occurrence of the specified element
310     * in this list, or -1 if this list does not contain the element.
311 jsr166 1.33 * More formally, returns the lowest index {@code i} such that
312     * {@code Objects.equals(o, get(i))},
313 dl 1.1 * or -1 if there is no such index.
314     */
315     public int indexOf(Object o) {
316 jsr166 1.26 if (o == null) {
317     for (int i = 0; i < size; i++)
318     if (elementData[i]==null)
319     return i;
320     } else {
321     for (int i = 0; i < size; i++)
322     if (o.equals(elementData[i]))
323     return i;
324     }
325     return -1;
326 dl 1.1 }
327    
328     /**
329     * Returns the index of the last occurrence of the specified element
330     * in this list, or -1 if this list does not contain the element.
331 jsr166 1.33 * More formally, returns the highest index {@code i} such that
332     * {@code Objects.equals(o, get(i))},
333 dl 1.1 * or -1 if there is no such index.
334     */
335     public int lastIndexOf(Object o) {
336 jsr166 1.26 if (o == null) {
337     for (int i = size-1; i >= 0; i--)
338     if (elementData[i]==null)
339     return i;
340     } else {
341     for (int i = size-1; i >= 0; i--)
342     if (o.equals(elementData[i]))
343     return i;
344     }
345     return -1;
346 dl 1.1 }
347    
348     /**
349 jsr166 1.33 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 dl 1.1 * elements themselves are not copied.)
351     *
352 jsr166 1.33 * @return a clone of this {@code ArrayList} instance
353 dl 1.1 */
354     public Object clone() {
355 jsr166 1.26 try {
356 jsr166 1.33 ArrayList<?> v = (ArrayList<?>) super.clone();
357 jsr166 1.26 v.elementData = Arrays.copyOf(elementData, size);
358     v.modCount = 0;
359     return v;
360     } catch (CloneNotSupportedException e) {
361     // this shouldn't happen, since we are Cloneable
362 jsr166 1.33 throw new InternalError(e);
363 jsr166 1.26 }
364 dl 1.1 }
365    
366     /**
367     * Returns an array containing all of the elements in this list
368     * in proper sequence (from first to last element).
369     *
370     * <p>The returned array will be "safe" in that no references to it are
371     * maintained by this list. (In other words, this method must allocate
372     * a new array). The caller is thus free to modify the returned array.
373     *
374     * <p>This method acts as bridge between array-based and collection-based
375     * APIs.
376     *
377     * @return an array containing all of the elements in this list in
378     * proper sequence
379     */
380     public Object[] toArray() {
381     return Arrays.copyOf(elementData, size);
382     }
383    
384     /**
385     * Returns an array containing all of the elements in this list in proper
386     * sequence (from first to last element); the runtime type of the returned
387     * array is that of the specified array. If the list fits in the
388     * specified array, it is returned therein. Otherwise, a new array is
389     * allocated with the runtime type of the specified array and the size of
390     * this list.
391     *
392     * <p>If the list fits in the specified array with room to spare
393     * (i.e., the array has more elements than the list), the element in
394     * the array immediately following the end of the collection is set to
395 jsr166 1.33 * {@code null}. (This is useful in determining the length of the
396 dl 1.1 * list <i>only</i> if the caller knows that the list does not contain
397     * any null elements.)
398     *
399     * @param a the array into which the elements of the list are to
400     * be stored, if it is big enough; otherwise, a new array of the
401     * same runtime type is allocated for this purpose.
402     * @return an array containing the elements of the list
403     * @throws ArrayStoreException if the runtime type of the specified array
404     * is not a supertype of the runtime type of every element in
405     * this list
406     * @throws NullPointerException if the specified array is null
407     */
408 jsr166 1.25 @SuppressWarnings("unchecked")
409 dl 1.1 public <T> T[] toArray(T[] a) {
410     if (a.length < size)
411     // Make a new array of a's runtime type, but my contents:
412     return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 jsr166 1.26 System.arraycopy(elementData, 0, a, 0, size);
414 dl 1.1 if (a.length > size)
415     a[size] = null;
416     return a;
417     }
418    
419     // Positional Access Operations
420    
421 jsr166 1.25 @SuppressWarnings("unchecked")
422     E elementData(int index) {
423 jsr166 1.26 return (E) elementData[index];
424 dl 1.1 }
425    
426 jsr166 1.39 @SuppressWarnings("unchecked")
427     static <E> E elementAt(Object[] es, int index) {
428     return (E) es[index];
429     }
430    
431 dl 1.1 /**
432     * Returns the element at the specified position in this list.
433     *
434     * @param index index of the element to return
435     * @return the element at the specified position in this list
436     * @throws IndexOutOfBoundsException {@inheritDoc}
437     */
438     public E get(int index) {
439 jsr166 1.33 Objects.checkIndex(index, size);
440 jsr166 1.26 return elementData(index);
441 dl 1.1 }
442    
443     /**
444     * Replaces the element at the specified position in this list with
445     * the specified element.
446     *
447     * @param index index of the element to replace
448     * @param element element to be stored at the specified position
449     * @return the element previously at the specified position
450     * @throws IndexOutOfBoundsException {@inheritDoc}
451     */
452     public E set(int index, E element) {
453 jsr166 1.33 Objects.checkIndex(index, size);
454 jsr166 1.26 E oldValue = elementData(index);
455     elementData[index] = element;
456     return oldValue;
457 dl 1.1 }
458    
459     /**
460 jsr166 1.33 * This helper method split out from add(E) to keep method
461     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462     * which helps when add(E) is called in a C1-compiled loop.
463     */
464     private void add(E e, Object[] elementData, int s) {
465     if (s == elementData.length)
466     elementData = grow();
467     elementData[s] = e;
468     size = s + 1;
469     }
470    
471     /**
472 dl 1.1 * Appends the specified element to the end of this list.
