ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.53
Committed: Mon Jul 3 20:08:10 2017 UTC (6 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.52: +21 -20 lines
Log Message:
batchRemove: rewrite to avoid errorprone [LogicalAssignment]

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.33 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.24 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.24 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 jsr166 1.33 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.24 * particular file as subject to the "Classpath" exception as provided
9 jsr166 1.33 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.24 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.30 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.1 */
25    
26     package java.util;
27    
28 jsr166 1.33 import java.util.function.Consumer;
29     import java.util.function.Predicate;
30     import java.util.function.UnaryOperator;
31    
32 dl 1.1 /**
33 jsr166 1.33 * Resizable-array implementation of the {@code List} interface. Implements
34 dl 1.1 * all optional list operations, and permits all elements, including
35 jsr166 1.33 * {@code null}. In addition to implementing the {@code List} interface,
36 dl 1.1 * this class provides methods to manipulate the size of the array that is
37     * used internally to store the list. (This class is roughly equivalent to
38 jsr166 1.33 * {@code Vector}, except that it is unsynchronized.)
39 dl 1.1 *
40 jsr166 1.33 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41     * {@code iterator}, and {@code listIterator} operations run in constant
42     * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 dl 1.1 * that is, adding n elements requires O(n) time. All of the other operations
44     * run in linear time (roughly speaking). The constant factor is low compared
45 jsr166 1.33 * to that for the {@code LinkedList} implementation.
46 dl 1.1 *
47 jsr166 1.33 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 dl 1.1 * the size of the array used to store the elements in the list. It is always
49     * at least as large as the list size. As elements are added to an ArrayList,
50     * its capacity grows automatically. The details of the growth policy are not
51     * specified beyond the fact that adding an element has constant amortized
52 jsr166 1.25 * time cost.
53 dl 1.1 *
54 jsr166 1.33 * <p>An application can increase the capacity of an {@code ArrayList} instance
55     * before adding a large number of elements using the {@code ensureCapacity}
56 dl 1.1 * operation. This may reduce the amount of incremental reallocation.
57     *
58     * <p><strong>Note that this implementation is not synchronized.</strong>
59 jsr166 1.33 * If multiple threads access an {@code ArrayList} instance concurrently,
60 dl 1.1 * and at least one of the threads modifies the list structurally, it
61     * <i>must</i> be synchronized externally. (A structural modification is
62     * any operation that adds or deletes one or more elements, or explicitly
63     * resizes the backing array; merely setting the value of an element is not
64     * a structural modification.) This is typically accomplished by
65     * synchronizing on some object that naturally encapsulates the list.
66     *
67     * If no such object exists, the list should be "wrapped" using the
68     * {@link Collections#synchronizedList Collections.synchronizedList}
69     * method. This is best done at creation time, to prevent accidental
70     * unsynchronized access to the list:<pre>
71     * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72     *
73 jsr166 1.33 * <p id="fail-fast">
74 jsr166 1.25 * The iterators returned by this class's {@link #iterator() iterator} and
75     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76     * if the list is structurally modified at any time after the iterator is
77     * created, in any way except through the iterator's own
78     * {@link ListIterator#remove() remove} or
79     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80     * {@link ConcurrentModificationException}. Thus, in the face of
81     * concurrent modification, the iterator fails quickly and cleanly, rather
82     * than risking arbitrary, non-deterministic behavior at an undetermined
83     * time in the future.
84 dl 1.1 *
85 jsr166 1.25 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 dl 1.1 * as it is, generally speaking, impossible to make any hard guarantees in the
87     * presence of unsynchronized concurrent modification. Fail-fast iterators
88 jsr166 1.25 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 dl 1.1 * Therefore, it would be wrong to write a program that depended on this
90 jsr166 1.25 * exception for its correctness: <i>the fail-fast behavior of iterators
91     * should be used only to detect bugs.</i>
92 dl 1.1 *
93 jsr166 1.25 * <p>This class is a member of the
94 jsr166 1.50 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
95 dl 1.1 * Java Collections Framework</a>.
96     *
97 jsr166 1.33 * @param <E> the type of elements in this list
98     *
99 dl 1.1 * @author Josh Bloch
100     * @author Neal Gafter
101 jsr166 1.26 * @see Collection
102     * @see List
103     * @see LinkedList
104     * @see Vector
105 dl 1.1 * @since 1.2
106     */
107     public class ArrayList<E> extends AbstractList<E>
108     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109     {
110     private static final long serialVersionUID = 8683452581122892189L;
111    
112     /**
113 jsr166 1.33 * Default initial capacity.
114     */
115     private static final int DEFAULT_CAPACITY = 10;
116    
117     /**
118     * Shared empty array instance used for empty instances.
119     */
120     private static final Object[] EMPTY_ELEMENTDATA = {};
121    
122     /**
123     * Shared empty array instance used for default sized empty instances. We
124     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125     * first element is added.
126     */
127     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128    
129     /**
130 dl 1.1 * The array buffer into which the elements of the ArrayList are stored.
131 jsr166 1.33 * The capacity of the ArrayList is the length of this array buffer. Any
132     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 dl 1.1 */
135 jsr166 1.33 transient Object[] elementData; // non-private to simplify nested class access
136 dl 1.1
137     /**
138     * The size of the ArrayList (the number of elements it contains).
139     *
140     * @serial
141     */
142     private int size;
143    
144     /**
145     * Constructs an empty list with the specified initial capacity.
146     *
147 jsr166 1.31 * @param initialCapacity the initial capacity of the list
148     * @throws IllegalArgumentException if the specified initial capacity
149     * is negative
150 dl 1.1 */
151     public ArrayList(int initialCapacity) {
152 jsr166 1.33 if (initialCapacity > 0) {
153     this.elementData = new Object[initialCapacity];
154     } else if (initialCapacity == 0) {
155     this.elementData = EMPTY_ELEMENTDATA;
156     } else {
157 dl 1.1 throw new IllegalArgumentException("Illegal Capacity: "+
158     initialCapacity);
159 jsr166 1.33 }
160 dl 1.1 }
161    
162     /**
163     * Constructs an empty list with an initial capacity of ten.
164     */
165     public ArrayList() {
166 jsr166 1.33 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 dl 1.1 }
168    
169     /**
170     * Constructs a list containing the elements of the specified
171     * collection, in the order they are returned by the collection's
172 jsr166 1.17 * iterator.
173 dl 1.1 *
174     * @param c the collection whose elements are to be placed into this list
175     * @throws NullPointerException if the specified collection is null
176     */
177     public ArrayList(Collection<? extends E> c) {
178 jsr166 1.26 elementData = c.toArray();
179 jsr166 1.33 if ((size = elementData.length) != 0) {
180     // defend against c.toArray (incorrectly) not returning Object[]
181     // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182     if (elementData.getClass() != Object[].class)
183     elementData = Arrays.copyOf(elementData, size, Object[].class);
184     } else {
185     // replace with empty array.
186     this.elementData = EMPTY_ELEMENTDATA;
187     }
188 dl 1.2 }
189 jsr166 1.4
190 dl 1.1 /**
191 jsr166 1.33 * Trims the capacity of this {@code ArrayList} instance to be the
192 dl 1.1 * list's current size. An application can use this operation to minimize
193 jsr166 1.33 * the storage of an {@code ArrayList} instance.
