ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.58
Committed: Sat May 5 18:29:53 2018 UTC (6 years ago) by jsr166
Branch: MAIN
Changes since 1.57: +9 -3 lines
Log Message:
8202685: Improve ArrayList replaceAll

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.57 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.24 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.24 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 jsr166 1.33 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.24 * particular file as subject to the "Classpath" exception as provided
9 jsr166 1.33 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.24 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.30 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.1 */
25    
26     package java.util;
27    
28 jsr166 1.33 import java.util.function.Consumer;
29     import java.util.function.Predicate;
30     import java.util.function.UnaryOperator;
31 jsr166 1.54 import jdk.internal.misc.SharedSecrets;
32 jsr166 1.33
33 dl 1.1 /**
34 jsr166 1.33 * Resizable-array implementation of the {@code List} interface. Implements
35 dl 1.1 * all optional list operations, and permits all elements, including
36 jsr166 1.33 * {@code null}. In addition to implementing the {@code List} interface,
37 dl 1.1 * this class provides methods to manipulate the size of the array that is
38     * used internally to store the list. (This class is roughly equivalent to
39 jsr166 1.33 * {@code Vector}, except that it is unsynchronized.)
40 dl 1.1 *
41 jsr166 1.33 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
42     * {@code iterator}, and {@code listIterator} operations run in constant
43     * time. The {@code add} operation runs in <i>amortized constant time</i>,
44 dl 1.1 * that is, adding n elements requires O(n) time. All of the other operations
45     * run in linear time (roughly speaking). The constant factor is low compared
46 jsr166 1.33 * to that for the {@code LinkedList} implementation.
47 dl 1.1 *
48 jsr166 1.33 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
49 dl 1.1 * the size of the array used to store the elements in the list. It is always
50     * at least as large as the list size. As elements are added to an ArrayList,
51     * its capacity grows automatically. The details of the growth policy are not
52     * specified beyond the fact that adding an element has constant amortized
53 jsr166 1.25 * time cost.
54 dl 1.1 *
55 jsr166 1.33 * <p>An application can increase the capacity of an {@code ArrayList} instance
56     * before adding a large number of elements using the {@code ensureCapacity}
57 dl 1.1 * operation. This may reduce the amount of incremental reallocation.
58     *
59     * <p><strong>Note that this implementation is not synchronized.</strong>
60 jsr166 1.33 * If multiple threads access an {@code ArrayList} instance concurrently,
61 dl 1.1 * and at least one of the threads modifies the list structurally, it
62     * <i>must</i> be synchronized externally. (A structural modification is
63     * any operation that adds or deletes one or more elements, or explicitly
64     * resizes the backing array; merely setting the value of an element is not
65     * a structural modification.) This is typically accomplished by
66     * synchronizing on some object that naturally encapsulates the list.
67     *
68     * If no such object exists, the list should be "wrapped" using the
69     * {@link Collections#synchronizedList Collections.synchronizedList}
70     * method. This is best done at creation time, to prevent accidental
71     * unsynchronized access to the list:<pre>
72     * List list = Collections.synchronizedList(new ArrayList(...));</pre>
73     *
74 jsr166 1.33 * <p id="fail-fast">
75 jsr166 1.25 * The iterators returned by this class's {@link #iterator() iterator} and
76     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
77     * if the list is structurally modified at any time after the iterator is
78     * created, in any way except through the iterator's own
79     * {@link ListIterator#remove() remove} or
80     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
81     * {@link ConcurrentModificationException}. Thus, in the face of
82     * concurrent modification, the iterator fails quickly and cleanly, rather
83     * than risking arbitrary, non-deterministic behavior at an undetermined
84     * time in the future.
85 dl 1.1 *
86 jsr166 1.25 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
87 dl 1.1 * as it is, generally speaking, impossible to make any hard guarantees in the
88     * presence of unsynchronized concurrent modification. Fail-fast iterators
89 jsr166 1.25 * throw {@code ConcurrentModificationException} on a best-effort basis.
90 dl 1.1 * Therefore, it would be wrong to write a program that depended on this
91 jsr166 1.25 * exception for its correctness: <i>the fail-fast behavior of iterators
92     * should be used only to detect bugs.</i>
93 dl 1.1 *
94 jsr166 1.25 * <p>This class is a member of the
95 jsr166 1.50 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
96 dl 1.1 * Java Collections Framework</a>.
97     *
98 jsr166 1.33 * @param <E> the type of elements in this list
99     *
100 dl 1.1 * @author Josh Bloch
101     * @author Neal Gafter
102 jsr166 1.26 * @see Collection
103     * @see List
104     * @see LinkedList
105     * @see Vector
106 dl 1.1 * @since 1.2
107     */
108     public class ArrayList<E> extends AbstractList<E>
109     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
110     {
111     private static final long serialVersionUID = 8683452581122892189L;
112    
113     /**
114 jsr166 1.33 * Default initial capacity.
115     */
116     private static final int DEFAULT_CAPACITY = 10;
117    
118     /**
119     * Shared empty array instance used for empty instances.
120     */
121     private static final Object[] EMPTY_ELEMENTDATA = {};
122    
123     /**
124     * Shared empty array instance used for default sized empty instances. We
125     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
126     * first element is added.
127     */
128     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
129    
130     /**
131 dl 1.1 * The array buffer into which the elements of the ArrayList are stored.
132 jsr166 1.33 * The capacity of the ArrayList is the length of this array buffer. Any
133     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
134     * will be expanded to DEFAULT_CAPACITY when the first element is added.
135 dl 1.1 */
136 jsr166 1.33 transient Object[] elementData; // non-private to simplify nested class access
137 dl 1.1
138     /**
139     * The size of the ArrayList (the number of elements it contains).
140     *
141     * @serial
142     */
143     private int size;
144    
145     /**
146     * Constructs an empty list with the specified initial capacity.
147     *
148 jsr166 1.31 * @param initialCapacity the initial capacity of the list
149     * @throws IllegalArgumentException if the specified initial capacity
150     * is negative
151 dl 1.1 */
152     public ArrayList(int initialCapacity) {
153 jsr166 1.33 if (initialCapacity > 0) {
154     this.elementData = new Object[initialCapacity];
155     } else if (initialCapacity == 0) {
156     this.elementData = EMPTY_ELEMENTDATA;
157     } else {
158 dl 1.1 throw new IllegalArgumentException("Illegal Capacity: "+
159     initialCapacity);
160 jsr166 1.33 }
161 dl 1.1 }
162    
163     /**
164     * Constructs an empty list with an initial capacity of ten.
165     */
166     public ArrayList() {
167 jsr166 1.33 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
168 dl 1.1 }
169    
170     /**
171     * Constructs a list containing the elements of the specified
172     * collection, in the order they are returned by the collection's
173 jsr166 1.17 * iterator.
174 dl 1.1 *
175     * @param c the collection whose elements are to be placed into this list
176     * @throws NullPointerException if the specified collection is null
177     */
178     public ArrayList(Collection<? extends E> c) {
179 jsr166 1.26 elementData = c.toArray();
180 jsr166 1.33 if ((size = elementData.length) != 0) {
181     // defend against c.toArray (incorrectly) not returning Object[]
182     // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
183     if (elementData.getClass() != Object[].class)
184     elementData = Arrays.copyOf(elementData, size, Object[].class);
185     } else {
186     // replace with empty array.
187     this.elementData = EMPTY_ELEMENTDATA;
188     }
189 dl 1.2 }
190 jsr166 1.4
191 dl 1.1 /**
192 jsr166 1.33 * Trims the capacity of this {@code ArrayList} instance to be the
193 dl 1.1 * list's current size. An application can use this operation to minimize
194 jsr166 1.33 * the storage of an {@code ArrayList} instance.