473     *
474     * @param e element to be appended to this list
475 jsr166 1.33 * @return {@code true} (as specified by {@link Collection#add})
476 dl 1.1 */
477     public boolean add(E e) {
478 jsr166 1.33 modCount++;
479     add(e, elementData, size);
480 jsr166 1.26 return true;
481 dl 1.1 }
482    
483     /**
484     * Inserts the specified element at the specified position in this
485     * list. Shifts the element currently at that position (if any) and
486     * any subsequent elements to the right (adds one to their indices).
487     *
488     * @param index index at which the specified element is to be inserted
489     * @param element element to be inserted
490     * @throws IndexOutOfBoundsException {@inheritDoc}
491     */
492     public void add(int index, E element) {
493 jsr166 1.26 rangeCheckForAdd(index);
494 jsr166 1.33 modCount++;
495     final int s;
496     Object[] elementData;
497     if ((s = size) == (elementData = this.elementData).length)
498     elementData = grow();
499     System.arraycopy(elementData, index,
500     elementData, index + 1,
501     s - index);
502 jsr166 1.26 elementData[index] = element;
503 jsr166 1.33 size = s + 1;
504 jsr166 1.41 // checkInvariants();
505 dl 1.1 }
506    
507     /**
508     * Removes the element at the specified position in this list.
509     * Shifts any subsequent elements to the left (subtracts one from their
510     * indices).
511     *
512     * @param index the index of the element to be removed
513     * @return the element that was removed from the list
514     * @throws IndexOutOfBoundsException {@inheritDoc}
515     */
516     public E remove(int index) {
517 jsr166 1.33 Objects.checkIndex(index, size);
518 jsr166 1.25
519 jsr166 1.26 modCount++;
520     E oldValue = elementData(index);
521 jsr166 1.25
522 jsr166 1.26 int numMoved = size - index - 1;
523     if (numMoved > 0)
524     System.arraycopy(elementData, index+1, elementData, index,
525     numMoved);
526 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
527 jsr166 1.25
528 jsr166 1.41 // checkInvariants();
529 jsr166 1.26 return oldValue;
530 dl 1.1 }
531    
532     /**
533     * Removes the first occurrence of the specified element from this list,
534     * if it is present. If the list does not contain the element, it is
535     * unchanged. More formally, removes the element with the lowest index
536 jsr166 1.33 * {@code i} such that
537     * {@code Objects.equals(o, get(i))}
538     * (if such an element exists). Returns {@code true} if this list
539 dl 1.1 * contained the specified element (or equivalently, if this list
540     * changed as a result of the call).
541     *
542     * @param o element to be removed from this list, if present
543 jsr166 1.33 * @return {@code true} if this list contained the specified element
544 dl 1.1 */
545     public boolean remove(Object o) {
546 jsr166 1.26 if (o == null) {
547     for (int index = 0; index < size; index++)
548     if (elementData[index] == null) {
549     fastRemove(index);
550     return true;
551     }
552     } else {
553 dl 1.1 for (int index = 0; index < size; index++)
554 jsr166 1.26 if (o.equals(elementData[index])) {
555     fastRemove(index);
556     return true;
557     }
558 dl 1.1 }
559 jsr166 1.26 return false;
560 dl 1.1 }
561    
562 jsr166 1.41 /**
563 dl 1.1 * Private remove method that skips bounds checking and does not
564     * return the value removed.
565     */
566     private void fastRemove(int index) {
567     modCount++;
568     int numMoved = size - index - 1;
569     if (numMoved > 0)
570     System.arraycopy(elementData, index+1, elementData, index,
571     numMoved);
572 jsr166 1.33 elementData[--size] = null; // clear to let GC do its work
573 dl 1.1 }
574    
575     /**
576     * Removes all of the elements from this list. The list will
577     * be empty after this call returns.
578     */
579     public void clear() {
580 jsr166 1.26 modCount++;
581 jsr166 1.41 Arrays.fill(elementData, 0, size, null);
582 jsr166 1.26 size = 0;
583 dl 1.1 }
584    
585     /**
586     * Appends all of the elements in the specified collection to the end of
587     * this list, in the order that they are returned by the
588     * specified collection's Iterator. The behavior of this operation is
589     * undefined if the specified collection is modified while the operation
590     * is in progress. (This implies that the behavior of this call is
591     * undefined if the specified collection is this list, and this
592     * list is nonempty.)
593     *
594     * @param c collection containing elements to be added to this list
595 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
596 dl 1.1 * @throws NullPointerException if the specified collection is null
597     */
598     public boolean addAll(Collection<? extends E> c) {
599 jsr166 1.26 Object[] a = c.toArray();
600 jsr166 1.33 modCount++;
601 dl 1.1 int numNew = a.length;
602 jsr166 1.33 if (numNew == 0)
603     return false;
604     Object[] elementData;
605     final int s;
606     if (numNew > (elementData = this.elementData).length - (s = size))
607     elementData = grow(s + numNew);
608     System.arraycopy(a, 0, elementData, s, numNew);
609     size = s + numNew;
610 jsr166 1.41 // checkInvariants();
611 jsr166 1.33 return true;
612 dl 1.1 }
613    
614     /**
615     * Inserts all of the elements in the specified collection into this
616     * list, starting at the specified position. Shifts the element
617     * currently at that position (if any) and any subsequent elements to
618     * the right (increases their indices). The new elements will appear
619     * in the list in the order that they are returned by the
620     * specified collection's iterator.