194 dl 1.1 */
195     public void trimToSize() {
196 jsr166 1.26 modCount++;
197 jsr166 1.33 if (size < elementData.length) {
198     elementData = (size == 0)
199     ? EMPTY_ELEMENTDATA
200     : Arrays.copyOf(elementData, size);
201 jsr166 1.26 }
202 dl 1.1 }
203    
204     /**
205 jsr166 1.33 * Increases the capacity of this {@code ArrayList} instance, if
206 dl 1.1 * necessary, to ensure that it can hold at least the number of elements
207     * specified by the minimum capacity argument.
208     *
209 jsr166 1.33 * @param minCapacity the desired minimum capacity
210 dl 1.1 */
211     public void ensureCapacity(int minCapacity) {
212 jsr166 1.33 if (minCapacity > elementData.length
213     && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214     && minCapacity <= DEFAULT_CAPACITY)) {
215     modCount++;
216     grow(minCapacity);
217     }
218     }
219    
220     /**
221     * The maximum size of array to allocate (unless necessary).
222     * Some VMs reserve some header words in an array.
223     * Attempts to allocate larger arrays may result in
224     * OutOfMemoryError: Requested array size exceeds VM limit
225     */
226     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227    
228     /**
229     * Increases the capacity to ensure that it can hold at least the
230     * number of elements specified by the minimum capacity argument.
231     *
232     * @param minCapacity the desired minimum capacity
233     * @throws OutOfMemoryError if minCapacity is less than zero
234     */
235     private Object[] grow(int minCapacity) {
236     return elementData = Arrays.copyOf(elementData,
237     newCapacity(minCapacity));
238     }
239    
240     private Object[] grow() {
241     return grow(size + 1);
242     }
243    
244     /**
245     * Returns a capacity at least as large as the given minimum capacity.
246     * Returns the current capacity increased by 50% if that suffices.
247     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249     *
250     * @param minCapacity the desired minimum capacity
251     * @throws OutOfMemoryError if minCapacity is less than zero
252     */
253     private int newCapacity(int minCapacity) {
254     // overflow-conscious code
255 jsr166 1.26 int oldCapacity = elementData.length;
256 jsr166 1.33 int newCapacity = oldCapacity + (oldCapacity >> 1);
257     if (newCapacity - minCapacity <= 0) {
258     if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259     return Math.max(DEFAULT_CAPACITY, minCapacity);
260     if (minCapacity < 0) // overflow
261     throw new OutOfMemoryError();
262     return minCapacity;
263     }
264     return (newCapacity - MAX_ARRAY_SIZE <= 0)
265     ? newCapacity
266     : hugeCapacity(minCapacity);
267     }
268    
269     private static int hugeCapacity(int minCapacity) {
270     if (minCapacity < 0) // overflow
271     throw new OutOfMemoryError();
272     return (minCapacity > MAX_ARRAY_SIZE)
273     ? Integer.MAX_VALUE
274     : MAX_ARRAY_SIZE;
275 dl 1.1 }
276    
277     /**
278     * Returns the number of elements in this list.
279     *
280     * @return the number of elements in this list
281     */
282     public int size() {
283 jsr166 1.26 return size;
284 dl 1.1 }
285    
286     /**
287 jsr166 1.33 * Returns {@code true} if this list contains no elements.
288 dl 1.1 *
289 jsr166 1.33 * @return {@code true} if this list contains no elements
290 dl 1.1 */
291     public boolean isEmpty() {
292 jsr166 1.26 return size == 0;
293 dl 1.1 }
294    
295     /**
296 jsr166 1.33 * Returns {@code true} if this list contains the specified element.
297     * More formally, returns {@code true} if and only if this list contains
298     * at least one element {@code e} such that
299     * {@code Objects.equals(o, e)}.
300 dl 1.1 *
301     * @param o element whose presence in this list is to be tested
302 jsr166 1.33 * @return {@code true} if this list contains the specified element
303 dl 1.1 */
304     public boolean contains(Object o) {
305 jsr166 1.26 return indexOf(o) >= 0;
306 dl 1.1 }
307    
308     /**
309     * Returns the index of the first occurrence of the specified element
310     * in this list, or -1 if this list does not contain the element.
311 jsr166 1.33 * More formally, returns the lowest index {@code i} such that
312     * {@code Objects.equals(o, get(i))},
313 dl 1.1 * or -1 if there is no such index.
314     */
315     public int indexOf(Object o) {
316 jsr166 1.26 if (o == null) {
317     for (int i = 0; i < size; i++)
318     if (elementData[i]==null)
319     return i;
320     } else {
321     for (int i = 0; i < size; i++)
322     if (o.equals(elementData[i]))
323     return i;
324     }
325     return -1;
326 dl 1.1 }
327    
328     /**
329     * Returns the index of the last occurrence of the specified element
330     * in this list, or -1 if this list does not contain the element.
331 jsr166 1.33 * More formally, returns the highest index {@code i} such that
332     * {@code Objects.equals(o, get(i))},
333 dl 1.1 * or -1 if there is no such index.
334     */
335     public int lastIndexOf(Object o) {
336 jsr166 1.26 if (o == null) {
337     for (int i = size-1; i >= 0; i--)
338     if (elementData[i]==null)
339     return i;
340     } else {
341     for (int i = size-1; i >= 0; i--)
342     if (o.equals(elementData[i]))
343     return i;
344     }
345     return -1;
346 dl 1.1 }
347    
348     /**
349 jsr166 1.33 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 dl 1.1 * elements themselves are not copied.)
351     *
352 jsr166 1.33 * @return a clone of this {@code ArrayList} instance
353 dl 1.1 */
354     public Object clone() {
355 jsr166 1.26 try {
356 jsr166 1.33 ArrayList<?> v = (ArrayList<?>) super.clone();
357 jsr166 1.26 v.elementData = Arrays.copyOf(elementData, size);
358     v.modCount = 0;
359     return v;
360     } catch (CloneNotSupportedException e) {
361     // this shouldn't happen, since we are Cloneable
362 jsr166 1.33 throw new InternalError(e);
363 jsr166 1.26 }
364 dl 1.1 }
365    
366     /**
367     * Returns an array containing all of the elements in this list
368     * in proper sequence (from first to last element).
369     *
370     * <p>The returned array will be "safe" in that no references to it are
371     * maintained by this list. (In other words, this method must allocate
372     * a new array). The caller is thus free to modify the returned array.
373     *
374     * <p>This method acts as bridge between array-based and collection-based
375     * APIs.
376     *
377     * @return an array containing all of the elements in this list in
378     * proper sequence
379     */
380     public Object[] toArray() {
381     return Arrays.copyOf(elementData, size);
382     }
383    
384     /**
385     * Returns an array containing all of the elements in this list in proper
386     * sequence (from first to last element); the runtime type of the returned
387     * array is that of the specified array. If the list fits in the
388     * specified array, it is returned therein. Otherwise, a new array is
389     * allocated with the runtime type of the specified array and the size of
390     * this list.
391     *
392     * <p>If the list fits in the specified array with room to spare
393     * (i.e., the array has more elements than the list), the element in
394     * the array immediately following the end of the collection is set to
395 jsr166 1.33 * {@code null}. (This is useful in determining the length of the
396 dl 1.1 * list <i>only</i> if the caller knows that the list does not contain
397     * any null elements.)
398     *
399     * @param a the array into which the elements of the list are to
400     * be stored, if it is big enough; otherwise, a new array of the
401     * same runtime type is allocated for this purpose.