195 dl 1.1 */
196     public void trimToSize() {
197 jsr166 1.26 modCount++;
198 jsr166 1.33 if (size < elementData.length) {
199     elementData = (size == 0)
200     ? EMPTY_ELEMENTDATA
201     : Arrays.copyOf(elementData, size);
202 jsr166 1.26 }
203 dl 1.1 }
204    
205     /**
206 jsr166 1.33 * Increases the capacity of this {@code ArrayList} instance, if
207 dl 1.1 * necessary, to ensure that it can hold at least the number of elements
208     * specified by the minimum capacity argument.
209     *
210 jsr166 1.33 * @param minCapacity the desired minimum capacity
211 dl 1.1 */
212     public void ensureCapacity(int minCapacity) {
213 jsr166 1.33 if (minCapacity > elementData.length
214     && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
215     && minCapacity <= DEFAULT_CAPACITY)) {
216     modCount++;
217     grow(minCapacity);
218     }
219     }
220    
221     /**
222     * The maximum size of array to allocate (unless necessary).
223     * Some VMs reserve some header words in an array.
224     * Attempts to allocate larger arrays may result in
225     * OutOfMemoryError: Requested array size exceeds VM limit
226     */
227     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
228    
229     /**
230     * Increases the capacity to ensure that it can hold at least the
231     * number of elements specified by the minimum capacity argument.
232     *
233     * @param minCapacity the desired minimum capacity
234     * @throws OutOfMemoryError if minCapacity is less than zero
235     */
236     private Object[] grow(int minCapacity) {
237     return elementData = Arrays.copyOf(elementData,
238     newCapacity(minCapacity));
239     }
240    
241     private Object[] grow() {
242     return grow(size + 1);
243     }
244    
245     /**
246     * Returns a capacity at least as large as the given minimum capacity.
247     * Returns the current capacity increased by 50% if that suffices.
248     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
249     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
250     *
251     * @param minCapacity the desired minimum capacity
252     * @throws OutOfMemoryError if minCapacity is less than zero
253     */
254     private int newCapacity(int minCapacity) {
255     // overflow-conscious code
256 jsr166 1.26 int oldCapacity = elementData.length;
257 jsr166 1.33 int newCapacity = oldCapacity + (oldCapacity >> 1);
258     if (newCapacity - minCapacity <= 0) {
259     if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
260     return Math.max(DEFAULT_CAPACITY, minCapacity);
261     if (minCapacity < 0) // overflow
262     throw new OutOfMemoryError();
263     return minCapacity;
264     }
265     return (newCapacity - MAX_ARRAY_SIZE <= 0)
266     ? newCapacity
267     : hugeCapacity(minCapacity);
268     }
269    
270     private static int hugeCapacity(int minCapacity) {
271     if (minCapacity < 0) // overflow
272     throw new OutOfMemoryError();
273     return (minCapacity > MAX_ARRAY_SIZE)
274     ? Integer.MAX_VALUE
275     : MAX_ARRAY_SIZE;
276 dl 1.1 }
277    
278     /**
279     * Returns the number of elements in this list.
280     *
281     * @return the number of elements in this list
282     */
283     public int size() {
284 jsr166 1.26 return size;
285 dl 1.1 }
286    
287     /**
288 jsr166 1.33 * Returns {@code true} if this list contains no elements.
289 dl 1.1 *
290 jsr166 1.33 * @return {@code true} if this list contains no elements
291 dl 1.1 */
292     public boolean isEmpty() {
293 jsr166 1.26 return size == 0;
294 dl 1.1 }
295    
296     /**
297 jsr166 1.33 * Returns {@code true} if this list contains the specified element.
298     * More formally, returns {@code true} if and only if this list contains
299     * at least one element {@code e} such that
300     * {@code Objects.equals(o, e)}.
301 dl 1.1 *
302     * @param o element whose presence in this list is to be tested
303 jsr166 1.33 * @return {@code true} if this list contains the specified element
304 dl 1.1 */
305     public boolean contains(Object o) {
306 jsr166 1.26 return indexOf(o) >= 0;
307 dl 1.1 }
308    
309     /**
310     * Returns the index of the first occurrence of the specified element
311     * in this list, or -1 if this list does not contain the element.
312 jsr166 1.33 * More formally, returns the lowest index {@code i} such that
313     * {@code Objects.equals(o, get(i))},
314 dl 1.1 * or -1 if there is no such index.
315     */
316     public int indexOf(Object o) {
317 jsr166 1.26 if (o == null) {
318     for (int i = 0; i < size; i++)
319     if (elementData[i]==null)
320     return i;
321     } else {
322     for (int i = 0; i < size; i++)
323     if (o.equals(elementData[i]))
324     return i;
325     }
326     return -1;
327 dl 1.1 }
328    
329     /**
330     * Returns the index of the last occurrence of the specified element
331     * in this list, or -1 if this list does not contain the element.
332 jsr166 1.33 * More formally, returns the highest index {@code i} such that
333     * {@code Objects.equals(o, get(i))},
334 dl 1.1 * or -1 if there is no such index.
335     */
336     public int lastIndexOf(Object o) {
337 jsr166 1.26 if (o == null) {
338     for (int i = size-1; i >= 0; i--)
339     if (elementData[i]==null)
340     return i;
341     } else {
342     for (int i = size-1; i >= 0; i--)
343     if (o.equals(elementData[i]))
344     return i;
345     }
346     return -1;
347 dl 1.1 }
348    
349     /**
350 jsr166 1.33 * Returns a shallow copy of this {@code ArrayList} instance. (The
351 dl 1.1 * elements themselves are not copied.)
352     *
353 jsr166 1.33 * @return a clone of this {@code ArrayList} instance
354 dl 1.1 */
355     public Object clone() {
356 jsr166 1.26 try {
357 jsr166 1.33 ArrayList<?> v = (ArrayList<?>) super.clone();
358 jsr166 1.26 v.elementData = Arrays.copyOf(elementData, size);
359     v.modCount = 0;
360     return v;
361     } catch (CloneNotSupportedException e) {
362     // this shouldn't happen, since we are Cloneable
363 jsr166 1.33 throw new InternalError(e);
364 jsr166 1.26 }
365 dl 1.1 }
366    
367     /**
368     * Returns an array containing all of the elements in this list
369     * in proper sequence (from first to last element).
370     *
371     * <p>The returned array will be "safe" in that no references to it are
372     * maintained by this list. (In other words, this method must allocate
373     * a new array). The caller is thus free to modify the returned array.
374     *
375     * <p>This method acts as bridge between array-based and collection-based
376     * APIs.
377     *
378     * @return an array containing all of the elements in this list in
379     * proper sequence
380     */
381     public Object[] toArray() {
382     return Arrays.copyOf(elementData, size);
383     }
384    
385     /**
386     * Returns an array containing all of the elements in this list in proper
387     * sequence (from first to last element); the runtime type of the returned
388     * array is that of the specified array. If the list fits in the
389     * specified array, it is returned therein. Otherwise, a new array is
390     * allocated with the runtime type of the specified array and the size of
391     * this list.
392     *
393     * <p>If the list fits in the specified array with room to spare
394     * (i.e., the array has more elements than the list), the element in
395     * the array immediately following the end of the collection is set to
396 jsr166 1.33 * {@code null}. (This is useful in determining the length of the
397 dl 1.1 * list <i>only</i> if the caller knows that the list does not contain
398     * any null elements.)