621     *
622     * @param index index at which to insert the first element from the
623     * specified collection
624     * @param c collection containing elements to be added to this list
625 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
626 dl 1.1 * @throws IndexOutOfBoundsException {@inheritDoc}
627     * @throws NullPointerException if the specified collection is null
628     */
629     public boolean addAll(int index, Collection<? extends E> c) {
630 jsr166 1.26 rangeCheckForAdd(index);
631 dl 1.1
632 jsr166 1.26 Object[] a = c.toArray();
633 jsr166 1.33 modCount++;
634 jsr166 1.26 int numNew = a.length;
635 jsr166 1.33 if (numNew == 0)
636     return false;
637     Object[] elementData;
638     final int s;
639     if (numNew > (elementData = this.elementData).length - (s = size))
640     elementData = grow(s + numNew);
641 jsr166 1.26
642 jsr166 1.33 int numMoved = s - index;
643 jsr166 1.26 if (numMoved > 0)
644 jsr166 1.33 System.arraycopy(elementData, index,
645     elementData, index + numNew,
646 jsr166 1.26 numMoved);
647 dl 1.1 System.arraycopy(a, 0, elementData, index, numNew);
648 jsr166 1.33 size = s + numNew;
649 jsr166 1.41 // checkInvariants();
650 jsr166 1.33 return true;
651 dl 1.1 }
652    
653     /**
654     * Removes from this list all of the elements whose index is between
655 jsr166 1.25 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
656 dl 1.1 * Shifts any succeeding elements to the left (reduces their index).
657 jsr166 1.25 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
658     * (If {@code toIndex==fromIndex}, this operation has no effect.)
659 dl 1.1 *
660 jsr166 1.25 * @throws IndexOutOfBoundsException if {@code fromIndex} or
661     * {@code toIndex} is out of range
662     * ({@code fromIndex < 0 ||
663     * toIndex > size() ||
664     * toIndex < fromIndex})
665 dl 1.1 */
666     protected void removeRange(int fromIndex, int toIndex) {
667 jsr166 1.33 if (fromIndex > toIndex) {
668     throw new IndexOutOfBoundsException(
669     outOfBoundsMsg(fromIndex, toIndex));
670     }
671 jsr166 1.26 modCount++;
672 jsr166 1.41 final Object[] es = elementData;
673     final int oldSize = size;
674     System.arraycopy(es, toIndex, es, fromIndex, oldSize - toIndex);
675     Arrays.fill(es, size -= (toIndex - fromIndex), oldSize, null);
676     // checkInvariants();
677 jsr166 1.25 }
678    
679     /**
680     * A version of rangeCheck used by add and addAll.
681     */
682     private void rangeCheckForAdd(int index) {
683 jsr166 1.26 if (index > size || index < 0)
684     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
685 jsr166 1.25 }
686    
687     /**
688     * Constructs an IndexOutOfBoundsException detail message.
689     * Of the many possible refactorings of the error handling code,
690     * this "outlining" performs best with both server and client VMs.
691     */
692     private String outOfBoundsMsg(int index) {
693 jsr166 1.26 return "Index: "+index+", Size: "+size;
694 jsr166 1.25 }
695    
696     /**
697 jsr166 1.33 * A version used in checking (fromIndex > toIndex) condition
698     */
699     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
700     return "From Index: " + fromIndex + " > To Index: " + toIndex;
701     }
702    
703     /**
704 jsr166 1.25 * Removes from this list all of its elements that are contained in the
705     * specified collection.
706     *
707     * @param c collection containing elements to be removed from this list
708     * @return {@code true} if this list changed as a result of the call
709     * @throws ClassCastException if the class of an element of this list
710 jsr166 1.33 * is incompatible with the specified collection
711     * (<a href="Collection.html#optional-restrictions">optional</a>)
712 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
713 jsr166 1.33 * specified collection does not permit null elements
714     * (<a href="Collection.html#optional-restrictions">optional</a>),
715 jsr166 1.25 * or if the specified collection is null
716     * @see Collection#contains(Object)
717     */
718     public boolean removeAll(Collection<?> c) {
719 jsr166 1.40 return batchRemove(c, false, 0, size);
720 jsr166 1.25 }
721    
722     /**
723     * Retains only the elements in this list that are contained in the
724     * specified collection. In other words, removes from this list all
725     * of its elements that are not contained in the specified collection.
726     *
727     * @param c collection containing elements to be retained in this list
728     * @return {@code true} if this list changed as a result of the call
729     * @throws ClassCastException if the class of an element of this list
730 jsr166 1.33 * is incompatible with the specified collection
731     * (<a href="Collection.html#optional-restrictions">optional</a>)
732 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
733 jsr166 1.33 * specified collection does not permit null elements
734     * (<a href="Collection.html#optional-restrictions">optional</a>),
735 jsr166 1.25 * or if the specified collection is null
736     * @see Collection#contains(Object)
737     */
738     public boolean retainAll(Collection<?> c) {
739 jsr166 1.40 return batchRemove(c, true, 0, size);
740 jsr166 1.25 }
741    
742 jsr166 1.40 boolean batchRemove(Collection<?> c, boolean complement,
743     final int from, final int end) {
744 jsr166 1.37 Objects.requireNonNull(c);
745     final Object[] es = elementData;
746     final boolean modified;
747     int r;
748     // Optimize for initial run of survivors
749 jsr166 1.40 for (r = from; r < end && c.contains(es[r]) == complement; r++)
750 jsr166 1.38 ;
751 jsr166 1.39 if (modified = (r < end)) {
752 jsr166 1.37 int w = r++;
753     try {
754 jsr166 1.39 for (Object e; r < end; r++)
755 jsr166 1.37 if (c.contains(e = es[r]) == complement)
756     es[w++] = e;
757     } catch (Throwable ex) {
758     // Preserve behavioral compatibility with AbstractCollection,
759     // even if c.contains() throws.
760 jsr166 1.39 System.arraycopy(es, r, es, w, end - r);
761     w += end - r;
762 jsr166 1.37 throw ex;
763     } finally {
764 jsr166 1.40 final int oldSize = size, deleted = end - w;
765     modCount += deleted;
766     System.arraycopy(es, end, es, w, oldSize - end);
767     Arrays.fill(es, size -= deleted, oldSize, null);
768 jsr166 1.26 }
769     }
770 jsr166 1.41 // checkInvariants();
771 jsr166 1.26 return modified;
772 jsr166 1.25 }
773    
774     /**
775 jsr166 1.33 * Save the state of the {@code ArrayList} instance to a stream (that
776 dl 1.1 * is, serialize it).