402     * @return an array containing the elements of the list
403     * @throws ArrayStoreException if the runtime type of the specified array
404     * is not a supertype of the runtime type of every element in
405     * this list
406     * @throws NullPointerException if the specified array is null
407     */
408 jsr166 1.25 @SuppressWarnings("unchecked")
409 dl 1.1 public <T> T[] toArray(T[] a) {
410     if (a.length < size)
411     // Make a new array of a's runtime type, but my contents:
412     return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 jsr166 1.26 System.arraycopy(elementData, 0, a, 0, size);
414 dl 1.1 if (a.length > size)
415     a[size] = null;
416     return a;
417     }
418    
419     // Positional Access Operations
420    
421 jsr166 1.25 @SuppressWarnings("unchecked")
422     E elementData(int index) {
423 jsr166 1.26 return (E) elementData[index];
424 dl 1.1 }
425    
426 jsr166 1.39 @SuppressWarnings("unchecked")
427     static <E> E elementAt(Object[] es, int index) {
428     return (E) es[index];
429     }
430    
431 dl 1.1 /**
432     * Returns the element at the specified position in this list.
433     *
434     * @param index index of the element to return
435     * @return the element at the specified position in this list
436     * @throws IndexOutOfBoundsException {@inheritDoc}
437     */
438     public E get(int index) {
439 jsr166 1.33 Objects.checkIndex(index, size);
440 jsr166 1.26 return elementData(index);
441 dl 1.1 }
442    
443     /**
444     * Replaces the element at the specified position in this list with
445     * the specified element.
446     *
447     * @param index index of the element to replace
448     * @param element element to be stored at the specified position
449     * @return the element previously at the specified position
450     * @throws IndexOutOfBoundsException {@inheritDoc}
451     */
452     public E set(int index, E element) {
453 jsr166 1.33 Objects.checkIndex(index, size);
454 jsr166 1.26 E oldValue = elementData(index);
455     elementData[index] = element;
456     return oldValue;
457 dl 1.1 }
458    
459     /**
460 jsr166 1.33 * This helper method split out from add(E) to keep method
461     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462     * which helps when add(E) is called in a C1-compiled loop.
463     */
464     private void add(E e, Object[] elementData, int s) {
465     if (s == elementData.length)
466     elementData = grow();
467     elementData[s] = e;
468     size = s + 1;
469     }
470    
471     /**
472 dl 1.1 * Appends the specified element to the end of this list.
473     *
474     * @param e element to be appended to this list
475 jsr166 1.33 * @return {@code true} (as specified by {@link Collection#add})
476 dl 1.1 */
477     public boolean add(E e) {
478 jsr166 1.33 modCount++;
479     add(e, elementData, size);
480 jsr166 1.26 return true;
481 dl 1.1 }
482    
483     /**
484     * Inserts the specified element at the specified position in this
485     * list. Shifts the element currently at that position (if any) and
486     * any subsequent elements to the right (adds one to their indices).
487     *
488     * @param index index at which the specified element is to be inserted
489     * @param element element to be inserted
490     * @throws IndexOutOfBoundsException {@inheritDoc}
491     */
492     public void add(int index, E element) {
493 jsr166 1.26 rangeCheckForAdd(index);
494 jsr166 1.33 modCount++;
495     final int s;
496     Object[] elementData;
497     if ((s = size) == (elementData = this.elementData).length)
498     elementData = grow();
499     System.arraycopy(elementData, index,
500     elementData, index + 1,
501     s - index);
502 jsr166 1.26 elementData[index] = element;
503 jsr166 1.33 size = s + 1;
504 jsr166 1.41 // checkInvariants();
505 dl 1.1 }
506    
507     /**
508     * Removes the element at the specified position in this list.
509     * Shifts any subsequent elements to the left (subtracts one from their
510     * indices).
511     *
512     * @param index the index of the element to be removed
513     * @return the element that was removed from the list
514     * @throws IndexOutOfBoundsException {@inheritDoc}
515     */
516     public E remove(int index) {
517 jsr166 1.33 Objects.checkIndex(index, size);
518 jsr166 1.51 final Object[] es = elementData;
519 jsr166 1.25
520 jsr166 1.51 @SuppressWarnings("unchecked") E oldValue = (E) es[index];
521     fastRemove(es, index);
522 jsr166 1.25
523 jsr166 1.41 // checkInvariants();
524 jsr166 1.26 return oldValue;
525 dl 1.1 }
526    
527     /**
528     * Removes the first occurrence of the specified element from this list,
529     * if it is present. If the list does not contain the element, it is
530     * unchanged. More formally, removes the element with the lowest index
531 jsr166 1.33 * {@code i} such that
532     * {@code Objects.equals(o, get(i))}
533     * (if such an element exists). Returns {@code true} if this list
534 dl 1.1 * contained the specified element (or equivalently, if this list
535     * changed as a result of the call).
536     *
537     * @param o element to be removed from this list, if present
538 jsr166 1.33 * @return {@code true} if this list contained the specified element
539 dl 1.1 */
540     public boolean remove(Object o) {
541 jsr166 1.51 final Object[] es = elementData;
542     final int size = this.size;
543     int i = 0;
544     found: {
545     if (o == null) {
546     for (; i < size; i++)
547     if (es[i] == null)
548     break found;
549     } else {
550     for (; i < size; i++)
551     if (o.equals(es[i]))
552     break found;
553     }
554     return false;
555 dl 1.1 }
556 jsr166 1.51 fastRemove(es, i);
557     return true;
558 dl 1.1 }
559    
560 jsr166 1.41 /**
561 dl 1.1 * Private remove method that skips bounds checking and does not
562     * return the value removed.
563     */
564 jsr166 1.51 private void fastRemove(Object[] es, int i) {
565 dl 1.1 modCount++;
566 jsr166 1.51 final int newSize;
567     if ((newSize = size - 1) > i)
568     System.arraycopy(es, i + 1, es, i, newSize - i);
569     es[size = newSize] = null;
570 dl 1.1 }
571    
572     /**
573     * Removes all of the elements from this list. The list will
574     * be empty after this call returns.
575     */
576     public void clear() {
577 jsr166 1.26 modCount++;
578 jsr166 1.47 final Object[] es = elementData;
579     for (int to = size, i = size = 0; i < to; i++)
580     es[i] = null;
581 dl 1.1 }
582    
583     /**
584     * Appends all of the elements in the specified collection to the end of
585     * this list, in the order that they are returned by the
586     * specified collection's Iterator. The behavior of this operation is
587     * undefined if the specified collection is modified while the operation
588     * is in progress. (This implies that the behavior of this call is
589     * undefined if the specified collection is this list, and this
590     * list is nonempty.)
591     *
592     * @param c collection containing elements to be added to this list
593 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
594 dl 1.1 * @throws NullPointerException if the specified collection is null
595     */
596     public boolean addAll(Collection<? extends E> c) {
597 jsr166 1.26 Object[] a = c.toArray();
598 jsr166 1.33 modCount++;
599 dl 1.1 int numNew = a.length;
600 jsr166 1.33 if (numNew == 0)
601     return false;
602     Object[] elementData;
603     final int s;
604     if (numNew > (elementData = this.elementData).length - (s = size))
605     elementData = grow(s + numNew);
606     System.arraycopy(a, 0, elementData, s, numNew);
607     size = s + numNew;
608 jsr166 1.41 // checkInvariants();
609 jsr166 1.33 return true;
610 dl 1.1 }
611    
612     /**
613     * Inserts all of the elements in the specified collection into this
614     * list, starting at the specified position. Shifts the element
615     * currently at that position (if any) and any subsequent elements to
616     * the right (increases their indices). The new elements will appear
617     * in the list in the order that they are returned by the
618     * specified collection's iterator.