399     *
400     * @param a the array into which the elements of the list are to
401     * be stored, if it is big enough; otherwise, a new array of the
402     * same runtime type is allocated for this purpose.
403     * @return an array containing the elements of the list
404     * @throws ArrayStoreException if the runtime type of the specified array
405     * is not a supertype of the runtime type of every element in
406     * this list
407     * @throws NullPointerException if the specified array is null
408     */
409 jsr166 1.25 @SuppressWarnings("unchecked")
410 dl 1.1 public <T> T[] toArray(T[] a) {
411     if (a.length < size)
412     // Make a new array of a's runtime type, but my contents:
413     return (T[]) Arrays.copyOf(elementData, size, a.getClass());
414 jsr166 1.26 System.arraycopy(elementData, 0, a, 0, size);
415 dl 1.1 if (a.length > size)
416     a[size] = null;
417     return a;
418     }
419    
420     // Positional Access Operations
421    
422 jsr166 1.25 @SuppressWarnings("unchecked")
423     E elementData(int index) {
424 jsr166 1.26 return (E) elementData[index];
425 dl 1.1 }
426    
427 jsr166 1.39 @SuppressWarnings("unchecked")
428     static <E> E elementAt(Object[] es, int index) {
429     return (E) es[index];
430     }
431    
432 dl 1.1 /**
433     * Returns the element at the specified position in this list.
434     *
435     * @param index index of the element to return
436     * @return the element at the specified position in this list
437     * @throws IndexOutOfBoundsException {@inheritDoc}
438     */
439     public E get(int index) {
440 jsr166 1.33 Objects.checkIndex(index, size);
441 jsr166 1.26 return elementData(index);
442 dl 1.1 }
443    
444     /**
445     * Replaces the element at the specified position in this list with
446     * the specified element.
447     *
448     * @param index index of the element to replace
449     * @param element element to be stored at the specified position
450     * @return the element previously at the specified position
451     * @throws IndexOutOfBoundsException {@inheritDoc}
452     */
453     public E set(int index, E element) {
454 jsr166 1.33 Objects.checkIndex(index, size);
455 jsr166 1.26 E oldValue = elementData(index);
456     elementData[index] = element;
457     return oldValue;
458 dl 1.1 }
459    
460     /**
461 jsr166 1.33 * This helper method split out from add(E) to keep method
462     * bytecode size under 35 (the -XX:MaxInlineSize default value),
463     * which helps when add(E) is called in a C1-compiled loop.
464     */
465     private void add(E e, Object[] elementData, int s) {
466     if (s == elementData.length)
467     elementData = grow();
468     elementData[s] = e;
469     size = s + 1;
470     }
471    
472     /**
473 dl 1.1 * Appends the specified element to the end of this list.
474     *
475     * @param e element to be appended to this list
476 jsr166 1.33 * @return {@code true} (as specified by {@link Collection#add})
477 dl 1.1 */
478     public boolean add(E e) {
479 jsr166 1.33 modCount++;
480     add(e, elementData, size);
481 jsr166 1.26 return true;
482 dl 1.1 }
483    
484     /**
485     * Inserts the specified element at the specified position in this
486     * list. Shifts the element currently at that position (if any) and
487     * any subsequent elements to the right (adds one to their indices).
488     *
489     * @param index index at which the specified element is to be inserted
490     * @param element element to be inserted
491     * @throws IndexOutOfBoundsException {@inheritDoc}
492     */
493     public void add(int index, E element) {
494 jsr166 1.26 rangeCheckForAdd(index);
495 jsr166 1.33 modCount++;
496     final int s;
497     Object[] elementData;
498     if ((s = size) == (elementData = this.elementData).length)
499     elementData = grow();
500     System.arraycopy(elementData, index,
501     elementData, index + 1,
502     s - index);
503 jsr166 1.26 elementData[index] = element;
504 jsr166 1.33 size = s + 1;
505 jsr166 1.41 // checkInvariants();
506 dl 1.1 }
507    
508     /**
509     * Removes the element at the specified position in this list.
510     * Shifts any subsequent elements to the left (subtracts one from their
511     * indices).
512     *
513     * @param index the index of the element to be removed
514     * @return the element that was removed from the list
515     * @throws IndexOutOfBoundsException {@inheritDoc}
516     */
517     public E remove(int index) {
518 jsr166 1.33 Objects.checkIndex(index, size);
519 jsr166 1.51 final Object[] es = elementData;
520 jsr166 1.25
521 jsr166 1.51 @SuppressWarnings("unchecked") E oldValue = (E) es[index];
522     fastRemove(es, index);
523 jsr166 1.25
524 jsr166 1.41 // checkInvariants();
525 jsr166 1.26 return oldValue;
526 dl 1.1 }
527    
528     /**
529     * Removes the first occurrence of the specified element from this list,
530     * if it is present. If the list does not contain the element, it is
531     * unchanged. More formally, removes the element with the lowest index
532 jsr166 1.33 * {@code i} such that
533     * {@code Objects.equals(o, get(i))}
534     * (if such an element exists). Returns {@code true} if this list
535 dl 1.1 * contained the specified element (or equivalently, if this list
536     * changed as a result of the call).
537     *
538     * @param o element to be removed from this list, if present
539 jsr166 1.33 * @return {@code true} if this list contained the specified element
540 dl 1.1 */
541     public boolean remove(Object o) {
542 jsr166 1.51 final Object[] es = elementData;
543     final int size = this.size;
544     int i = 0;
545     found: {
546     if (o == null) {
547     for (; i < size; i++)
548     if (es[i] == null)
549     break found;
550     } else {
551     for (; i < size; i++)
552     if (o.equals(es[i]))
553     break found;
554     }
555     return false;
556 dl 1.1 }
557 jsr166 1.51 fastRemove(es, i);
558     return true;
559 dl 1.1 }
560    
561 jsr166 1.41 /**
562 dl 1.1 * Private remove method that skips bounds checking and does not
563     * return the value removed.
564     */
565 jsr166 1.51 private void fastRemove(Object[] es, int i) {
566 dl 1.1 modCount++;
567 jsr166 1.51 final int newSize;
568     if ((newSize = size - 1) > i)
569     System.arraycopy(es, i + 1, es, i, newSize - i);
570     es[size = newSize] = null;
571 dl 1.1 }
572    
573     /**
574     * Removes all of the elements from this list. The list will
575     * be empty after this call returns.
576     */
577     public void clear() {
578 jsr166 1.26 modCount++;
579 jsr166 1.47 final Object[] es = elementData;
580     for (int to = size, i = size = 0; i < to; i++)
581     es[i] = null;
582 dl 1.1 }
583    
584     /**
585     * Appends all of the elements in the specified collection to the end of
586     * this list, in the order that they are returned by the
587     * specified collection's Iterator. The behavior of this operation is
588     * undefined if the specified collection is modified while the operation
589     * is in progress. (This implies that the behavior of this call is
590     * undefined if the specified collection is this list, and this
591     * list is nonempty.)
592     *
593     * @param c collection containing elements to be added to this list
594 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
595 dl 1.1 * @throws NullPointerException if the specified collection is null
596     */
597     public boolean addAll(Collection<? extends E> c) {
598 jsr166 1.26 Object[] a = c.toArray();
599 jsr166 1.33 modCount++;
600 dl 1.1 int numNew = a.length;
601 jsr166 1.33 if (numNew == 0)
602     return false;
603     Object[] elementData;
604     final int s;
605     if (numNew > (elementData = this.elementData).length - (s = size))
606     elementData = grow(s + numNew);
607     System.arraycopy(a, 0, elementData, s, numNew);
608     size = s + numNew;
609 jsr166 1.41 // checkInvariants();
610 jsr166 1.33 return true;
611 dl 1.1 }
612    
613     /**
614     * Inserts all of the elements in the specified collection into this
615     * list, starting at the specified position. Shifts the element
616     * currently at that position (if any) and any subsequent elements to
617     * the right (increases their indices). The new elements will appear
618     * in the list in the order that they are returned by the
619     * specified collection's iterator.
