ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.33
Committed: Mon Oct 17 21:46:27 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.32: +647 -184 lines
Log Message:
add ArrayList to improve removeIf

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * Resizable-array implementation of the {@code List} interface. Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}. In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list. (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time. All of the other operations
44 * run in linear time (roughly speaking). The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 * the size of the array used to store the elements in the list. It is always
49 * at least as large as the list size. As elements are added to an ArrayList,
50 * its capacity grows automatically. The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation. This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally. (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.) This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method. This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}. Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification. Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness: <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author Josh Bloch
100 * @author Neal Gafter
101 * @see Collection
102 * @see List
103 * @see LinkedList
104 * @see Vector
105 * @since 1.2
106 */
107
108 public class ArrayList<E> extends AbstractList<E>
109 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
110 {
111 private static final long serialVersionUID = 8683452581122892189L;
112
113 /**
114 * Default initial capacity.
115 */
116 private static final int DEFAULT_CAPACITY = 10;
117
118 /**
119 * Shared empty array instance used for empty instances.
120 */
121 private static final Object[] EMPTY_ELEMENTDATA = {};
122
123 /**
124 * Shared empty array instance used for default sized empty instances. We
125 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
126 * first element is added.
127 */
128 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
129
130 /**
131 * The array buffer into which the elements of the ArrayList are stored.
132 * The capacity of the ArrayList is the length of this array buffer. Any
133 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
134 * will be expanded to DEFAULT_CAPACITY when the first element is added.
135 */
136 transient Object[] elementData; // non-private to simplify nested class access
137
138 /**
139 * The size of the ArrayList (the number of elements it contains).
140 *
141 * @serial
142 */
143 private int size;
144
145 /**
146 * Constructs an empty list with the specified initial capacity.
147 *
148 * @param initialCapacity the initial capacity of the list
149 * @throws IllegalArgumentException if the specified initial capacity
150 * is negative
151 */
152 public ArrayList(int initialCapacity) {
153 if (initialCapacity > 0) {
154 this.elementData = new Object[initialCapacity];
155 } else if (initialCapacity == 0) {
156 this.elementData = EMPTY_ELEMENTDATA;
157 } else {
158 throw new IllegalArgumentException("Illegal Capacity: "+
159 initialCapacity);
160 }
161 }
162
163 /**
164 * Constructs an empty list with an initial capacity of ten.
165 */
166 public ArrayList() {
167 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
168 }
169
170 /**
171 * Constructs a list containing the elements of the specified
172 * collection, in the order they are returned by the collection's
173 * iterator.
174 *
175 * @param c the collection whose elements are to be placed into this list
176 * @throws NullPointerException if the specified collection is null
177 */
178 public ArrayList(Collection<? extends E> c) {
179 elementData = c.toArray();
180 if ((size = elementData.length) != 0) {
181 // defend against c.toArray (incorrectly) not returning Object[]
182 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
183 if (elementData.getClass() != Object[].class)
184 elementData = Arrays.copyOf(elementData, size, Object[].class);
185 } else {
186 // replace with empty array.
187 this.elementData = EMPTY_ELEMENTDATA;
188 }
189 }
190
191 /**
192 * Trims the capacity of this {@code ArrayList} instance to be the
193 * list's current size. An application can use this operation to minimize
194 * the storage of an {@code ArrayList} instance.
195 */
196 public void trimToSize() {
197 modCount++;
198 if (size < elementData.length) {
199 elementData = (size == 0)
200 ? EMPTY_ELEMENTDATA
201 : Arrays.copyOf(elementData, size);
202 }
203 }
204
205 /**
206 * Increases the capacity of this {@code ArrayList} instance, if
207 * necessary, to ensure that it can hold at least the number of elements
208 * specified by the minimum capacity argument.
209 *
210 * @param minCapacity the desired minimum capacity
211 */
212 public void ensureCapacity(int minCapacity) {
213 if (minCapacity > elementData.length
214 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
215 && minCapacity <= DEFAULT_CAPACITY)) {
216 modCount++;
217 grow(minCapacity);
218 }
219 }
220
221 /**
222 * The maximum size of array to allocate (unless necessary).
223 * Some VMs reserve some header words in an array.
224 * Attempts to allocate larger arrays may result in
225 * OutOfMemoryError: Requested array size exceeds VM limit
226 */
227 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
228
229 /**
230 * Increases the capacity to ensure that it can hold at least the
231 * number of elements specified by the minimum capacity argument.