619     *
620     * @param index index at which to insert the first element from the
621     * specified collection
622     * @param c collection containing elements to be added to this list
623 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
624 dl 1.1 * @throws IndexOutOfBoundsException {@inheritDoc}
625     * @throws NullPointerException if the specified collection is null
626     */
627     public boolean addAll(int index, Collection<? extends E> c) {
628 jsr166 1.26 rangeCheckForAdd(index);
629 dl 1.1
630 jsr166 1.26 Object[] a = c.toArray();
631 jsr166 1.33 modCount++;
632 jsr166 1.26 int numNew = a.length;
633 jsr166 1.33 if (numNew == 0)
634     return false;
635     Object[] elementData;
636     final int s;
637     if (numNew > (elementData = this.elementData).length - (s = size))
638     elementData = grow(s + numNew);
639 jsr166 1.26
640 jsr166 1.33 int numMoved = s - index;
641 jsr166 1.26 if (numMoved > 0)
642 jsr166 1.33 System.arraycopy(elementData, index,
643     elementData, index + numNew,
644 jsr166 1.26 numMoved);
645 dl 1.1 System.arraycopy(a, 0, elementData, index, numNew);
646 jsr166 1.33 size = s + numNew;
647 jsr166 1.41 // checkInvariants();
648 jsr166 1.33 return true;
649 dl 1.1 }
650    
651     /**
652     * Removes from this list all of the elements whose index is between
653 jsr166 1.25 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
654 dl 1.1 * Shifts any succeeding elements to the left (reduces their index).
655 jsr166 1.25 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
656     * (If {@code toIndex==fromIndex}, this operation has no effect.)
657 dl 1.1 *
658 jsr166 1.25 * @throws IndexOutOfBoundsException if {@code fromIndex} or
659     * {@code toIndex} is out of range
660     * ({@code fromIndex < 0 ||
661     * toIndex > size() ||
662     * toIndex < fromIndex})
663 dl 1.1 */
664     protected void removeRange(int fromIndex, int toIndex) {
665 jsr166 1.33 if (fromIndex > toIndex) {
666     throw new IndexOutOfBoundsException(
667     outOfBoundsMsg(fromIndex, toIndex));
668     }
669 jsr166 1.26 modCount++;
670 jsr166 1.47 shiftTailOverGap(elementData, fromIndex, toIndex);
671 jsr166 1.41 // checkInvariants();
672 jsr166 1.25 }
673    
674 jsr166 1.47 /** Erases the gap from lo to hi, by sliding down following elements. */
675     private void shiftTailOverGap(Object[] es, int lo, int hi) {
676     System.arraycopy(es, hi, es, lo, size - hi);
677     for (int to = size, i = (size -= hi - lo); i < to; i++)
678     es[i] = null;
679     }
680    
681 jsr166 1.25 /**
682     * A version of rangeCheck used by add and addAll.
683     */
684     private void rangeCheckForAdd(int index) {
685 jsr166 1.26 if (index > size || index < 0)
686     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
687 jsr166 1.25 }
688    
689     /**
690     * Constructs an IndexOutOfBoundsException detail message.
691     * Of the many possible refactorings of the error handling code,
692     * this "outlining" performs best with both server and client VMs.
693     */
694     private String outOfBoundsMsg(int index) {
695 jsr166 1.26 return "Index: "+index+", Size: "+size;
696 jsr166 1.25 }
697    
698     /**
699 jsr166 1.33 * A version used in checking (fromIndex > toIndex) condition
700     */
701     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
702     return "From Index: " + fromIndex + " > To Index: " + toIndex;
703     }
704    
705     /**
706 jsr166 1.25 * Removes from this list all of its elements that are contained in the
707     * specified collection.
708     *
709     * @param c collection containing elements to be removed from this list
710     * @return {@code true} if this list changed as a result of the call
711     * @throws ClassCastException if the class of an element of this list
712 jsr166 1.33 * is incompatible with the specified collection
713     * (<a href="Collection.html#optional-restrictions">optional</a>)
714 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
715 jsr166 1.33 * specified collection does not permit null elements
716     * (<a href="Collection.html#optional-restrictions">optional</a>),
717 jsr166 1.25 * or if the specified collection is null
718     * @see Collection#contains(Object)
719     */
720     public boolean removeAll(Collection<?> c) {
721 jsr166 1.40 return batchRemove(c, false, 0, size);
722 jsr166 1.25 }
723    
724     /**
725     * Retains only the elements in this list that are contained in the
726     * specified collection. In other words, removes from this list all
727     * of its elements that are not contained in the specified collection.
728     *
729     * @param c collection containing elements to be retained in this list
730     * @return {@code true} if this list changed as a result of the call
731     * @throws ClassCastException if the class of an element of this list
732 jsr166 1.33 * is incompatible with the specified collection
733     * (<a href="Collection.html#optional-restrictions">optional</a>)
734 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
735 jsr166 1.33 * specified collection does not permit null elements
736     * (<a href="Collection.html#optional-restrictions">optional</a>),
737 jsr166 1.25 * or if the specified collection is null
738     * @see Collection#contains(Object)
739     */
740     public boolean retainAll(Collection<?> c) {
741 jsr166 1.40 return batchRemove(c, true, 0, size);
742 jsr166 1.25 }
743    
744 jsr166 1.40 boolean batchRemove(Collection<?> c, boolean complement,
745     final int from, final int end) {
746 jsr166 1.37 Objects.requireNonNull(c);
747     final Object[] es = elementData;
748     int r;
749     // Optimize for initial run of survivors
750 jsr166 1.53 for (r = from;; r++) {
751     if (r == end)
752     return false;
753     if (c.contains(es[r]) != complement)
754     break;
755     }
756     int w = r++;
757     try {
758     for (Object e; r < end; r++)
759     if (c.contains(e = es[r]) == complement)
760     es[w++] = e;
761     } catch (Throwable ex) {
762     // Preserve behavioral compatibility with AbstractCollection,
763     // even if c.contains() throws.
764     System.arraycopy(es, r, es, w, end - r);
765     w += end - r;
766     throw ex;
767     } finally {
768     modCount += end - w;
769     shiftTailOverGap(es, w, end);
770 jsr166 1.26 }
771 jsr166 1.41 // checkInvariants();
772 jsr166 1.53 return true;
773 jsr166 1.25 }
774    
775     /**
776 jsr166 1.46 * Saves the state of the {@code ArrayList} instance to a stream
777     * (that is, serializes it).
778 dl 1.1 *
779 jsr166 1.46 * @param s the stream
780     * @throws java.io.IOException if an I/O error occurs
781 jsr166 1.33 * @serialData The length of the array backing the {@code ArrayList}
782 dl 1.1 * instance is emitted (int), followed by all of its elements
783 jsr166 1.33 * (each an {@code Object}) in the proper order.