620     *
621     * @param index index at which to insert the first element from the
622     * specified collection
623     * @param c collection containing elements to be added to this list
624 jsr166 1.33 * @return {@code true} if this list changed as a result of the call
625 dl 1.1 * @throws IndexOutOfBoundsException {@inheritDoc}
626     * @throws NullPointerException if the specified collection is null
627     */
628     public boolean addAll(int index, Collection<? extends E> c) {
629 jsr166 1.26 rangeCheckForAdd(index);
630 dl 1.1
631 jsr166 1.26 Object[] a = c.toArray();
632 jsr166 1.33 modCount++;
633 jsr166 1.26 int numNew = a.length;
634 jsr166 1.33 if (numNew == 0)
635     return false;
636     Object[] elementData;
637     final int s;
638     if (numNew > (elementData = this.elementData).length - (s = size))
639     elementData = grow(s + numNew);
640 jsr166 1.26
641 jsr166 1.33 int numMoved = s - index;
642 jsr166 1.26 if (numMoved > 0)
643 jsr166 1.33 System.arraycopy(elementData, index,
644     elementData, index + numNew,
645 jsr166 1.26 numMoved);
646 dl 1.1 System.arraycopy(a, 0, elementData, index, numNew);
647 jsr166 1.33 size = s + numNew;
648 jsr166 1.41 // checkInvariants();
649 jsr166 1.33 return true;
650 dl 1.1 }
651    
652     /**
653     * Removes from this list all of the elements whose index is between
654 jsr166 1.25 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
655 dl 1.1 * Shifts any succeeding elements to the left (reduces their index).
656 jsr166 1.25 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
657     * (If {@code toIndex==fromIndex}, this operation has no effect.)
658 dl 1.1 *
659 jsr166 1.25 * @throws IndexOutOfBoundsException if {@code fromIndex} or
660     * {@code toIndex} is out of range
661     * ({@code fromIndex < 0 ||
662     * toIndex > size() ||
663     * toIndex < fromIndex})
664 dl 1.1 */
665     protected void removeRange(int fromIndex, int toIndex) {
666 jsr166 1.33 if (fromIndex > toIndex) {
667     throw new IndexOutOfBoundsException(
668     outOfBoundsMsg(fromIndex, toIndex));
669     }
670 jsr166 1.26 modCount++;
671 jsr166 1.47 shiftTailOverGap(elementData, fromIndex, toIndex);
672 jsr166 1.41 // checkInvariants();
673 jsr166 1.25 }
674    
675 jsr166 1.47 /** Erases the gap from lo to hi, by sliding down following elements. */
676     private void shiftTailOverGap(Object[] es, int lo, int hi) {
677     System.arraycopy(es, hi, es, lo, size - hi);
678     for (int to = size, i = (size -= hi - lo); i < to; i++)
679     es[i] = null;
680     }
681    
682 jsr166 1.25 /**
683     * A version of rangeCheck used by add and addAll.
684     */
685     private void rangeCheckForAdd(int index) {
686 jsr166 1.26 if (index > size || index < 0)
687     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
688 jsr166 1.25 }
689    
690     /**
691     * Constructs an IndexOutOfBoundsException detail message.
692     * Of the many possible refactorings of the error handling code,
693     * this "outlining" performs best with both server and client VMs.
694     */
695     private String outOfBoundsMsg(int index) {
696 jsr166 1.26 return "Index: "+index+", Size: "+size;
697 jsr166 1.25 }
698    
699     /**
700 jsr166 1.33 * A version used in checking (fromIndex > toIndex) condition
701     */
702     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
703     return "From Index: " + fromIndex + " > To Index: " + toIndex;
704     }
705    
706     /**
707 jsr166 1.25 * Removes from this list all of its elements that are contained in the
708     * specified collection.
709     *
710     * @param c collection containing elements to be removed from this list
711     * @return {@code true} if this list changed as a result of the call
712     * @throws ClassCastException if the class of an element of this list
713 jsr166 1.33 * is incompatible with the specified collection
714     * (<a href="Collection.html#optional-restrictions">optional</a>)
715 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
716 jsr166 1.33 * specified collection does not permit null elements
717     * (<a href="Collection.html#optional-restrictions">optional</a>),
718 jsr166 1.25 * or if the specified collection is null
719     * @see Collection#contains(Object)
720     */
721     public boolean removeAll(Collection<?> c) {
722 jsr166 1.40 return batchRemove(c, false, 0, size);
723 jsr166 1.25 }
724    
725     /**
726     * Retains only the elements in this list that are contained in the
727     * specified collection. In other words, removes from this list all
728     * of its elements that are not contained in the specified collection.
729     *
730     * @param c collection containing elements to be retained in this list
731     * @return {@code true} if this list changed as a result of the call
732     * @throws ClassCastException if the class of an element of this list
733 jsr166 1.33 * is incompatible with the specified collection
734     * (<a href="Collection.html#optional-restrictions">optional</a>)
735 jsr166 1.25 * @throws NullPointerException if this list contains a null element and the
736 jsr166 1.33 * specified collection does not permit null elements
737     * (<a href="Collection.html#optional-restrictions">optional</a>),
738 jsr166 1.25 * or if the specified collection is null
739     * @see Collection#contains(Object)
740     */
741     public boolean retainAll(Collection<?> c) {
742 jsr166 1.40 return batchRemove(c, true, 0, size);
743 jsr166 1.25 }
744    
745 jsr166 1.40 boolean batchRemove(Collection<?> c, boolean complement,
746     final int from, final int end) {
747 jsr166 1.37 Objects.requireNonNull(c);
748     final Object[] es = elementData;
749     int r;
750     // Optimize for initial run of survivors
751 jsr166 1.53 for (r = from;; r++) {
752     if (r == end)
753     return false;
754     if (c.contains(es[r]) != complement)
755     break;
756     }
757     int w = r++;
758     try {
759     for (Object e; r < end; r++)
760     if (c.contains(e = es[r]) == complement)
761     es[w++] = e;
762     } catch (Throwable ex) {
763     // Preserve behavioral compatibility with AbstractCollection,
764     // even if c.contains() throws.
765     System.arraycopy(es, r, es, w, end - r);
766     w += end - r;
767     throw ex;
768     } finally {
769     modCount += end - w;
770     shiftTailOverGap(es, w, end);
771 jsr166 1.26 }
772 jsr166 1.41 // checkInvariants();
773 jsr166 1.53 return true;
774 jsr166 1.25 }
775    
776     /**
777 jsr166 1.46 * Saves the state of the {@code ArrayList} instance to a stream
778     * (that is, serializes it).
779 dl 1.1 *
780 jsr166 1.46 * @param s the stream
781     * @throws java.io.IOException if an I/O error occurs
782 jsr166 1.33 * @serialData The length of the array backing the {@code ArrayList}
783 dl 1.1 * instance is emitted (int), followed by all of its elements
784 jsr166 1.33 * (each an {@code Object}) in the proper order.
785 dl 1.1 */
786     private void writeObject(java.io.ObjectOutputStream s)
787 jsr166 1.46 throws java.io.IOException {
788 jsr166 1.26 // Write out element count, and any hidden stuff
789     int expectedModCount = modCount;
790     s.defaultWriteObject();
791 dl 1.1
792 jsr166 1.52 // Write out size as capacity for behavioral compatibility with clone()
793 jsr166 1.33 s.writeInt(size);
794 dl 1.1
795 jsr166 1.26 // Write out all elements in the proper order.