232 *
233 * @param minCapacity the desired minimum capacity
234 * @throws OutOfMemoryError if minCapacity is less than zero
235 */
236 private Object[] grow(int minCapacity) {
237 return elementData = Arrays.copyOf(elementData,
238 newCapacity(minCapacity));
239 }
240
241 private Object[] grow() {
242 return grow(size + 1);
243 }
244
245 /**
246 * Returns a capacity at least as large as the given minimum capacity.
247 * Returns the current capacity increased by 50% if that suffices.
248 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
249 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
250 *
251 * @param minCapacity the desired minimum capacity
252 * @throws OutOfMemoryError if minCapacity is less than zero
253 */
254 private int newCapacity(int minCapacity) {
255 // overflow-conscious code
256 int oldCapacity = elementData.length;
257 int newCapacity = oldCapacity + (oldCapacity >> 1);
258 if (newCapacity - minCapacity <= 0) {
259 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
260 return Math.max(DEFAULT_CAPACITY, minCapacity);
261 if (minCapacity < 0) // overflow
262 throw new OutOfMemoryError();
263 return minCapacity;
264 }
265 return (newCapacity - MAX_ARRAY_SIZE <= 0)
266 ? newCapacity
267 : hugeCapacity(minCapacity);
268 }
269
270 private static int hugeCapacity(int minCapacity) {
271 if (minCapacity < 0) // overflow
272 throw new OutOfMemoryError();
273 return (minCapacity > MAX_ARRAY_SIZE)
274 ? Integer.MAX_VALUE
275 : MAX_ARRAY_SIZE;
276 }
277
278 /**
279 * Returns the number of elements in this list.
280 *
281 * @return the number of elements in this list
282 */
283 public int size() {
284 return size;
285 }
286
287 /**
288 * Returns {@code true} if this list contains no elements.
289 *
290 * @return {@code true} if this list contains no elements
291 */
292 public boolean isEmpty() {
293 return size == 0;
294 }
295
296 /**
297 * Returns {@code true} if this list contains the specified element.
298 * More formally, returns {@code true} if and only if this list contains
299 * at least one element {@code e} such that
300 * {@code Objects.equals(o, e)}.
301 *
302 * @param o element whose presence in this list is to be tested
303 * @return {@code true} if this list contains the specified element
304 */
305 public boolean contains(Object o) {
306 return indexOf(o) >= 0;
307 }
308
309 /**
310 * Returns the index of the first occurrence of the specified element
311 * in this list, or -1 if this list does not contain the element.
312 * More formally, returns the lowest index {@code i} such that
313 * {@code Objects.equals(o, get(i))},
314 * or -1 if there is no such index.
315 */
316 public int indexOf(Object o) {
317 if (o == null) {
318 for (int i = 0; i < size; i++)
319 if (elementData[i]==null)
320 return i;
321 } else {
322 for (int i = 0; i < size; i++)
323 if (o.equals(elementData[i]))
324 return i;
325 }
326 return -1;
327 }
328
329 /**
330 * Returns the index of the last occurrence of the specified element
331 * in this list, or -1 if this list does not contain the element.
332 * More formally, returns the highest index {@code i} such that
333 * {@code Objects.equals(o, get(i))},
334 * or -1 if there is no such index.
335 */
336 public int lastIndexOf(Object o) {
337 if (o == null) {
338 for (int i = size-1; i >= 0; i--)
339 if (elementData[i]==null)
340 return i;
341 } else {
342 for (int i = size-1; i >= 0; i--)
343 if (o.equals(elementData[i]))
344 return i;
345 }
346 return -1;
347 }
348
349 /**
350 * Returns a shallow copy of this {@code ArrayList} instance. (The
351 * elements themselves are not copied.)
352 *
353 * @return a clone of this {@code ArrayList} instance
354 */
355 public Object clone() {
356 try {
357 ArrayList<?> v = (ArrayList<?>) super.clone();
358 v.elementData = Arrays.copyOf(elementData, size);
359 v.modCount = 0;
360 return v;
361 } catch (CloneNotSupportedException e) {
362 // this shouldn't happen, since we are Cloneable
363 throw new InternalError(e);
364 }
365 }
366
367 /**
368 * Returns an array containing all of the elements in this list
369 * in proper sequence (from first to last element).
370 *
371 * <p>The returned array will be "safe" in that no references to it are
372 * maintained by this list. (In other words, this method must allocate
373 * a new array). The caller is thus free to modify the returned array.