777     *
778 jsr166 1.33 * @serialData The length of the array backing the {@code ArrayList}
779 dl 1.1 * instance is emitted (int), followed by all of its elements
780 jsr166 1.33 * (each an {@code Object}) in the proper order.
781 dl 1.1 */
782     private void writeObject(java.io.ObjectOutputStream s)
783     throws java.io.IOException{
784 jsr166 1.26 // Write out element count, and any hidden stuff
785     int expectedModCount = modCount;
786     s.defaultWriteObject();
787 dl 1.1
788 jsr166 1.33 // Write out size as capacity for behavioural compatibility with clone()
789     s.writeInt(size);
790 dl 1.1
791 jsr166 1.26 // Write out all elements in the proper order.
792 jsr166 1.33 for (int i=0; i<size; i++) {
793 dl 1.1 s.writeObject(elementData[i]);
794 jsr166 1.33 }
795 dl 1.1
796 jsr166 1.26 if (modCount != expectedModCount) {
797 dl 1.1 throw new ConcurrentModificationException();
798     }
799     }
800    
801     /**
802 jsr166 1.33 * Reconstitute the {@code ArrayList} instance from a stream (that is,
803 dl 1.1 * deserialize it).
804     */
805     private void readObject(java.io.ObjectInputStream s)
806     throws java.io.IOException, ClassNotFoundException {
807 jsr166 1.33
808 jsr166 1.26 // Read in size, and any hidden stuff
809     s.defaultReadObject();
810 dl 1.1
811 jsr166 1.33 // Read in capacity
812     s.readInt(); // ignored
813    
814     if (size > 0) {
815     // like clone(), allocate array based upon size not capacity
816     Object[] elements = new Object[size];
817    
818     // Read in all elements in the proper order.
819     for (int i = 0; i < size; i++) {
820     elements[i] = s.readObject();
821     }
822    
823     elementData = elements;
824     } else if (size == 0) {
825     elementData = EMPTY_ELEMENTDATA;
826     } else {
827     throw new java.io.InvalidObjectException("Invalid size: " + size);
828     }
829 dl 1.1 }
830 jsr166 1.25
831     /**
832     * Returns a list iterator over the elements in this list (in proper
833     * sequence), starting at the specified position in the list.
834     * The specified index indicates the first element that would be
835     * returned by an initial call to {@link ListIterator#next next}.
836     * An initial call to {@link ListIterator#previous previous} would
837     * return the element with the specified index minus one.
838     *
839     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
840     *
841     * @throws IndexOutOfBoundsException {@inheritDoc}
842     */
843     public ListIterator<E> listIterator(int index) {
844 jsr166 1.33 rangeCheckForAdd(index);
845 jsr166 1.26 return new ListItr(index);
846 jsr166 1.25 }
847    
848     /**
849     * Returns a list iterator over the elements in this list (in proper
850     * sequence).
851     *
852     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
853     *
854     * @see #listIterator(int)
855     */
856     public ListIterator<E> listIterator() {
857 jsr166 1.26 return new ListItr(0);
858 jsr166 1.25 }
859    
860     /**
861     * Returns an iterator over the elements in this list in proper sequence.
862     *
863     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
864     *
865     * @return an iterator over the elements in this list in proper sequence
866     */
867     public Iterator<E> iterator() {
868 jsr166 1.26 return new Itr();
869 jsr166 1.25 }
870    
871     /**
872     * An optimized version of AbstractList.Itr
873     */
874     private class Itr implements Iterator<E> {
875 jsr166 1.26 int cursor; // index of next element to return
876     int lastRet = -1; // index of last element returned; -1 if no such
877     int expectedModCount = modCount;
878 jsr166 1.25
879 jsr166 1.33 // prevent creating a synthetic constructor
880     Itr() {}
881    
882 jsr166 1.26 public boolean hasNext() {
883 jsr166 1.25 return cursor != size;
884 jsr166 1.26 }
885    
886     @SuppressWarnings("unchecked")
887     public E next() {
888     checkForComodification();
889     int i = cursor;
890     if (i >= size)
891     throw new NoSuchElementException();
892     Object[] elementData = ArrayList.this.elementData;
893     if (i >= elementData.length)
894     throw new ConcurrentModificationException();
895     cursor = i + 1;
896     return (E) elementData[lastRet = i];
897     }
898 jsr166 1.25
899 jsr166 1.26 public void remove() {
900     if (lastRet < 0)
901     throw new IllegalStateException();
902 jsr166 1.25 checkForComodification();
903 jsr166 1.26
904     try {
905     ArrayList.this.remove(lastRet);
906     cursor = lastRet;
907     lastRet = -1;
908     expectedModCount = modCount;
909     } catch (IndexOutOfBoundsException ex) {
910     throw new ConcurrentModificationException();
911     }
912     }
913    
914 jsr166 1.33 @Override
915 jsr166 1.44 public void forEachRemaining(Consumer<? super E> action) {
916     Objects.requireNonNull(action);
917 jsr166 1.33 final int size = ArrayList.this.size;
918     int i = cursor;
919 jsr166 1.44 if (i < size) {
920     final Object[] es = elementData;
921     if (i >= es.length)
922     throw new ConcurrentModificationException();
923     for (; i < size && modCount == expectedModCount; i++)
924     action.accept(elementAt(es, i));
925     // update once at end to reduce heap write traffic
926     cursor = i;
927     lastRet = i - 1;
928     checkForComodification();
929 jsr166 1.33 }
930     }
931    
932 jsr166 1.26 final void checkForComodification() {
933     if (modCount != expectedModCount)
934     throw new ConcurrentModificationException();
935     }
936 jsr166 1.25 }
937    
938     /**
939     * An optimized version of AbstractList.ListItr
940     */
941     private class ListItr extends Itr implements ListIterator<E> {
942 jsr166 1.26 ListItr(int index) {
943     super();
944     cursor = index;
945     }
946    
947     public boolean hasPrevious() {
948     return cursor != 0;
949     }
950 jsr166 1.25
951 jsr166 1.26 public int nextIndex() {
952     return cursor;
953     }
954    
955     public int previousIndex() {
956     return cursor - 1;
957     }
958    
959     @SuppressWarnings("unchecked")
960 jsr166 1.25 public E previous() {
961 jsr166 1.26 checkForComodification();
962     int i = cursor - 1;
963     if (i < 0)
964     throw new NoSuchElementException();
965     Object[] elementData = ArrayList.this.elementData;
966     if (i >= elementData.length)
967     throw new ConcurrentModificationException();
968     cursor = i;
969     return (E) elementData[lastRet = i];
970     }
971    
972     public void set(E e) {
973     if (lastRet < 0)
974     throw new IllegalStateException();
975     checkForComodification();
976    
977     try {
978     ArrayList.this.set(lastRet, e);
979     } catch (IndexOutOfBoundsException ex) {
980     throw new ConcurrentModificationException();
981     }
982     }
983    
984     public void add(E e) {
985     checkForComodification();
986    
987     try {
988     int i = cursor;
989     ArrayList.this.add(i, e);
990     cursor = i + 1;
991     lastRet = -1;
992     expectedModCount = modCount;
993     } catch (IndexOutOfBoundsException ex) {
994     throw new ConcurrentModificationException();
995     }
996     }
997 jsr166 1.25 }
998    
999     /**
1000     * Returns a view of the portion of this list between the specified
1001     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1002     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1003     * empty.) The returned list is backed by this list, so non-structural
1004     * changes in the returned list are reflected in this list, and vice-versa.