796 jsr166 1.33 for (int i=0; i<size; i++) {
797 dl 1.1 s.writeObject(elementData[i]);
798 jsr166 1.33 }
799 dl 1.1
800 jsr166 1.26 if (modCount != expectedModCount) {
801 dl 1.1 throw new ConcurrentModificationException();
802     }
803     }
804    
805     /**
806 jsr166 1.46 * Reconstitutes the {@code ArrayList} instance from a stream (that is,
807     * deserializes it).
808     * @param s the stream
809     * @throws ClassNotFoundException if the class of a serialized object
810     * could not be found
811     * @throws java.io.IOException if an I/O error occurs
812 dl 1.1 */
813     private void readObject(java.io.ObjectInputStream s)
814     throws java.io.IOException, ClassNotFoundException {
815 jsr166 1.33
816 jsr166 1.26 // Read in size, and any hidden stuff
817     s.defaultReadObject();
818 dl 1.1
819 jsr166 1.33 // Read in capacity
820     s.readInt(); // ignored
821    
822     if (size > 0) {
823     // like clone(), allocate array based upon size not capacity
824 jsr166 1.54 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
825 jsr166 1.33 Object[] elements = new Object[size];
826    
827     // Read in all elements in the proper order.
828     for (int i = 0; i < size; i++) {
829     elements[i] = s.readObject();
830     }
831    
832     elementData = elements;
833     } else if (size == 0) {
834     elementData = EMPTY_ELEMENTDATA;
835     } else {
836     throw new java.io.InvalidObjectException("Invalid size: " + size);
837     }
838 dl 1.1 }
839 jsr166 1.25
840     /**
841     * Returns a list iterator over the elements in this list (in proper
842     * sequence), starting at the specified position in the list.
843     * The specified index indicates the first element that would be
844     * returned by an initial call to {@link ListIterator#next next}.
845     * An initial call to {@link ListIterator#previous previous} would
846     * return the element with the specified index minus one.
847     *
848     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
849     *
850     * @throws IndexOutOfBoundsException {@inheritDoc}
851     */
852     public ListIterator<E> listIterator(int index) {
853 jsr166 1.33 rangeCheckForAdd(index);
854 jsr166 1.26 return new ListItr(index);
855 jsr166 1.25 }
856    
857     /**
858     * Returns a list iterator over the elements in this list (in proper
859     * sequence).
860     *
861     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
862     *
863     * @see #listIterator(int)
864     */
865     public ListIterator<E> listIterator() {
866 jsr166 1.26 return new ListItr(0);
867 jsr166 1.25 }
868    
869     /**
870     * Returns an iterator over the elements in this list in proper sequence.
871     *
872     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
873     *
874     * @return an iterator over the elements in this list in proper sequence
875     */
876     public Iterator<E> iterator() {
877 jsr166 1.26 return new Itr();
878 jsr166 1.25 }
879    
880     /**
881     * An optimized version of AbstractList.Itr
882     */
883     private class Itr implements Iterator<E> {
884 jsr166 1.26 int cursor; // index of next element to return
885     int lastRet = -1; // index of last element returned; -1 if no such
886     int expectedModCount = modCount;
887 jsr166 1.25
888 jsr166 1.33 // prevent creating a synthetic constructor
889     Itr() {}
890    
891 jsr166 1.26 public boolean hasNext() {
892 jsr166 1.25 return cursor != size;
893 jsr166 1.26 }
894    
895     @SuppressWarnings("unchecked")
896     public E next() {
897     checkForComodification();
898     int i = cursor;
899     if (i >= size)
900     throw new NoSuchElementException();
901     Object[] elementData = ArrayList.this.elementData;
902     if (i >= elementData.length)
903     throw new ConcurrentModificationException();
904     cursor = i + 1;
905     return (E) elementData[lastRet = i];
906     }
907 jsr166 1.25
908 jsr166 1.26 public void remove() {
909     if (lastRet < 0)
910     throw new IllegalStateException();
911 jsr166 1.25 checkForComodification();
912 jsr166 1.26
913     try {
914     ArrayList.this.remove(lastRet);
915     cursor = lastRet;
916     lastRet = -1;
917     expectedModCount = modCount;
918     } catch (IndexOutOfBoundsException ex) {
919     throw new ConcurrentModificationException();
920     }
921     }
922    
923 jsr166 1.33 @Override
924 jsr166 1.44 public void forEachRemaining(Consumer<? super E> action) {
925     Objects.requireNonNull(action);
926 jsr166 1.33 final int size = ArrayList.this.size;
927     int i = cursor;
928 jsr166 1.44 if (i < size) {
929     final Object[] es = elementData;
930     if (i >= es.length)
931     throw new ConcurrentModificationException();
932     for (; i < size && modCount == expectedModCount; i++)
933     action.accept(elementAt(es, i));
934     // update once at end to reduce heap write traffic
935     cursor = i;
936     lastRet = i - 1;
937     checkForComodification();
938 jsr166 1.33 }
939     }
940    
941 jsr166 1.26 final void checkForComodification() {
942     if (modCount != expectedModCount)
943     throw new ConcurrentModificationException();
944     }
945 jsr166 1.25 }
946    
947     /**
948     * An optimized version of AbstractList.ListItr
949     */
950     private class ListItr extends Itr implements ListIterator<E> {
951 jsr166 1.26 ListItr(int index) {
952     super();
953     cursor = index;
954     }
955    
956     public boolean hasPrevious() {
957     return cursor != 0;
958     }
959 jsr166 1.25
960 jsr166 1.26 public int nextIndex() {
961     return cursor;
962     }
963    
964     public int previousIndex() {
965     return cursor - 1;
966     }
967    
968     @SuppressWarnings("unchecked")
969 jsr166 1.25 public E previous() {
970 jsr166 1.26 checkForComodification();
971     int i = cursor - 1;
972     if (i < 0)
973     throw new NoSuchElementException();
974     Object[] elementData = ArrayList.this.elementData;
975     if (i >= elementData.length)
976     throw new ConcurrentModificationException();
977     cursor = i;
978     return (E) elementData[lastRet = i];
979     }
980    
981     public void set(E e) {
982     if (lastRet < 0)
983     throw new IllegalStateException();
984     checkForComodification();
985    
986     try {
987     ArrayList.this.set(lastRet, e);
988     } catch (IndexOutOfBoundsException ex) {
989     throw new ConcurrentModificationException();
990     }
991     }
992    
993     public void add(E e) {
994     checkForComodification();
995    
996     try {
997     int i = cursor;
998     ArrayList.this.add(i, e);
999     cursor = i + 1;
1000     lastRet = -1;
1001     expectedModCount = modCount;
1002     } catch (IndexOutOfBoundsException ex) {
1003     throw new ConcurrentModificationException();
1004     }
1005     }
1006 jsr166 1.25 }
1007    
1008     /**
1009     * Returns a view of the portion of this list between the specified
1010     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1011     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1012     * empty.) The returned list is backed by this list, so non-structural
1013     * changes in the returned list are reflected in this list, and vice-versa.
1014     * The returned list supports all of the optional list operations.
1015     *
1016     * <p>This method eliminates the need for explicit range operations (of
1017     * the sort that commonly exist for arrays). Any operation that expects
1018     * a list can be used as a range operation by passing a subList view
1019     * instead of a whole list. For example, the following idiom
1020     * removes a range of elements from a list:
1021     * <pre>
1022     * list.subList(from, to).clear();
1023     * </pre>
1024     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1025     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1026     * {@link Collections} class can be applied to a subList.