374 *
375 * <p>This method acts as bridge between array-based and collection-based
376 * APIs.
377 *
378 * @return an array containing all of the elements in this list in
379 * proper sequence
380 */
381 public Object[] toArray() {
382 return Arrays.copyOf(elementData, size);
383 }
384
385 /**
386 * Returns an array containing all of the elements in this list in proper
387 * sequence (from first to last element); the runtime type of the returned
388 * array is that of the specified array. If the list fits in the
389 * specified array, it is returned therein. Otherwise, a new array is
390 * allocated with the runtime type of the specified array and the size of
391 * this list.
392 *
393 * <p>If the list fits in the specified array with room to spare
394 * (i.e., the array has more elements than the list), the element in
395 * the array immediately following the end of the collection is set to
396 * {@code null}. (This is useful in determining the length of the
397 * list <i>only</i> if the caller knows that the list does not contain
398 * any null elements.)
399 *
400 * @param a the array into which the elements of the list are to
401 * be stored, if it is big enough; otherwise, a new array of the
402 * same runtime type is allocated for this purpose.
403 * @return an array containing the elements of the list
404 * @throws ArrayStoreException if the runtime type of the specified array
405 * is not a supertype of the runtime type of every element in
406 * this list
407 * @throws NullPointerException if the specified array is null
408 */
409 @SuppressWarnings("unchecked")
410 public <T> T[] toArray(T[] a) {
411 if (a.length < size)
412 // Make a new array of a's runtime type, but my contents:
413 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
414 System.arraycopy(elementData, 0, a, 0, size);
415 if (a.length > size)
416 a[size] = null;
417 return a;
418 }
419
420 // Positional Access Operations
421
422 @SuppressWarnings("unchecked")
423 E elementData(int index) {
424 return (E) elementData[index];
425 }
426
427 /**
428 * Returns the element at the specified position in this list.
429 *
430 * @param index index of the element to return
431 * @return the element at the specified position in this list
432 * @throws IndexOutOfBoundsException {@inheritDoc}
433 */
434 public E get(int index) {
435 Objects.checkIndex(index, size);
436 return elementData(index);
437 }
438
439 /**
440 * Replaces the element at the specified position in this list with
441 * the specified element.
442 *
443 * @param index index of the element to replace
444 * @param element element to be stored at the specified position
445 * @return the element previously at the specified position
446 * @throws IndexOutOfBoundsException {@inheritDoc}
447 */
448 public E set(int index, E element) {
449 Objects.checkIndex(index, size);
450 E oldValue = elementData(index);
451 elementData[index] = element;
452 return oldValue;
453 }
454
455 /**
456 * This helper method split out from add(E) to keep method
457 * bytecode size under 35 (the -XX:MaxInlineSize default value),
458 * which helps when add(E) is called in a C1-compiled loop.
459 */
460 private void add(E e, Object[] elementData, int s) {
461 if (s == elementData.length)
462 elementData = grow();
463 elementData[s] = e;
464 size = s + 1;
465 }
466
467 /**
468 * Appends the specified element to the end of this list.
469 *
470 * @param e element to be appended to this list
471 * @return {@code true} (as specified by {@link Collection#add})
472 */
473 public boolean add(E e) {
474 modCount++;
475 add(e, elementData, size);
476 return true;
477 }
478
479 /**
480 * Inserts the specified element at the specified position in this
481 * list. Shifts the element currently at that position (if any) and
482 * any subsequent elements to the right (adds one to their indices).
483 *
484 * @param index index at which the specified element is to be inserted
485 * @param element element to be inserted
486 * @throws IndexOutOfBoundsException {@inheritDoc}
487 */
488 public void add(int index, E element) {
489 rangeCheckForAdd(index);
490 modCount++;
491 final int s;
492 Object[] elementData;
493 if ((s = size) == (elementData = this.elementData).length)
494 elementData = grow();
495 System.arraycopy(elementData, index,
496 elementData, index + 1,
497 s - index);
498 elementData[index] = element;
499 size = s + 1;
500 }
501
502 /**
503 * Removes the element at the specified position in this list.
504 * Shifts any subsequent elements to the left (subtracts one from their
505 * indices).