1005     * The returned list supports all of the optional list operations.
1006     *
1007     * <p>This method eliminates the need for explicit range operations (of
1008     * the sort that commonly exist for arrays). Any operation that expects
1009     * a list can be used as a range operation by passing a subList view
1010     * instead of a whole list. For example, the following idiom
1011     * removes a range of elements from a list:
1012     * <pre>
1013     * list.subList(from, to).clear();
1014     * </pre>
1015     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1016     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1017     * {@link Collections} class can be applied to a subList.
1018     *
1019     * <p>The semantics of the list returned by this method become undefined if
1020     * the backing list (i.e., this list) is <i>structurally modified</i> in
1021     * any way other than via the returned list. (Structural modifications are
1022     * those that change the size of this list, or otherwise perturb it in such
1023     * a fashion that iterations in progress may yield incorrect results.)
1024     *
1025     * @throws IndexOutOfBoundsException {@inheritDoc}
1026     * @throws IllegalArgumentException {@inheritDoc}
1027     */
1028     public List<E> subList(int fromIndex, int toIndex) {
1029 jsr166 1.26 subListRangeCheck(fromIndex, toIndex, size);
1030 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1031 jsr166 1.25 }
1032    
1033 jsr166 1.33 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1034     private final ArrayList<E> root;
1035     private final SubList<E> parent;
1036 jsr166 1.26 private final int offset;
1037 jsr166 1.33 private int size;
1038 jsr166 1.26
1039 jsr166 1.33 /**
1040     * Constructs a sublist of an arbitrary ArrayList.
1041     */
1042     public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1043     this.root = root;
1044     this.parent = null;
1045     this.offset = fromIndex;
1046     this.size = toIndex - fromIndex;
1047     this.modCount = root.modCount;
1048     }
1049    
1050     /**
1051     * Constructs a sublist of another SubList.
1052     */
1053     private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1054     this.root = parent.root;
1055 jsr166 1.26 this.parent = parent;
1056 jsr166 1.33 this.offset = parent.offset + fromIndex;
1057 jsr166 1.26 this.size = toIndex - fromIndex;
1058 jsr166 1.33 this.modCount = root.modCount;
1059 jsr166 1.26 }
1060    
1061 jsr166 1.33 public E set(int index, E element) {
1062     Objects.checkIndex(index, size);
1063 jsr166 1.26 checkForComodification();
1064 jsr166 1.33 E oldValue = root.elementData(offset + index);
1065     root.elementData[offset + index] = element;
1066 jsr166 1.26 return oldValue;
1067     }
1068    
1069     public E get(int index) {
1070 jsr166 1.33 Objects.checkIndex(index, size);
1071 jsr166 1.26 checkForComodification();
1072 jsr166 1.33 return root.elementData(offset + index);
1073 jsr166 1.26 }
1074    
1075     public int size() {
1076     checkForComodification();
1077 jsr166 1.33 return size;
1078 jsr166 1.26 }
1079    
1080 jsr166 1.33 public void add(int index, E element) {
1081 jsr166 1.26 rangeCheckForAdd(index);
1082     checkForComodification();
1083 jsr166 1.33 root.add(offset + index, element);
1084     updateSizeAndModCount(1);
1085 jsr166 1.26 }
1086    
1087     public E remove(int index) {
1088 jsr166 1.33 Objects.checkIndex(index, size);
1089 jsr166 1.26 checkForComodification();
1090 jsr166 1.33 E result = root.remove(offset + index);
1091     updateSizeAndModCount(-1);
1092 jsr166 1.26 return result;
1093     }
1094    
1095     protected void removeRange(int fromIndex, int toIndex) {
1096     checkForComodification();
1097 jsr166 1.33 root.removeRange(offset + fromIndex, offset + toIndex);
1098     updateSizeAndModCount(fromIndex - toIndex);
1099 jsr166 1.26 }
1100    
1101     public boolean addAll(Collection<? extends E> c) {
1102     return addAll(this.size, c);
1103     }
1104    
1105     public boolean addAll(int index, Collection<? extends E> c) {
1106     rangeCheckForAdd(index);
1107     int cSize = c.size();
1108     if (cSize==0)
1109     return false;
1110     checkForComodification();
1111 jsr166 1.33 root.addAll(offset + index, c);
1112     updateSizeAndModCount(cSize);
1113 jsr166 1.26 return true;
1114     }
1115    
1116 jsr166 1.40 public boolean removeAll(Collection<?> c) {
1117     return batchRemove(c, false);
1118     }
1119 jsr166 1.41
1120 jsr166 1.40 public boolean retainAll(Collection<?> c) {
1121     return batchRemove(c, true);
1122     }
1123    
1124     private boolean batchRemove(Collection<?> c, boolean complement) {
1125     checkForComodification();
1126     int oldSize = root.size;
1127     boolean modified =
1128     root.batchRemove(c, complement, offset, offset + size);
1129     if (modified)
1130     updateSizeAndModCount(root.size - oldSize);
1131     return modified;
1132     }
1133    
1134     public boolean removeIf(Predicate<? super E> filter) {
1135     checkForComodification();
1136     int oldSize = root.size;
1137     boolean modified = root.removeIf(filter, offset, offset + size);
1138     if (modified)
1139     updateSizeAndModCount(root.size - oldSize);
1140     return modified;
1141     }
1142    