784 dl 1.1 */
785     private void writeObject(java.io.ObjectOutputStream s)
786 jsr166 1.46 throws java.io.IOException {
787 jsr166 1.26 // Write out element count, and any hidden stuff
788     int expectedModCount = modCount;
789     s.defaultWriteObject();
790 dl 1.1
791 jsr166 1.52 // Write out size as capacity for behavioral compatibility with clone()
792 jsr166 1.33 s.writeInt(size);
793 dl 1.1
794 jsr166 1.26 // Write out all elements in the proper order.
795 jsr166 1.33 for (int i=0; i<size; i++) {
796 dl 1.1 s.writeObject(elementData[i]);
797 jsr166 1.33 }
798 dl 1.1
799 jsr166 1.26 if (modCount != expectedModCount) {
800 dl 1.1 throw new ConcurrentModificationException();
801     }
802     }
803    
804     /**
805 jsr166 1.46 * Reconstitutes the {@code ArrayList} instance from a stream (that is,
806     * deserializes it).
807     * @param s the stream
808     * @throws ClassNotFoundException if the class of a serialized object
809     * could not be found
810     * @throws java.io.IOException if an I/O error occurs
811 dl 1.1 */
812     private void readObject(java.io.ObjectInputStream s)
813     throws java.io.IOException, ClassNotFoundException {
814 jsr166 1.33
815 jsr166 1.26 // Read in size, and any hidden stuff
816     s.defaultReadObject();
817 dl 1.1
818 jsr166 1.33 // Read in capacity
819     s.readInt(); // ignored
820    
821     if (size > 0) {
822     // like clone(), allocate array based upon size not capacity
823     Object[] elements = new Object[size];
824    
825     // Read in all elements in the proper order.
826     for (int i = 0; i < size; i++) {
827     elements[i] = s.readObject();
828     }
829    
830     elementData = elements;
831     } else if (size == 0) {
832     elementData = EMPTY_ELEMENTDATA;
833     } else {
834     throw new java.io.InvalidObjectException("Invalid size: " + size);
835     }
836 dl 1.1 }
837 jsr166 1.25
838     /**
839     * Returns a list iterator over the elements in this list (in proper
840     * sequence), starting at the specified position in the list.
841     * The specified index indicates the first element that would be
842     * returned by an initial call to {@link ListIterator#next next}.
843     * An initial call to {@link ListIterator#previous previous} would
844     * return the element with the specified index minus one.
845     *
846     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
847     *
848     * @throws IndexOutOfBoundsException {@inheritDoc}
849     */
850     public ListIterator<E> listIterator(int index) {
851 jsr166 1.33 rangeCheckForAdd(index);
852 jsr166 1.26 return new ListItr(index);
853 jsr166 1.25 }
854    
855     /**
856     * Returns a list iterator over the elements in this list (in proper
857     * sequence).
858     *
859     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
860     *
861     * @see #listIterator(int)
862     */
863     public ListIterator<E> listIterator() {
864 jsr166 1.26 return new ListItr(0);
865 jsr166 1.25 }
866    
867     /**
868     * Returns an iterator over the elements in this list in proper sequence.
869     *
870     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
871     *
872     * @return an iterator over the elements in this list in proper sequence
873     */
874     public Iterator<E> iterator() {
875 jsr166 1.26 return new Itr();
876 jsr166 1.25 }
877    
878     /**
879     * An optimized version of AbstractList.Itr
880     */
881     private class Itr implements Iterator<E> {
882 jsr166 1.26 int cursor; // index of next element to return
883     int lastRet = -1; // index of last element returned; -1 if no such
884     int expectedModCount = modCount;
885 jsr166 1.25
886 jsr166 1.33 // prevent creating a synthetic constructor
887     Itr() {}
888    
889 jsr166 1.26 public boolean hasNext() {
890 jsr166 1.25 return cursor != size;
891 jsr166 1.26 }
892    
893     @SuppressWarnings("unchecked")
894     public E next() {
895     checkForComodification();
896     int i = cursor;
897     if (i >= size)
898     throw new NoSuchElementException();
899     Object[] elementData = ArrayList.this.elementData;
900     if (i >= elementData.length)
901     throw new ConcurrentModificationException();
902     cursor = i + 1;
903     return (E) elementData[lastRet = i];
904     }
905 jsr166 1.25
906 jsr166 1.26 public void remove() {
907     if (lastRet < 0)
908     throw new IllegalStateException();
909 jsr166 1.25 checkForComodification();
910 jsr166 1.26
911     try {
912     ArrayList.this.remove(lastRet);
913     cursor = lastRet;
914     lastRet = -1;
915     expectedModCount = modCount;
916     } catch (IndexOutOfBoundsException ex) {
917     throw new ConcurrentModificationException();
918     }
919     }
920    
921 jsr166 1.33 @Override
922 jsr166 1.44 public void forEachRemaining(Consumer<? super E> action) {
923     Objects.requireNonNull(action);
924 jsr166 1.33 final int size = ArrayList.this.size;
925     int i = cursor;
926 jsr166 1.44 if (i < size) {
927     final Object[] es = elementData;
928     if (i >= es.length)
929     throw new ConcurrentModificationException();
930     for (; i < size && modCount == expectedModCount; i++)
931     action.accept(elementAt(es, i));
932     // update once at end to reduce heap write traffic
933     cursor = i;
934     lastRet = i - 1;
935     checkForComodification();
936 jsr166 1.33 }
937     }
938    
939 jsr166 1.26 final void checkForComodification() {
940     if (modCount != expectedModCount)
941     throw new ConcurrentModificationException();
942     }
943 jsr166 1.25 }
944    
945     /**
946     * An optimized version of AbstractList.ListItr
947     */
948     private class ListItr extends Itr implements ListIterator<E> {
949 jsr166 1.26 ListItr(int index) {
950     super();
951     cursor = index;
952     }
953    
954     public boolean hasPrevious() {
955     return cursor != 0;
956     }
957 jsr166 1.25
958 jsr166 1.26 public int nextIndex() {
959     return cursor;
960     }
961    
962     public int previousIndex() {
963     return cursor - 1;
964     }
965    
966     @SuppressWarnings("unchecked")
967 jsr166 1.25 public E previous() {
968 jsr166 1.26 checkForComodification();
969     int i = cursor - 1;
970     if (i < 0)
971     throw new NoSuchElementException();
972     Object[] elementData = ArrayList.this.elementData;
973     if (i >= elementData.length)
974     throw new ConcurrentModificationException();
975     cursor = i;
976     return (E) elementData[lastRet = i];
977     }
978    
979     public void set(E e) {
980     if (lastRet < 0)
981     throw new IllegalStateException();
982     checkForComodification();
983    
984     try {
985     ArrayList.this.set(lastRet, e);
986     } catch (IndexOutOfBoundsException ex) {
987     throw new ConcurrentModificationException();
988     }
989     }
990    
991     public void add(E e) {
992     checkForComodification();
993    
994     try {
995     int i = cursor;
996     ArrayList.this.add(i, e);
997     cursor = i + 1;
998     lastRet = -1;
999     expectedModCount = modCount;
1000     } catch (IndexOutOfBoundsException ex) {
1001     throw new ConcurrentModificationException();
1002     }
1003     }
1004 jsr166 1.25 }
1005    
1006     /**
1007     * Returns a view of the portion of this list between the specified
1008     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1009     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1010     * empty.) The returned list is backed by this list, so non-structural
1011     * changes in the returned list are reflected in this list, and vice-versa.