506 *
507 * @param index the index of the element to be removed
508 * @return the element that was removed from the list
509 * @throws IndexOutOfBoundsException {@inheritDoc}
510 */
511 public E remove(int index) {
512 Objects.checkIndex(index, size);
513
514 modCount++;
515 E oldValue = elementData(index);
516
517 int numMoved = size - index - 1;
518 if (numMoved > 0)
519 System.arraycopy(elementData, index+1, elementData, index,
520 numMoved);
521 elementData[--size] = null; // clear to let GC do its work
522
523 return oldValue;
524 }
525
526 /**
527 * Removes the first occurrence of the specified element from this list,
528 * if it is present. If the list does not contain the element, it is
529 * unchanged. More formally, removes the element with the lowest index
530 * {@code i} such that
531 * {@code Objects.equals(o, get(i))}
532 * (if such an element exists). Returns {@code true} if this list
533 * contained the specified element (or equivalently, if this list
534 * changed as a result of the call).
535 *
536 * @param o element to be removed from this list, if present
537 * @return {@code true} if this list contained the specified element
538 */
539 public boolean remove(Object o) {
540 if (o == null) {
541 for (int index = 0; index < size; index++)
542 if (elementData[index] == null) {
543 fastRemove(index);
544 return true;
545 }
546 } else {
547 for (int index = 0; index < size; index++)
548 if (o.equals(elementData[index])) {
549 fastRemove(index);
550 return true;
551 }
552 }
553 return false;
554 }
555
556 /*
557 * Private remove method that skips bounds checking and does not
558 * return the value removed.
559 */
560 private void fastRemove(int index) {
561 modCount++;
562 int numMoved = size - index - 1;
563 if (numMoved > 0)
564 System.arraycopy(elementData, index+1, elementData, index,
565 numMoved);
566 elementData[--size] = null; // clear to let GC do its work
567 }
568
569 /**
570 * Removes all of the elements from this list. The list will
571 * be empty after this call returns.
572 */
573 public void clear() {
574 modCount++;
575
576 // clear to let GC do its work
577 for (int i = 0; i < size; i++)
578 elementData[i] = null;
579
580 size = 0;
581 }
582
583 /**
584 * Appends all of the elements in the specified collection to the end of
585 * this list, in the order that they are returned by the
586 * specified collection's Iterator. The behavior of this operation is
587 * undefined if the specified collection is modified while the operation
588 * is in progress. (This implies that the behavior of this call is
589 * undefined if the specified collection is this list, and this
590 * list is nonempty.)
591 *
592 * @param c collection containing elements to be added to this list
593 * @return {@code true} if this list changed as a result of the call
594 * @throws NullPointerException if the specified collection is null
595 */
596 public boolean addAll(Collection<? extends E> c) {
597 Object[] a = c.toArray();
598 modCount++;
599 int numNew = a.length;
600 if (numNew == 0)
601 return false;
602 Object[] elementData;
603 final int s;
604 if (numNew > (elementData = this.elementData).length - (s = size))
605 elementData = grow(s + numNew);
606 System.arraycopy(a, 0, elementData, s, numNew);
607 size = s + numNew;
608 return true;
609 }
610
611 /**
612 * Inserts all of the elements in the specified collection into this
613 * list, starting at the specified position. Shifts the element
614 * currently at that position (if any) and any subsequent elements to
615 * the right (increases their indices). The new elements will appear
616 * in the list in the order that they are returned by the
617 * specified collection's iterator.
618 *
619 * @param index index at which to insert the first element from the
620 * specified collection
621 * @param c collection containing elements to be added to this list
622 * @return {@code true} if this list changed as a result of the call
623 * @throws IndexOutOfBoundsException {@inheritDoc}
624 * @throws NullPointerException if the specified collection is null
625 */
626 public boolean addAll(int index, Collection<? extends E> c) {
627 rangeCheckForAdd(index);
628
629 Object[] a = c.toArray();
630 modCount++;
631 int numNew = a.length;
632 if (numNew == 0)
633 return false;
634 Object[] elementData;
635 final int s;
636 if (numNew > (elementData = this.elementData).length - (s = size))
637 elementData = grow(s + numNew);
638
639 int numMoved = s - index;
640 if (numMoved > 0)
641 System.arraycopy(elementData, index,
642 elementData, index + numNew,
643 numMoved);
644 System.arraycopy(a, 0, elementData, index, numNew);
645 size = s + numNew;
646 return true;
647 }
648
649 /**
650 * Removes from this list all of the elements whose index is between
651 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
652 * Shifts any succeeding elements to the left (reduces their index).
653 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
654 * (If {@code toIndex==fromIndex}, this operation has no effect.)