1143 jsr166 1.26 public Iterator<E> iterator() {
1144     return listIterator();
1145     }
1146    
1147 jsr166 1.33 public ListIterator<E> listIterator(int index) {
1148 jsr166 1.26 checkForComodification();
1149     rangeCheckForAdd(index);
1150    
1151     return new ListIterator<E>() {
1152     int cursor = index;
1153     int lastRet = -1;
1154 jsr166 1.33 int expectedModCount = root.modCount;
1155 jsr166 1.26
1156     public boolean hasNext() {
1157     return cursor != SubList.this.size;
1158     }
1159    
1160     @SuppressWarnings("unchecked")
1161     public E next() {
1162     checkForComodification();
1163     int i = cursor;
1164     if (i >= SubList.this.size)
1165     throw new NoSuchElementException();
1166 jsr166 1.33 Object[] elementData = root.elementData;
1167 jsr166 1.26 if (offset + i >= elementData.length)
1168     throw new ConcurrentModificationException();
1169     cursor = i + 1;
1170     return (E) elementData[offset + (lastRet = i)];
1171     }
1172    
1173     public boolean hasPrevious() {
1174     return cursor != 0;
1175     }
1176    
1177     @SuppressWarnings("unchecked")
1178     public E previous() {
1179     checkForComodification();
1180     int i = cursor - 1;
1181     if (i < 0)
1182     throw new NoSuchElementException();
1183 jsr166 1.33 Object[] elementData = root.elementData;
1184 jsr166 1.26 if (offset + i >= elementData.length)
1185     throw new ConcurrentModificationException();
1186     cursor = i;
1187     return (E) elementData[offset + (lastRet = i)];
1188     }
1189    
1190 jsr166 1.44 public void forEachRemaining(Consumer<? super E> action) {
1191     Objects.requireNonNull(action);
1192 jsr166 1.33 final int size = SubList.this.size;
1193     int i = cursor;
1194 jsr166 1.44 if (i < size) {
1195     final Object[] es = root.elementData;
1196     if (offset + i >= es.length)
1197     throw new ConcurrentModificationException();
1198     for (; i < size && modCount == expectedModCount; i++)
1199     action.accept(elementAt(es, offset + i));
1200     // update once at end to reduce heap write traffic
1201     cursor = i;
1202     lastRet = i - 1;
1203     checkForComodification();
1204 jsr166 1.33 }
1205     }
1206    
1207 jsr166 1.26 public int nextIndex() {
1208     return cursor;
1209     }
1210    
1211     public int previousIndex() {
1212     return cursor - 1;
1213     }
1214    
1215     public void remove() {
1216     if (lastRet < 0)
1217     throw new IllegalStateException();
1218     checkForComodification();
1219    
1220     try {
1221     SubList.this.remove(lastRet);
1222     cursor = lastRet;
1223     lastRet = -1;
1224 jsr166 1.33 expectedModCount = root.modCount;
1225 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1226     throw new ConcurrentModificationException();
1227     }
1228     }
1229    
1230     public void set(E e) {
1231     if (lastRet < 0)
1232     throw new IllegalStateException();
1233     checkForComodification();
1234    
1235     try {
1236 jsr166 1.33 root.set(offset + lastRet, e);
1237 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1238     throw new ConcurrentModificationException();
1239     }
1240     }
1241    
1242     public void add(E e) {
1243     checkForComodification();
1244    
1245     try {
1246     int i = cursor;
1247     SubList.this.add(i, e);
1248     cursor = i + 1;
1249     lastRet = -1;
1250 jsr166 1.33 expectedModCount = root.modCount;
1251 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1252     throw new ConcurrentModificationException();
1253     }
1254     }
1255    
1256     final void checkForComodification() {
1257 jsr166 1.33 if (root.modCount != expectedModCount)
1258 jsr166 1.26 throw new ConcurrentModificationException();
1259     }
1260     };
1261     }
1262    
1263     public List<E> subList(int fromIndex, int toIndex) {
1264     subListRangeCheck(fromIndex, toIndex, size);
1265 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1266 jsr166 1.26 }
1267    
1268     private void rangeCheckForAdd(int index) {
1269     if (index < 0 || index > this.size)
1270     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1271     }
1272    
1273     private String outOfBoundsMsg(int index) {
1274     return "Index: "+index+", Size: "+this.size;
1275     }
1276    
1277     private void checkForComodification() {
1278 jsr166 1.33 if (root.modCount != modCount)
1279 jsr166 1.26 throw new ConcurrentModificationException();
1280     }
1281 jsr166 1.33
1282     private void updateSizeAndModCount(int sizeChange) {
1283     SubList<E> slist = this;
1284     do {
1285     slist.size += sizeChange;
1286     slist.modCount = root.modCount;
1287     slist = slist.parent;
1288     } while (slist != null);
1289     }
1290    
1291     public Spliterator<E> spliterator() {
1292     checkForComodification();
1293    
1294 jsr166 1.45 // ArrayListSpliterator not used here due to late-binding
1295     return new Spliterator<E>() {
1296 jsr166 1.33 private int index = offset; // current index, modified on advance/split
1297     private int fence = -1; // -1 until used; then one past last index
1298     private int expectedModCount; // initialized when fence set
1299    
1300     private int getFence() { // initialize fence to size on first use
1301     int hi; // (a specialized variant appears in method forEach)