1027     *
1028     * <p>The semantics of the list returned by this method become undefined if
1029     * the backing list (i.e., this list) is <i>structurally modified</i> in
1030     * any way other than via the returned list. (Structural modifications are
1031     * those that change the size of this list, or otherwise perturb it in such
1032     * a fashion that iterations in progress may yield incorrect results.)
1033     *
1034     * @throws IndexOutOfBoundsException {@inheritDoc}
1035     * @throws IllegalArgumentException {@inheritDoc}
1036     */
1037     public List<E> subList(int fromIndex, int toIndex) {
1038 jsr166 1.26 subListRangeCheck(fromIndex, toIndex, size);
1039 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1040 jsr166 1.25 }
1041    
1042 jsr166 1.33 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1043     private final ArrayList<E> root;
1044     private final SubList<E> parent;
1045 jsr166 1.26 private final int offset;
1046 jsr166 1.33 private int size;
1047 jsr166 1.26
1048 jsr166 1.33 /**
1049     * Constructs a sublist of an arbitrary ArrayList.
1050     */
1051     public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1052     this.root = root;
1053     this.parent = null;
1054     this.offset = fromIndex;
1055     this.size = toIndex - fromIndex;
1056     this.modCount = root.modCount;
1057     }
1058    
1059     /**
1060     * Constructs a sublist of another SubList.
1061     */
1062     private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1063     this.root = parent.root;
1064 jsr166 1.26 this.parent = parent;
1065 jsr166 1.33 this.offset = parent.offset + fromIndex;
1066 jsr166 1.26 this.size = toIndex - fromIndex;
1067 jsr166 1.33 this.modCount = root.modCount;
1068 jsr166 1.26 }
1069    
1070 jsr166 1.33 public E set(int index, E element) {
1071     Objects.checkIndex(index, size);
1072 jsr166 1.26 checkForComodification();
1073 jsr166 1.33 E oldValue = root.elementData(offset + index);
1074     root.elementData[offset + index] = element;
1075 jsr166 1.26 return oldValue;
1076     }
1077    
1078     public E get(int index) {
1079 jsr166 1.33 Objects.checkIndex(index, size);
1080 jsr166 1.26 checkForComodification();
1081 jsr166 1.33 return root.elementData(offset + index);
1082 jsr166 1.26 }
1083    
1084     public int size() {
1085     checkForComodification();
1086 jsr166 1.33 return size;
1087 jsr166 1.26 }
1088    
1089 jsr166 1.33 public void add(int index, E element) {
1090 jsr166 1.26 rangeCheckForAdd(index);
1091     checkForComodification();
1092 jsr166 1.33 root.add(offset + index, element);
1093     updateSizeAndModCount(1);
1094 jsr166 1.26 }
1095    
1096     public E remove(int index) {
1097 jsr166 1.33 Objects.checkIndex(index, size);
1098 jsr166 1.26 checkForComodification();
1099 jsr166 1.33 E result = root.remove(offset + index);
1100     updateSizeAndModCount(-1);
1101 jsr166 1.26 return result;
1102     }
1103    
1104     protected void removeRange(int fromIndex, int toIndex) {
1105     checkForComodification();
1106 jsr166 1.33 root.removeRange(offset + fromIndex, offset + toIndex);
1107     updateSizeAndModCount(fromIndex - toIndex);
1108 jsr166 1.26 }
1109    
1110     public boolean addAll(Collection<? extends E> c) {
1111     return addAll(this.size, c);
1112     }
1113    
1114     public boolean addAll(int index, Collection<? extends E> c) {
1115     rangeCheckForAdd(index);
1116     int cSize = c.size();
1117     if (cSize==0)
1118     return false;
1119     checkForComodification();
1120 jsr166 1.33 root.addAll(offset + index, c);
1121     updateSizeAndModCount(cSize);
1122 jsr166 1.26 return true;
1123     }
1124    
1125 jsr166 1.58 public void replaceAll(UnaryOperator<E> operator) {
1126     root.replaceAllRange(operator, offset, offset + size);
1127     }
1128    
1129 jsr166 1.40 public boolean removeAll(Collection<?> c) {
1130     return batchRemove(c, false);
1131     }
1132 jsr166 1.41
1133 jsr166 1.40 public boolean retainAll(Collection<?> c) {
1134     return batchRemove(c, true);
1135     }
1136    
1137     private boolean batchRemove(Collection<?> c, boolean complement) {
1138     checkForComodification();
1139     int oldSize = root.size;
1140     boolean modified =
1141     root.batchRemove(c, complement, offset, offset + size);
1142     if (modified)
1143     updateSizeAndModCount(root.size - oldSize);
1144     return modified;
1145     }
1146    
1147     public boolean removeIf(Predicate<? super E> filter) {
1148     checkForComodification();
1149     int oldSize = root.size;
1150     boolean modified = root.removeIf(filter, offset, offset + size);
1151     if (modified)
1152     updateSizeAndModCount(root.size - oldSize);
1153     return modified;
1154     }
1155    
1156 jsr166 1.56 public Object[] toArray() {
1157     checkForComodification();
1158     return Arrays.copyOfRange(root.elementData, offset, offset + size);
1159     }
1160    
1161     @SuppressWarnings("unchecked")
1162     public <T> T[] toArray(T[] a) {
1163     checkForComodification();
1164     if (a.length < size)
1165     return (T[]) Arrays.copyOfRange(
1166     root.elementData, offset, offset + size, a.getClass());
1167     System.arraycopy(root.elementData, offset, a, 0, size);
1168     if (a.length > size)
1169     a[size] = null;
1170     return a;
1171     }
1172    
1173 jsr166 1.26 public Iterator<E> iterator() {
1174     return listIterator();
1175     }
1176    
1177 jsr166 1.33 public ListIterator<E> listIterator(int index) {
1178 jsr166 1.26 checkForComodification();
1179     rangeCheckForAdd(index);
1180    
1181     return new ListIterator<E>() {
1182     int cursor = index;
1183     int lastRet = -1;
1184 jsr166 1.33 int expectedModCount = root.modCount;
1185 jsr166 1.26
1186     public boolean hasNext() {
1187     return cursor != SubList.this.size;
1188     }
1189    
1190     @SuppressWarnings("unchecked")
1191     public E next() {
1192     checkForComodification();
1193     int i = cursor;
1194     if (i >= SubList.this.size)
1195     throw new NoSuchElementException();
1196 jsr166 1.33 Object[] elementData = root.elementData;
1197 jsr166 1.26 if (offset + i >= elementData.length)
1198     throw new ConcurrentModificationException();
1199     cursor = i + 1;
1200     return (E) elementData[offset + (lastRet = i)];
1201     }
1202    
1203     public boolean hasPrevious() {
1204     return cursor != 0;
1205     }
1206    
1207     @SuppressWarnings("unchecked")
1208     public E previous() {
1209     checkForComodification();
1210     int i = cursor - 1;
1211     if (i < 0)
1212     throw new NoSuchElementException();
1213 jsr166 1.33 Object[] elementData = root.elementData;
1214 jsr166 1.26 if (offset + i >= elementData.length)
1215     throw new ConcurrentModificationException();
1216     cursor = i;
1217     return (E) elementData[offset + (lastRet = i)];
1218     }
1219    
1220 jsr166 1.44 public void forEachRemaining(Consumer<? super E> action) {
1221     Objects.requireNonNull(action);
1222 jsr166 1.33 final int size = SubList.this.size;
1223     int i = cursor;
1224 jsr166 1.44 if (i < size) {
1225     final Object[] es = root.elementData;
1226     if (offset + i >= es.length)
1227     throw new ConcurrentModificationException();
1228     for (; i < size && modCount == expectedModCount; i++)
1229     action.accept(elementAt(es, offset + i));
1230     // update once at end to reduce heap write traffic
1231     cursor = i;
1232     lastRet = i - 1;
1233     checkForComodification();
1234 jsr166 1.33 }
1235     }
1236    
1237 jsr166 1.26 public int nextIndex() {
1238     return cursor;
1239     }
1240    
1241     public int previousIndex() {
1242     return cursor - 1;
1243     }
1244    
1245     public void remove() {
1246     if (lastRet < 0)
1247     throw new IllegalStateException();
1248     checkForComodification();
1249    
1250     try {
1251     SubList.this.remove(lastRet);
1252     cursor = lastRet;
1253     lastRet = -1;
1254 jsr166 1.33 expectedModCount = root.modCount;