655 *
656 * @throws IndexOutOfBoundsException if {@code fromIndex} or
657 * {@code toIndex} is out of range
658 * ({@code fromIndex < 0 ||
659 * toIndex > size() ||
660 * toIndex < fromIndex})
661 */
662 protected void removeRange(int fromIndex, int toIndex) {
663 if (fromIndex > toIndex) {
664 throw new IndexOutOfBoundsException(
665 outOfBoundsMsg(fromIndex, toIndex));
666 }
667 modCount++;
668 int numMoved = size - toIndex;
669 System.arraycopy(elementData, toIndex, elementData, fromIndex,
670 numMoved);
671
672 // clear to let GC do its work
673 int newSize = size - (toIndex-fromIndex);
674 for (int i = newSize; i < size; i++) {
675 elementData[i] = null;
676 }
677 size = newSize;
678 }
679
680 /**
681 * A version of rangeCheck used by add and addAll.
682 */
683 private void rangeCheckForAdd(int index) {
684 if (index > size || index < 0)
685 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
686 }
687
688 /**
689 * Constructs an IndexOutOfBoundsException detail message.
690 * Of the many possible refactorings of the error handling code,
691 * this "outlining" performs best with both server and client VMs.
692 */
693 private String outOfBoundsMsg(int index) {
694 return "Index: "+index+", Size: "+size;
695 }
696
697 /**
698 * A version used in checking (fromIndex > toIndex) condition
699 */
700 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
701 return "From Index: " + fromIndex + " > To Index: " + toIndex;
702 }
703
704 /**
705 * Removes from this list all of its elements that are contained in the
706 * specified collection.
707 *
708 * @param c collection containing elements to be removed from this list
709 * @return {@code true} if this list changed as a result of the call
710 * @throws ClassCastException if the class of an element of this list
711 * is incompatible with the specified collection
712 * (<a href="Collection.html#optional-restrictions">optional</a>)
713 * @throws NullPointerException if this list contains a null element and the
714 * specified collection does not permit null elements
715 * (<a href="Collection.html#optional-restrictions">optional</a>),
716 * or if the specified collection is null
717 * @see Collection#contains(Object)
718 */
719 public boolean removeAll(Collection<?> c) {
720 Objects.requireNonNull(c);
721 return batchRemove(c, false);
722 }
723
724 /**
725 * Retains only the elements in this list that are contained in the
726 * specified collection. In other words, removes from this list all
727 * of its elements that are not contained in the specified collection.
728 *
729 * @param c collection containing elements to be retained in this list
730 * @return {@code true} if this list changed as a result of the call
731 * @throws ClassCastException if the class of an element of this list
732 * is incompatible with the specified collection
733 * (<a href="Collection.html#optional-restrictions">optional</a>)
734 * @throws NullPointerException if this list contains a null element and the
735 * specified collection does not permit null elements
736 * (<a href="Collection.html#optional-restrictions">optional</a>),
737 * or if the specified collection is null
738 * @see Collection#contains(Object)
739 */
740 public boolean retainAll(Collection<?> c) {
741 Objects.requireNonNull(c);
742 return batchRemove(c, true);
743 }
744
745 private boolean batchRemove(Collection<?> c, boolean complement) {
746 final Object[] elementData = this.elementData;
747 int r = 0, w = 0;
748 boolean modified = false;
749 try {
750 for (; r < size; r++)
751 if (c.contains(elementData[r]) == complement)
752 elementData[w++] = elementData[r];
753 } finally {
754 // Preserve behavioral compatibility with AbstractCollection,
755 // even if c.contains() throws.
756 if (r != size) {
757 System.arraycopy(elementData, r,
758 elementData, w,
759 size - r);
760 w += size - r;
761 }
762 if (w != size) {
763 // clear to let GC do its work
764 for (int i = w; i < size; i++)
765 elementData[i] = null;
766 modCount += size - w;
767 size = w;
768 modified = true;
769 }
770 }
771 return modified;
772 }
773
774 /**
775 * Save the state of the {@code ArrayList} instance to a stream (that
776 * is, serialize it).
777 *
778 * @serialData The length of the array backing the {@code ArrayList}
779 * instance is emitted (int), followed by all of its elements
780 * (each an {@code Object}) in the proper order.
781 */
782 private void writeObject(java.io.ObjectOutputStream s)
783 throws java.io.IOException{
784 // Write out element count, and any hidden stuff
785 int expectedModCount = modCount;
786 s.defaultWriteObject();
787
788 // Write out size as capacity for behavioural compatibility with clone()
789 s.writeInt(size);
790
791 // Write out all elements in the proper order.