1012     * The returned list supports all of the optional list operations.
1013     *
1014     * <p>This method eliminates the need for explicit range operations (of
1015     * the sort that commonly exist for arrays). Any operation that expects
1016     * a list can be used as a range operation by passing a subList view
1017     * instead of a whole list. For example, the following idiom
1018     * removes a range of elements from a list:
1019     * <pre>
1020     * list.subList(from, to).clear();
1021     * </pre>
1022     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1023     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1024     * {@link Collections} class can be applied to a subList.
1025     *
1026     * <p>The semantics of the list returned by this method become undefined if
1027     * the backing list (i.e., this list) is <i>structurally modified</i> in
1028     * any way other than via the returned list. (Structural modifications are
1029     * those that change the size of this list, or otherwise perturb it in such
1030     * a fashion that iterations in progress may yield incorrect results.)
1031     *
1032     * @throws IndexOutOfBoundsException {@inheritDoc}
1033     * @throws IllegalArgumentException {@inheritDoc}
1034     */
1035     public List<E> subList(int fromIndex, int toIndex) {
1036 jsr166 1.26 subListRangeCheck(fromIndex, toIndex, size);
1037 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1038 jsr166 1.25 }
1039    
1040 jsr166 1.33 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1041     private final ArrayList<E> root;
1042     private final SubList<E> parent;
1043 jsr166 1.26 private final int offset;
1044 jsr166 1.33 private int size;
1045 jsr166 1.26
1046 jsr166 1.33 /**
1047     * Constructs a sublist of an arbitrary ArrayList.
1048     */
1049     public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1050     this.root = root;
1051     this.parent = null;
1052     this.offset = fromIndex;
1053     this.size = toIndex - fromIndex;
1054     this.modCount = root.modCount;
1055     }
1056    
1057     /**
1058     * Constructs a sublist of another SubList.
1059     */
1060     private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1061     this.root = parent.root;
1062 jsr166 1.26 this.parent = parent;
1063 jsr166 1.33 this.offset = parent.offset + fromIndex;
1064 jsr166 1.26 this.size = toIndex - fromIndex;
1065 jsr166 1.33 this.modCount = root.modCount;
1066 jsr166 1.26 }
1067    
1068 jsr166 1.33 public E set(int index, E element) {
1069     Objects.checkIndex(index, size);
1070 jsr166 1.26 checkForComodification();
1071 jsr166 1.33 E oldValue = root.elementData(offset + index);
1072     root.elementData[offset + index] = element;
1073 jsr166 1.26 return oldValue;
1074     }
1075    
1076     public E get(int index) {
1077 jsr166 1.33 Objects.checkIndex(index, size);
1078 jsr166 1.26 checkForComodification();
1079 jsr166 1.33 return root.elementData(offset + index);
1080 jsr166 1.26 }
1081    
1082     public int size() {
1083     checkForComodification();
1084 jsr166 1.33 return size;
1085 jsr166 1.26 }
1086    
1087 jsr166 1.33 public void add(int index, E element) {
1088 jsr166 1.26 rangeCheckForAdd(index);
1089     checkForComodification();
1090 jsr166 1.33 root.add(offset + index, element);
1091     updateSizeAndModCount(1);
1092 jsr166 1.26 }
1093    
1094     public E remove(int index) {
1095 jsr166 1.33 Objects.checkIndex(index, size);
1096 jsr166 1.26 checkForComodification();
1097 jsr166 1.33 E result = root.remove(offset + index);
1098     updateSizeAndModCount(-1);
1099 jsr166 1.26 return result;
1100     }
1101    
1102     protected void removeRange(int fromIndex, int toIndex) {
1103     checkForComodification();
1104 jsr166 1.33 root.removeRange(offset + fromIndex, offset + toIndex);
1105     updateSizeAndModCount(fromIndex - toIndex);
1106 jsr166 1.26 }
1107    
1108     public boolean addAll(Collection<? extends E> c) {
1109     return addAll(this.size, c);
1110     }
1111    
1112     public boolean addAll(int index, Collection<? extends E> c) {
1113     rangeCheckForAdd(index);
1114     int cSize = c.size();
1115     if (cSize==0)
1116     return false;
1117     checkForComodification();
1118 jsr166 1.33 root.addAll(offset + index, c);
1119     updateSizeAndModCount(cSize);
1120 jsr166 1.26 return true;
1121     }
1122    
1123 jsr166 1.40 public boolean removeAll(Collection<?> c) {
1124     return batchRemove(c, false);
1125     }
1126 jsr166 1.41
1127 jsr166 1.40 public boolean retainAll(Collection<?> c) {
1128     return batchRemove(c, true);
1129     }
1130    
1131     private boolean batchRemove(Collection<?> c, boolean complement) {
1132     checkForComodification();
1133     int oldSize = root.size;
1134     boolean modified =
1135     root.batchRemove(c, complement, offset, offset + size);
1136     if (modified)
1137     updateSizeAndModCount(root.size - oldSize);
1138     return modified;
1139     }
1140    
1141     public boolean removeIf(Predicate<? super E> filter) {
1142     checkForComodification();
1143     int oldSize = root.size;
1144     boolean modified = root.removeIf(filter, offset, offset + size);
1145     if (modified)
1146     updateSizeAndModCount(root.size - oldSize);
1147     return modified;
1148     }
1149    
1150 jsr166 1.26 public Iterator<E> iterator() {
1151     return listIterator();
1152     }
1153    
1154 jsr166 1.33 public ListIterator<E> listIterator(int index) {
1155 jsr166 1.26 checkForComodification();
1156     rangeCheckForAdd(index);
1157    
1158     return new ListIterator<E>() {
1159     int cursor = index;
1160     int lastRet = -1;
1161 jsr166 1.33 int expectedModCount = root.modCount;
1162 jsr166 1.26
1163     public boolean hasNext() {
1164     return cursor != SubList.this.size;
1165     }
1166    
1167     @SuppressWarnings("unchecked")
1168     public E next() {
1169     checkForComodification();
1170     int i = cursor;
1171     if (i >= SubList.this.size)
1172     throw new NoSuchElementException();
1173 jsr166 1.33 Object[] elementData = root.elementData;
1174 jsr166 1.26 if (offset + i >= elementData.length)
1175     throw new ConcurrentModificationException();
1176     cursor = i + 1;
1177     return (E) elementData[offset + (lastRet = i)];
1178     }
1179    
1180     public boolean hasPrevious() {
1181     return cursor != 0;
1182     }
1183    
1184     @SuppressWarnings("unchecked")
1185     public E previous() {
1186     checkForComodification();
1187     int i = cursor - 1;
1188     if (i < 0)
1189     throw new NoSuchElementException();
1190 jsr166 1.33 Object[] elementData = root.elementData;
1191 jsr166 1.26 if (offset + i >= elementData.length)
1192     throw new ConcurrentModificationException();
1193     cursor = i;
1194     return (E) elementData[offset + (lastRet = i)];
1195     }
1196    
1197 jsr166 1.44 public void forEachRemaining(Consumer<? super E> action) {
1198     Objects.requireNonNull(action);
1199 jsr166 1.33 final int size = SubList.this.size;
1200     int i = cursor;
1201 jsr166 1.44 if (i < size) {
1202     final Object[] es = root.elementData;
1203     if (offset + i >= es.length)
1204     throw new ConcurrentModificationException();
1205     for (; i < size && modCount == expectedModCount; i++)
1206     action.accept(elementAt(es, offset + i));
1207     // update once at end to reduce heap write traffic
1208     cursor = i;
1209     lastRet = i - 1;
1210     checkForComodification();
1211 jsr166 1.33 }
1212     }
1213    
1214 jsr166 1.26 public int nextIndex() {
1215     return cursor;
1216     }
1217    
1218     public int previousIndex() {
1219     return cursor - 1;
1220     }
1221    
1222     public void remove() {
1223     if (lastRet < 0)
1224     throw new IllegalStateException();
1225     checkForComodification();
1226    
1227     try {
1228     SubList.this.remove(lastRet);
1229     cursor = lastRet;
1230     lastRet = -1;
1231 jsr166 1.33 expectedModCount = root.modCount;