1302     if ((hi = fence) < 0) {
1303     expectedModCount = modCount;
1304     hi = fence = offset + size;
1305     }
1306     return hi;
1307     }
1308    
1309 jsr166 1.45 public ArrayList<E>.ArrayListSpliterator trySplit() {
1310 jsr166 1.33 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1311 jsr166 1.45 // ArrayListSpliterator can be used here as the source is already bound
1312 jsr166 1.33 return (lo >= mid) ? null : // divide range in half unless too small
1313 jsr166 1.45 root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1314 jsr166 1.33 }
1315    
1316     public boolean tryAdvance(Consumer<? super E> action) {
1317     Objects.requireNonNull(action);
1318     int hi = getFence(), i = index;
1319     if (i < hi) {
1320     index = i + 1;
1321     @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1322     action.accept(e);
1323     if (root.modCount != expectedModCount)
1324     throw new ConcurrentModificationException();
1325     return true;
1326     }
1327     return false;
1328     }
1329    
1330     public void forEachRemaining(Consumer<? super E> action) {
1331     Objects.requireNonNull(action);
1332     int i, hi, mc; // hoist accesses and checks from loop
1333     ArrayList<E> lst = root;
1334     Object[] a;
1335     if ((a = lst.elementData) != null) {
1336     if ((hi = fence) < 0) {
1337     mc = modCount;
1338     hi = offset + size;
1339     }
1340     else
1341     mc = expectedModCount;
1342     if ((i = index) >= 0 && (index = hi) <= a.length) {
1343     for (; i < hi; ++i) {
1344     @SuppressWarnings("unchecked") E e = (E) a[i];
1345     action.accept(e);
1346     }
1347     if (lst.modCount == mc)
1348     return;
1349     }
1350     }
1351     throw new ConcurrentModificationException();
1352     }
1353    
1354     public long estimateSize() {
1355 jsr166 1.45 return getFence() - index;
1356 jsr166 1.33 }
1357    
1358     public int characteristics() {
1359     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1360     }
1361     };
1362     }
1363     }
1364    
1365     @Override
1366     public void forEach(Consumer<? super E> action) {
1367     Objects.requireNonNull(action);
1368     final int expectedModCount = modCount;
1369 jsr166 1.39 final Object[] es = elementData;
1370 jsr166 1.33 final int size = this.size;
1371 jsr166 1.41 for (int i = 0; modCount == expectedModCount && i < size; i++)
1372 jsr166 1.39 action.accept(elementAt(es, i));
1373 jsr166 1.41 if (modCount != expectedModCount)
1374 jsr166 1.33 throw new ConcurrentModificationException();
1375     }
1376    
1377     /**
1378     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1379     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1380     * list.
1381     *
1382     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1383     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1384     * Overriding implementations should document the reporting of additional
1385     * characteristic values.
1386     *
1387     * @return a {@code Spliterator} over the elements in this list
1388     * @since 1.8
1389     */
1390     @Override
1391     public Spliterator<E> spliterator() {
1392 jsr166 1.45 return new ArrayListSpliterator(0, -1, 0);
1393 jsr166 1.33 }
1394    
1395     /** Index-based split-by-two, lazily initialized Spliterator */
1396 jsr166 1.45 final class ArrayListSpliterator implements Spliterator<E> {
1397 jsr166 1.33
1398     /*
1399     * If ArrayLists were immutable, or structurally immutable (no
1400     * adds, removes, etc), we could implement their spliterators
1401     * with Arrays.spliterator. Instead we detect as much
1402     * interference during traversal as practical without
1403     * sacrificing much performance. We rely primarily on
1404     * modCounts. These are not guaranteed to detect concurrency
1405     * violations, and are sometimes overly conservative about
1406     * within-thread interference, but detect enough problems to
1407     * be worthwhile in practice. To carry this out, we (1) lazily
1408     * initialize fence and expectedModCount until the latest
1409     * point that we need to commit to the state we are checking
1410     * against; thus improving precision. (This doesn't apply to
1411     * SubLists, that create spliterators with current non-lazy
1412     * values). (2) We perform only a single
1413     * ConcurrentModificationException check at the end of forEach
1414     * (the most performance-sensitive method). When using forEach
1415     * (as opposed to iterators), we can normally only detect
1416     * interference after actions, not before. Further
1417     * CME-triggering checks apply to all other possible
1418     * violations of assumptions for example null or too-small
1419     * elementData array given its size(), that could only have
1420     * occurred due to interference. This allows the inner loop
1421     * of forEach to run without any further checks, and
1422     * simplifies lambda-resolution. While this does entail a
1423     * number of checks, note that in the common case of
1424     * list.stream().forEach(a), no checks or other computation
1425     * occur anywhere other than inside forEach itself. The other
1426     * less-often-used methods cannot take advantage of most of
1427     * these streamlinings.