1255 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1256     throw new ConcurrentModificationException();
1257     }
1258     }
1259    
1260     public void set(E e) {
1261     if (lastRet < 0)
1262     throw new IllegalStateException();
1263     checkForComodification();
1264    
1265     try {
1266 jsr166 1.33 root.set(offset + lastRet, e);
1267 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1268     throw new ConcurrentModificationException();
1269     }
1270     }
1271    
1272     public void add(E e) {
1273     checkForComodification();
1274    
1275     try {
1276     int i = cursor;
1277     SubList.this.add(i, e);
1278     cursor = i + 1;
1279     lastRet = -1;
1280 jsr166 1.33 expectedModCount = root.modCount;
1281 jsr166 1.26 } catch (IndexOutOfBoundsException ex) {
1282     throw new ConcurrentModificationException();
1283     }
1284     }
1285    
1286     final void checkForComodification() {
1287 jsr166 1.33 if (root.modCount != expectedModCount)
1288 jsr166 1.26 throw new ConcurrentModificationException();
1289     }
1290     };
1291     }
1292    
1293     public List<E> subList(int fromIndex, int toIndex) {
1294     subListRangeCheck(fromIndex, toIndex, size);
1295 jsr166 1.33 return new SubList<>(this, fromIndex, toIndex);
1296 jsr166 1.26 }
1297    
1298     private void rangeCheckForAdd(int index) {
1299     if (index < 0 || index > this.size)
1300     throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1301     }
1302    
1303     private String outOfBoundsMsg(int index) {
1304     return "Index: "+index+", Size: "+this.size;
1305     }
1306    
1307     private void checkForComodification() {
1308 jsr166 1.33 if (root.modCount != modCount)
1309 jsr166 1.26 throw new ConcurrentModificationException();
1310     }
1311 jsr166 1.33
1312     private void updateSizeAndModCount(int sizeChange) {
1313     SubList<E> slist = this;
1314     do {
1315     slist.size += sizeChange;
1316     slist.modCount = root.modCount;
1317     slist = slist.parent;
1318     } while (slist != null);
1319     }
1320    
1321     public Spliterator<E> spliterator() {
1322     checkForComodification();
1323    
1324 jsr166 1.45 // ArrayListSpliterator not used here due to late-binding
1325     return new Spliterator<E>() {
1326 jsr166 1.33 private int index = offset; // current index, modified on advance/split
1327     private int fence = -1; // -1 until used; then one past last index
1328     private int expectedModCount; // initialized when fence set
1329    
1330     private int getFence() { // initialize fence to size on first use
1331     int hi; // (a specialized variant appears in method forEach)
1332     if ((hi = fence) < 0) {
1333     expectedModCount = modCount;
1334     hi = fence = offset + size;
1335     }
1336     return hi;
1337     }
1338    
1339 jsr166 1.45 public ArrayList<E>.ArrayListSpliterator trySplit() {
1340 jsr166 1.33 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1341 jsr166 1.45 // ArrayListSpliterator can be used here as the source is already bound
1342 jsr166 1.33 return (lo >= mid) ? null : // divide range in half unless too small
1343 jsr166 1.45 root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1344 jsr166 1.33 }
1345    
1346     public boolean tryAdvance(Consumer<? super E> action) {
1347     Objects.requireNonNull(action);
1348     int hi = getFence(), i = index;
1349     if (i < hi) {
1350     index = i + 1;
1351     @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1352     action.accept(e);
1353     if (root.modCount != expectedModCount)
1354     throw new ConcurrentModificationException();
1355     return true;
1356     }
1357     return false;
1358     }
1359    
1360     public void forEachRemaining(Consumer<? super E> action) {
1361     Objects.requireNonNull(action);
1362     int i, hi, mc; // hoist accesses and checks from loop
1363     ArrayList<E> lst = root;
1364     Object[] a;
1365     if ((a = lst.elementData) != null) {
1366     if ((hi = fence) < 0) {
1367     mc = modCount;
1368     hi = offset + size;
1369     }
1370     else
1371     mc = expectedModCount;
1372     if ((i = index) >= 0 && (index = hi) <= a.length) {
1373     for (; i < hi; ++i) {
1374     @SuppressWarnings("unchecked") E e = (E) a[i];
1375     action.accept(e);
1376     }
1377     if (lst.modCount == mc)
1378     return;
1379     }
1380     }
1381     throw new ConcurrentModificationException();
1382     }
1383    
1384     public long estimateSize() {
1385 jsr166 1.45 return getFence() - index;
1386 jsr166 1.33 }
1387    
1388     public int characteristics() {
1389     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1390     }
1391     };
1392     }
1393     }
1394    
1395 jsr166 1.48 /**
1396     * @throws NullPointerException {@inheritDoc}
1397     */
1398 jsr166 1.33 @Override
1399     public void forEach(Consumer<? super E> action) {
1400     Objects.requireNonNull(action);
1401     final int expectedModCount = modCount;
1402 jsr166 1.39 final Object[] es = elementData;
1403 jsr166 1.33 final int size = this.size;
1404 jsr166 1.41 for (int i = 0; modCount == expectedModCount && i < size; i++)
1405 jsr166 1.39 action.accept(elementAt(es, i));
1406 jsr166 1.41 if (modCount != expectedModCount)
1407 jsr166 1.33 throw new ConcurrentModificationException();
1408     }
1409    
1410     /**
1411     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1412     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1413     * list.
1414     *
1415     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1416     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1417     * Overriding implementations should document the reporting of additional
1418     * characteristic values.
1419     *
1420     * @return a {@code Spliterator} over the elements in this list
1421     * @since 1.8
1422     */
1423     @Override
1424     public Spliterator<E> spliterator() {
1425 jsr166 1.45 return new ArrayListSpliterator(0, -1, 0);
1426 jsr166 1.33 }
1427    
1428     /** Index-based split-by-two, lazily initialized Spliterator */
1429 jsr166 1.45 final class ArrayListSpliterator implements Spliterator<E> {
1430 jsr166 1.33
1431     /*
1432     * If ArrayLists were immutable, or structurally immutable (no
1433     * adds, removes, etc), we could implement their spliterators
1434     * with Arrays.spliterator. Instead we detect as much
1435     * interference during traversal as practical without
1436     * sacrificing much performance. We rely primarily on
1437     * modCounts. These are not guaranteed to detect concurrency
1438     * violations, and are sometimes overly conservative about
1439     * within-thread interference, but detect enough problems to
1440     * be worthwhile in practice. To carry this out, we (1) lazily
1441     * initialize fence and expectedModCount until the latest
1442     * point that we need to commit to the state we are checking
1443     * against; thus improving precision. (This doesn't apply to
1444     * SubLists, that create spliterators with current non-lazy
1445     * values). (2) We perform only a single
1446     * ConcurrentModificationException check at the end of forEach
1447     * (the most performance-sensitive method). When using forEach
1448     * (as opposed to iterators), we can normally only detect
1449     * interference after actions, not before. Further
1450     * CME-triggering checks apply to all other possible
1451     * violations of assumptions for example null or too-small
1452     * elementData array given its size(), that could only have
1453     * occurred due to interference. This allows the inner loop
1454     * of forEach to run without any further checks, and
1455     * simplifies lambda-resolution. While this does entail a
1456     * number of checks, note that in the common case of
1457     * list.stream().forEach(a), no checks or other computation
1458     * occur anywhere other than inside forEach itself. The other
1459     * less-often-used methods cannot take advantage of most of
1460     * these streamlinings.