1232 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1233     throw new ConcurrentModificationException();
1234     }
1235     }
1236    
1237     public void set(E e) {
1238     if (lastRet < 0)
1239     throw new IllegalStateException();
1240     checkForComodification();
1241    
1242     try {
1243 jsr166 1.33 root.set(offset + lastRet, e);
1244 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1245     throw new ConcurrentModificationException();
1246     }
1247     }
1248    
1249     public void add(E e) {
1250     checkForComodification();
1251    
1252     try {
1253     int i = cursor;
1254     SubList.this.add(i, e);
1255     cursor = i + 1;
1256     lastRet = -1;
1257 jsr166 1.33 expectedModCount = root.modCount;
1258 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1259     throw new ConcurrentModificationException();
1260     }
1261     }
1262    
1263     final void checkForComodification() {
1264 jsr166 1.33 if (root.modCount != expectedModCount)
1265 jsr166 1.26 throw new ConcurrentModificationException();
1266     }
1267     };
1268     }
1269    
1270     public List<E> subList(int fromIndex, int toIndex) {
1271     subListRangeCheck(fromIndex, toIndex, size);
1272 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1273 jsr166 1.26 }
1274    
1275     private void rangeCheckForAdd(int index) {
1276     if (index < 0 || index > this.size)
1277     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1278     }
1279    
1280     private String outOfBoundsMsg(int index) {
1281     return "Index: "+index+", Size: "+this.size;
1282     }
1283    
1284     private void checkForComodification() {
1285 jsr166 1.33 if (root.modCount != modCount)
1286 jsr166 1.26 throw new ConcurrentModificationException();
1287     }
1288 jsr166 1.33
1289     private void updateSizeAndModCount(int sizeChange) {
1290     SubList<E> slist = this;
1291     do {
1292     slist.size += sizeChange;
1293     slist.modCount = root.modCount;
1294     slist = slist.parent;
1295     } while (slist != null);
1296     }
1297    
1298     public Spliterator<E> spliterator() {
1299     checkForComodification();
1300    
1301 jsr166 1.45 // ArrayListSpliterator not used here due to late-binding
1302     return new Spliterator<E>() {
1303 jsr166 1.33 private int index = offset; // current index, modified on advance/split
1304     private int fence = -1; // -1 until used; then one past last index
1305     private int expectedModCount; // initialized when fence set
1306    
1307     private int getFence() { // initialize fence to size on first use
1308     int hi; // (a specialized variant appears in method forEach)
1309     if ((hi = fence) < 0) {
1310     expectedModCount = modCount;
1311     hi = fence = offset + size;
1312     }
1313     return hi;
1314     }
1315    
1316 jsr166 1.45 public ArrayList<E>.ArrayListSpliterator trySplit() {
1317 jsr166 1.33 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1318 jsr166 1.45 // ArrayListSpliterator can be used here as the source is already bound
1319 jsr166 1.33 return (lo >= mid) ? null : // divide range in half unless too small
1320 jsr166 1.45 root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1321 jsr166 1.33 }
1322    
1323     public boolean tryAdvance(Consumer<? super E> action) {
1324     Objects.requireNonNull(action);
1325     int hi = getFence(), i = index;
1326     if (i < hi) {
1327     index = i + 1;
1328     @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1329     action.accept(e);
1330     if (root.modCount != expectedModCount)
1331     throw new ConcurrentModificationException();
1332     return true;
1333     }
1334     return false;
1335     }
1336    
1337     public void forEachRemaining(Consumer<? super E> action) {
1338     Objects.requireNonNull(action);
1339     int i, hi, mc; // hoist accesses and checks from loop
1340     ArrayList<E> lst = root;
1341     Object[] a;
1342     if ((a = lst.elementData) != null) {
1343     if ((hi = fence) < 0) {
1344     mc = modCount;
1345     hi = offset + size;
1346     }
1347     else
1348     mc = expectedModCount;
1349     if ((i = index) >= 0 && (index = hi) <= a.length) {
1350     for (; i < hi; ++i) {
1351     @SuppressWarnings("unchecked") E e = (E) a[i];
1352     action.accept(e);
1353     }
1354     if (lst.modCount == mc)
1355     return;
1356     }
1357     }
1358     throw new ConcurrentModificationException();
1359     }
1360    
1361     public long estimateSize() {
1362 jsr166 1.45 return getFence() - index;
1363 jsr166 1.33 }
1364    
1365     public int characteristics() {
1366     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1367     }
1368     };
1369     }
1370     }
1371    
1372 jsr166 1.48 /**
1373     * @throws NullPointerException {@inheritDoc}
1374     */
1375 jsr166 1.33 @Override
1376     public void forEach(Consumer<? super E> action) {
1377     Objects.requireNonNull(action);
1378     final int expectedModCount = modCount;
1379 jsr166 1.39 final Object[] es = elementData;
1380 jsr166 1.33 final int size = this.size;
1381 jsr166 1.41 for (int i = 0; modCount == expectedModCount && i < size; i++)
1382 jsr166 1.39 action.accept(elementAt(es, i));
1383 jsr166 1.41 if (modCount != expectedModCount)
1384 jsr166 1.33 throw new ConcurrentModificationException();
1385     }
1386    
1387     /**
1388     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1389     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1390     * list.
1391     *
1392     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1393     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1394     * Overriding implementations should document the reporting of additional
1395     * characteristic values.
1396     *
1397     * @return a {@code Spliterator} over the elements in this list
1398     * @since 1.8
1399     */
1400     @Override
1401     public Spliterator<E> spliterator() {
1402 jsr166 1.45 return new ArrayListSpliterator(0, -1, 0);
1403 jsr166 1.33 }
1404    
1405     /** Index-based split-by-two, lazily initialized Spliterator */
1406 jsr166 1.45 final class ArrayListSpliterator implements Spliterator<E> {
1407 jsr166 1.33
1408     /*
1409     * If ArrayLists were immutable, or structurally immutable (no
1410     * adds, removes, etc), we could implement their spliterators
1411     * with Arrays.spliterator. Instead we detect as much
1412     * interference during traversal as practical without
1413     * sacrificing much performance. We rely primarily on
1414     * modCounts. These are not guaranteed to detect concurrency
1415     * violations, and are sometimes overly conservative about
1416     * within-thread interference, but detect enough problems to
1417     * be worthwhile in practice. To carry this out, we (1) lazily
1418     * initialize fence and expectedModCount until the latest
1419     * point that we need to commit to the state we are checking
1420     * against; thus improving precision. (This doesn't apply to
1421     * SubLists, that create spliterators with current non-lazy
1422     * values). (2) We perform only a single
1423     * ConcurrentModificationException check at the end of forEach
1424     * (the most performance-sensitive method). When using forEach
1425     * (as opposed to iterators), we can normally only detect
1426     * interference after actions, not before. Further
1427     * CME-triggering checks apply to all other possible
1428     * violations of assumptions for example null or too-small
1429     * elementData array given its size(), that could only have
1430     * occurred due to interference. This allows the inner loop
1431     * of forEach to run without any further checks, and
1432     * simplifies lambda-resolution. While this does entail a
1433     * number of checks, note that in the common case of
1434     * list.stream().forEach(a), no checks or other computation
1435     * occur anywhere other than inside forEach itself. The other
1436     * less-often-used methods cannot take advantage of most of
1437     * these streamlinings.