1428     */
1429    
1430     private int index; // current index, modified on advance/split
1431     private int fence; // -1 until used; then one past last index
1432     private int expectedModCount; // initialized when fence set
1433    
1434 jsr166 1.40 /** Create new spliterator covering the given range */
1435 jsr166 1.45 ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1436 jsr166 1.33 this.index = origin;
1437     this.fence = fence;
1438     this.expectedModCount = expectedModCount;
1439     }
1440    
1441     private int getFence() { // initialize fence to size on first use
1442     int hi; // (a specialized variant appears in method forEach)
1443     if ((hi = fence) < 0) {
1444 jsr166 1.45 expectedModCount = modCount;
1445     hi = fence = size;
1446 jsr166 1.33 }
1447     return hi;
1448     }
1449    
1450 jsr166 1.45 public ArrayListSpliterator trySplit() {
1451 jsr166 1.33 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1452     return (lo >= mid) ? null : // divide range in half unless too small
1453 jsr166 1.45 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1454 jsr166 1.33 }
1455    
1456     public boolean tryAdvance(Consumer<? super E> action) {
1457     if (action == null)
1458     throw new NullPointerException();
1459     int hi = getFence(), i = index;
1460     if (i < hi) {
1461     index = i + 1;
1462 jsr166 1.45 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1463 jsr166 1.33 action.accept(e);
1464 jsr166 1.45 if (modCount != expectedModCount)
1465 jsr166 1.33 throw new ConcurrentModificationException();
1466     return true;
1467     }
1468     return false;
1469     }
1470    
1471     public void forEachRemaining(Consumer<? super E> action) {
1472     int i, hi, mc; // hoist accesses and checks from loop
1473 jsr166 1.45 Object[] a;
1474 jsr166 1.33 if (action == null)
1475     throw new NullPointerException();
1476 jsr166 1.45 if ((a = elementData) != null) {
1477 jsr166 1.33 if ((hi = fence) < 0) {
1478 jsr166 1.45 mc = modCount;
1479     hi = size;
1480 jsr166 1.33 }
1481     else
1482     mc = expectedModCount;
1483     if ((i = index) >= 0 && (index = hi) <= a.length) {
1484     for (; i < hi; ++i) {
1485     @SuppressWarnings("unchecked") E e = (E) a[i];
1486     action.accept(e);
1487     }
1488 jsr166 1.45 if (modCount == mc)
1489 jsr166 1.33 return;
1490     }
1491     }
1492     throw new ConcurrentModificationException();
1493     }
1494    
1495     public long estimateSize() {
1496 jsr166 1.45 return getFence() - index;
1497 jsr166 1.33 }
1498    
1499     public int characteristics() {
1500     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1501     }
1502     }
1503    
1504 jsr166 1.39 // A tiny bit set implementation
1505    
1506     private static long[] nBits(int n) {
1507     return new long[((n - 1) >> 6) + 1];
1508     }
1509     private static void setBit(long[] bits, int i) {
1510     bits[i >> 6] |= 1L << i;
1511     }
1512     private static boolean isClear(long[] bits, int i) {
1513     return (bits[i >> 6] & (1L << i)) == 0;
1514     }
1515    
1516 jsr166 1.33 @Override
1517 jsr166 1.40 public boolean removeIf(Predicate<? super E> filter) {
1518     return removeIf(filter, 0, size);
1519     }
1520    
1521 jsr166 1.43 /**
1522     * Removes all elements satisfying the given predicate, from index
1523     * i (inclusive) to index end (exclusive).
1524     */
1525     boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1526 jsr166 1.33 Objects.requireNonNull(filter);
1527 jsr166 1.36 int expectedModCount = modCount;
1528     final Object[] es = elementData;
1529 jsr166 1.37 // Optimize for initial run of survivors
1530 jsr166 1.43 for (; i < end && !filter.test(elementAt(es, i)); i++)
1531 jsr166 1.38 ;
1532 jsr166 1.39 // Tolerate predicates that reentrantly access the collection for
1533     // read (but writers still get CME), so traverse once to find
1534     // elements to delete, a second pass to physically expunge.
1535 jsr166 1.43 if (i < end) {
1536 jsr166 1.39 final int beg = i;
1537     final long[] deathRow = nBits(end - beg);
1538     deathRow[0] = 1L; // set bit 0
1539     for (i = beg + 1; i < end; i++)
1540     if (filter.test(elementAt(es, i)))
1541     setBit(deathRow, i - beg);
1542 jsr166 1.40 if (modCount != expectedModCount)
1543     throw new ConcurrentModificationException();
1544 jsr166 1.43 expectedModCount++;
1545     modCount++;
1546 jsr166 1.39 int w = beg;
1547     for (i = beg; i < end; i++)
1548     if (isClear(deathRow, i - beg))
1549     es[w++] = es[i];
1550 jsr166 1.40 final int oldSize = size;
1551     System.arraycopy(es, end, es, w, oldSize - end);
1552     Arrays.fill(es, size -= (end - w), oldSize, null);
1553 jsr166 1.43 // checkInvariants();
1554     return true;
1555     } else {
1556     if (modCount != expectedModCount)
1557     throw new ConcurrentModificationException();
1558     // checkInvariants();
1559     return false;
1560 jsr166 1.33 }
1561     }
1562    
1563     @Override
1564     public void replaceAll(UnaryOperator<E> operator) {
1565     Objects.requireNonNull(operator);
1566     final int expectedModCount = modCount;
1567 jsr166 1.39 final Object[] es = elementData;
1568 jsr166 1.33 final int size = this.size;
1569 jsr166 1.41 for (int i = 0; modCount == expectedModCount && i < size; i++)
1570 jsr166 1.39 es[i] = operator.apply(elementAt(es, i));
1571 jsr166 1.41 if (modCount != expectedModCount)
1572 jsr166 1.33 throw new ConcurrentModificationException();
1573     modCount++;
1574 jsr166 1.41 // checkInvariants();
1575 jsr166 1.33 }
1576    
1577     @Override
1578     @SuppressWarnings("unchecked")
1579     public void sort(Comparator<? super E> c) {
1580     final int expectedModCount = modCount;
1581     Arrays.sort((E[]) elementData, 0, size, c);
1582 jsr166 1.41 if (modCount != expectedModCount)
1583 jsr166 1.33 throw new ConcurrentModificationException();
1584     modCount++;
1585 jsr166 1.41 // checkInvariants();
1586     }
1587    
1588     void checkInvariants() {
1589     // assert size >= 0;
1590     // assert size == elementData.length || elementData[size] == null;
1591 jsr166 1.25 }
1592 dl 1.1 }