1461     */
1462    
1463     private int index; // current index, modified on advance/split
1464     private int fence; // -1 until used; then one past last index
1465     private int expectedModCount; // initialized when fence set
1466    
1467 jsr166 1.49 /** Creates new spliterator covering the given range. */
1468 jsr166 1.45 ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1469 jsr166 1.33 this.index = origin;
1470     this.fence = fence;
1471     this.expectedModCount = expectedModCount;
1472     }
1473    
1474     private int getFence() { // initialize fence to size on first use
1475     int hi; // (a specialized variant appears in method forEach)
1476     if ((hi = fence) < 0) {
1477 jsr166 1.45 expectedModCount = modCount;
1478     hi = fence = size;
1479 jsr166 1.33 }
1480     return hi;
1481     }
1482    
1483 jsr166 1.45 public ArrayListSpliterator trySplit() {
1484 jsr166 1.33 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1485     return (lo >= mid) ? null : // divide range in half unless too small
1486 jsr166 1.45 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1487 jsr166 1.33 }
1488    
1489     public boolean tryAdvance(Consumer<? super E> action) {
1490     if (action == null)
1491     throw new NullPointerException();
1492     int hi = getFence(), i = index;
1493     if (i < hi) {
1494     index = i + 1;
1495 jsr166 1.45 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1496 jsr166 1.33 action.accept(e);
1497 jsr166 1.45 if (modCount != expectedModCount)
1498 jsr166 1.33 throw new ConcurrentModificationException();
1499     return true;
1500     }
1501     return false;
1502     }
1503    
1504     public void forEachRemaining(Consumer<? super E> action) {
1505     int i, hi, mc; // hoist accesses and checks from loop
1506 jsr166 1.45 Object[] a;
1507 jsr166 1.33 if (action == null)
1508     throw new NullPointerException();
1509 jsr166 1.45 if ((a = elementData) != null) {
1510 jsr166 1.33 if ((hi = fence) < 0) {
1511 jsr166 1.45 mc = modCount;
1512     hi = size;
1513 jsr166 1.33 }
1514     else
1515     mc = expectedModCount;
1516     if ((i = index) >= 0 && (index = hi) <= a.length) {
1517     for (; i < hi; ++i) {
1518     @SuppressWarnings("unchecked") E e = (E) a[i];
1519     action.accept(e);
1520     }
1521 jsr166 1.45 if (modCount == mc)
1522 jsr166 1.33 return;
1523     }
1524     }
1525     throw new ConcurrentModificationException();
1526     }
1527    
1528     public long estimateSize() {
1529 jsr166 1.45 return getFence() - index;
1530 jsr166 1.33 }
1531    
1532     public int characteristics() {
1533     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1534     }
1535     }
1536    
1537 jsr166 1.39 // A tiny bit set implementation
1538    
1539     private static long[] nBits(int n) {
1540     return new long[((n - 1) >> 6) + 1];
1541     }
1542     private static void setBit(long[] bits, int i) {
1543     bits[i >> 6] |= 1L << i;
1544     }
1545     private static boolean isClear(long[] bits, int i) {
1546     return (bits[i >> 6] & (1L << i)) == 0;
1547     }
1548    
1549 jsr166 1.48 /**
1550     * @throws NullPointerException {@inheritDoc}
1551     */
1552 jsr166 1.33 @Override
1553 jsr166 1.40 public boolean removeIf(Predicate<? super E> filter) {
1554     return removeIf(filter, 0, size);
1555     }
1556    
1557 jsr166 1.43 /**
1558     * Removes all elements satisfying the given predicate, from index
1559     * i (inclusive) to index end (exclusive).
1560     */
1561     boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1562 jsr166 1.33 Objects.requireNonNull(filter);
1563 jsr166 1.36 int expectedModCount = modCount;
1564     final Object[] es = elementData;
1565 jsr166 1.37 // Optimize for initial run of survivors
1566 jsr166 1.43 for (; i < end && !filter.test(elementAt(es, i)); i++)
1567 jsr166 1.38 ;
1568 jsr166 1.39 // Tolerate predicates that reentrantly access the collection for
1569     // read (but writers still get CME), so traverse once to find
1570     // elements to delete, a second pass to physically expunge.
1571 jsr166 1.43 if (i < end) {
1572 jsr166 1.39 final int beg = i;
1573     final long[] deathRow = nBits(end - beg);
1574     deathRow[0] = 1L; // set bit 0
1575     for (i = beg + 1; i < end; i++)
1576     if (filter.test(elementAt(es, i)))
1577     setBit(deathRow, i - beg);
1578 jsr166 1.40 if (modCount != expectedModCount)
1579     throw new ConcurrentModificationException();
1580 jsr166 1.43 modCount++;
1581 jsr166 1.39 int w = beg;
1582     for (i = beg; i < end; i++)
1583     if (isClear(deathRow, i - beg))
1584     es[w++] = es[i];
1585 jsr166 1.47 shiftTailOverGap(es, w, end);
1586 jsr166 1.43 // checkInvariants();
1587     return true;
1588     } else {
1589     if (modCount != expectedModCount)
1590     throw new ConcurrentModificationException();
1591     // checkInvariants();
1592     return false;
1593 jsr166 1.33 }
1594     }
1595    
1596     @Override
1597     public void replaceAll(UnaryOperator<E> operator) {
1598 jsr166 1.58 replaceAllRange(operator, 0, size);
1599     }
1600    
1601     private void replaceAllRange(UnaryOperator<E> operator, int from, int to) {
1602 jsr166 1.33 Objects.requireNonNull(operator);
1603     final int expectedModCount = modCount;
1604 jsr166 1.39 final Object[] es = elementData;
1605 jsr166 1.58 for (int i = from; modCount == expectedModCount && i < to; i++)
1606 jsr166 1.39 es[i] = operator.apply(elementAt(es, i));
1607 jsr166 1.41 if (modCount != expectedModCount)
1608 jsr166 1.33 throw new ConcurrentModificationException();
1609 jsr166 1.41 // checkInvariants();
1610 jsr166 1.33 }
1611    
1612     @Override
1613     @SuppressWarnings("unchecked")
1614     public void sort(Comparator<? super E> c) {
1615     final int expectedModCount = modCount;
1616     Arrays.sort((E[]) elementData, 0, size, c);
1617 jsr166 1.41 if (modCount != expectedModCount)
1618 jsr166 1.33 throw new ConcurrentModificationException();
1619     modCount++;
1620 jsr166 1.41 // checkInvariants();
1621     }
1622    
1623     void checkInvariants() {
1624     // assert size >= 0;
1625     // assert size == elementData.length || elementData[size] == null;
1626 jsr166 1.25 }
1627 dl 1.1 }