1438     */
1439    
1440     private int index; // current index, modified on advance/split
1441     private int fence; // -1 until used; then one past last index
1442     private int expectedModCount; // initialized when fence set
1443    
1444 jsr166 1.49 /** Creates new spliterator covering the given range. */
1445 jsr166 1.45 ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1446 jsr166 1.33 this.index = origin;
1447     this.fence = fence;
1448     this.expectedModCount = expectedModCount;
1449     }
1450    
1451     private int getFence() { // initialize fence to size on first use
1452     int hi; // (a specialized variant appears in method forEach)
1453     if ((hi = fence) < 0) {
1454 jsr166 1.45 expectedModCount = modCount;
1455     hi = fence = size;
1456 jsr166 1.33 }
1457     return hi;
1458     }
1459    
1460 jsr166 1.45 public ArrayListSpliterator trySplit() {
1461 jsr166 1.33 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1462     return (lo >= mid) ? null : // divide range in half unless too small
1463 jsr166 1.45 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1464 jsr166 1.33 }
1465    
1466     public boolean tryAdvance(Consumer<? super E> action) {
1467     if (action == null)
1468     throw new NullPointerException();
1469     int hi = getFence(), i = index;
1470     if (i < hi) {
1471     index = i + 1;
1472 jsr166 1.45 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1473 jsr166 1.33 action.accept(e);
1474 jsr166 1.45 if (modCount != expectedModCount)
1475 jsr166 1.33 throw new ConcurrentModificationException();
1476     return true;
1477     }
1478     return false;
1479     }
1480    
1481     public void forEachRemaining(Consumer<? super E> action) {
1482     int i, hi, mc; // hoist accesses and checks from loop
1483 jsr166 1.45 Object[] a;
1484 jsr166 1.33 if (action == null)
1485     throw new NullPointerException();
1486 jsr166 1.45 if ((a = elementData) != null) {
1487 jsr166 1.33 if ((hi = fence) < 0) {
1488 jsr166 1.45 mc = modCount;
1489     hi = size;
1490 jsr166 1.33 }
1491     else
1492     mc = expectedModCount;
1493     if ((i = index) >= 0 && (index = hi) <= a.length) {
1494     for (; i < hi; ++i) {
1495     @SuppressWarnings("unchecked") E e = (E) a[i];
1496     action.accept(e);
1497     }
1498 jsr166 1.45 if (modCount == mc)
1499 jsr166 1.33 return;
1500     }
1501     }
1502     throw new ConcurrentModificationException();
1503     }
1504    
1505     public long estimateSize() {
1506 jsr166 1.45 return getFence() - index;
1507 jsr166 1.33 }
1508    
1509     public int characteristics() {
1510     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1511     }
1512     }
1513    
1514 jsr166 1.39 // A tiny bit set implementation
1515    
1516     private static long[] nBits(int n) {
1517     return new long[((n - 1) >> 6) + 1];
1518     }
1519     private static void setBit(long[] bits, int i) {
1520     bits[i >> 6] |= 1L << i;
1521     }
1522     private static boolean isClear(long[] bits, int i) {
1523     return (bits[i >> 6] & (1L << i)) == 0;
1524     }
1525    
1526 jsr166 1.48 /**
1527     * @throws NullPointerException {@inheritDoc}
1528     */
1529 jsr166 1.33 @Override
1530 jsr166 1.40 public boolean removeIf(Predicate<? super E> filter) {
1531     return removeIf(filter, 0, size);
1532     }
1533    
1534 jsr166 1.43 /**
1535     * Removes all elements satisfying the given predicate, from index
1536     * i (inclusive) to index end (exclusive).
1537     */
1538     boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1539 jsr166 1.33 Objects.requireNonNull(filter);
1540 jsr166 1.36 int expectedModCount = modCount;
1541     final Object[] es = elementData;
1542 jsr166 1.37 // Optimize for initial run of survivors
1543 jsr166 1.43 for (; i < end && !filter.test(elementAt(es, i)); i++)
1544 jsr166 1.38 ;
1545 jsr166 1.39 // Tolerate predicates that reentrantly access the collection for
1546     // read (but writers still get CME), so traverse once to find
1547     // elements to delete, a second pass to physically expunge.
1548 jsr166 1.43 if (i < end) {
1549 jsr166 1.39 final int beg = i;
1550     final long[] deathRow = nBits(end - beg);
1551     deathRow[0] = 1L; // set bit 0
1552     for (i = beg + 1; i < end; i++)
1553     if (filter.test(elementAt(es, i)))
1554     setBit(deathRow, i - beg);
1555 jsr166 1.40 if (modCount != expectedModCount)
1556     throw new ConcurrentModificationException();
1557 jsr166 1.43 expectedModCount++;
1558     modCount++;
1559 jsr166 1.39 int w = beg;
1560     for (i = beg; i < end; i++)
1561     if (isClear(deathRow, i - beg))
1562     es[w++] = es[i];
1563 jsr166 1.47 shiftTailOverGap(es, w, end);
1564 jsr166 1.43 // checkInvariants();
1565     return true;
1566     } else {
1567     if (modCount != expectedModCount)
1568     throw new ConcurrentModificationException();
1569     // checkInvariants();
1570     return false;
1571 jsr166 1.33 }
1572     }
1573    
1574     @Override
1575     public void replaceAll(UnaryOperator<E> operator) {
1576     Objects.requireNonNull(operator);
1577     final int expectedModCount = modCount;
1578 jsr166 1.39 final Object[] es = elementData;
1579 jsr166 1.33 final int size = this.size;
1580 jsr166 1.41 for (int i = 0; modCount == expectedModCount && i < size; i++)
1581 jsr166 1.39 es[i] = operator.apply(elementAt(es, i));
1582 jsr166 1.41 if (modCount != expectedModCount)
1583 jsr166 1.33 throw new ConcurrentModificationException();
1584     modCount++;
1585 jsr166 1.41 // checkInvariants();
1586 jsr166 1.33 }
1587    
1588     @Override
1589     @SuppressWarnings("unchecked")
1590     public void sort(Comparator<? super E> c) {
1591     final int expectedModCount = modCount;
1592     Arrays.sort((E[]) elementData, 0, size, c);
1593 jsr166 1.41 if (modCount != expectedModCount)
1594 jsr166 1.33 throw new ConcurrentModificationException();
1595     modCount++;
1596 jsr166 1.41 // checkInvariants();
1597     }
1598    
1599     void checkInvariants() {
1600     // assert size >= 0;
1601     // assert size == elementData.length || elementData[size] == null;
1602 jsr166 1.25 }
1603 dl 1.1 }