792 for (int i=0; i<size; i++) {
793 s.writeObject(elementData[i]);
794 }
795
796 if (modCount != expectedModCount) {
797 throw new ConcurrentModificationException();
798 }
799 }
800
801 /**
802 * Reconstitute the {@code ArrayList} instance from a stream (that is,
803 * deserialize it).
804 */
805 private void readObject(java.io.ObjectInputStream s)
806 throws java.io.IOException, ClassNotFoundException {
807
808 // Read in size, and any hidden stuff
809 s.defaultReadObject();
810
811 // Read in capacity
812 s.readInt(); // ignored
813
814 if (size > 0) {
815 // like clone(), allocate array based upon size not capacity
816 Object[] elements = new Object[size];
817
818 // Read in all elements in the proper order.
819 for (int i = 0; i < size; i++) {
820 elements[i] = s.readObject();
821 }
822
823 elementData = elements;
824 } else if (size == 0) {
825 elementData = EMPTY_ELEMENTDATA;
826 } else {
827 throw new java.io.InvalidObjectException("Invalid size: " + size);
828 }
829 }
830
831 /**
832 * Returns a list iterator over the elements in this list (in proper
833 * sequence), starting at the specified position in the list.
834 * The specified index indicates the first element that would be
835 * returned by an initial call to {@link ListIterator#next next}.
836 * An initial call to {@link ListIterator#previous previous} would
837 * return the element with the specified index minus one.
838 *
839 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
840 *
841 * @throws IndexOutOfBoundsException {@inheritDoc}
842 */
843 public ListIterator<E> listIterator(int index) {
844 rangeCheckForAdd(index);
845 return new ListItr(index);
846 }
847
848 /**
849 * Returns a list iterator over the elements in this list (in proper
850 * sequence).
851 *
852 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
853 *
854 * @see #listIterator(int)
855 */
856 public ListIterator<E> listIterator() {
857 return new ListItr(0);
858 }
859
860 /**
861 * Returns an iterator over the elements in this list in proper sequence.
862 *
863 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
864 *
865 * @return an iterator over the elements in this list in proper sequence
866 */
867 public Iterator<E> iterator() {
868 return new Itr();
869 }
870
871 /**
872 * An optimized version of AbstractList.Itr
873 */
874 private class Itr implements Iterator<E> {
875 int cursor; // index of next element to return
876 int lastRet = -1; // index of last element returned; -1 if no such
877 int expectedModCount = modCount;
878
879 // prevent creating a synthetic constructor
880 Itr() {}
881
882 public boolean hasNext() {
883 return cursor != size;
884 }
885
886 @SuppressWarnings("unchecked")
887 public E next() {
888 checkForComodification();
889 int i = cursor;
890 if (i >= size)
891 throw new NoSuchElementException();
892 Object[] elementData = ArrayList.this.elementData;
893 if (i >= elementData.length)
894 throw new ConcurrentModificationException();
895 cursor = i + 1;
896 return (E) elementData[lastRet = i];
897 }
898
899 public void remove() {
900 if (lastRet < 0)
901 throw new IllegalStateException();
902 checkForComodification();
903
904 try {
905 ArrayList.this.remove(lastRet);
906 cursor = lastRet;
907 lastRet = -1;
908 expectedModCount = modCount;
909 } catch (IndexOutOfBoundsException ex) {
910 throw new ConcurrentModificationException();
911 }
912 }
913
914 @Override
915 @SuppressWarnings("unchecked")
916 public void forEachRemaining(Consumer<? super E> consumer) {
917 Objects.requireNonNull(consumer);
918 final int size = ArrayList.this.size;
919 int i = cursor;
920 if (i >= size) {
921 return;
922 }
923 final Object[] elementData = ArrayList.this.elementData;
924 if (i >= elementData.length) {
925 throw new ConcurrentModificationException();
926 }
927 while (i != size && modCount == expectedModCount) {
928 consumer.accept((E) elementData[i++]);
929 }
930 // update once at end of iteration to reduce heap write traffic
931 cursor = i;
932 lastRet = i - 1;
933 checkForComodification();
934 }
935
936 final void checkForComodification() {
937 if (modCount != expectedModCount)
938 throw new ConcurrentModificationException();
939 }
940 }
941
942 /**
943 * An optimized version of AbstractList.ListItr
944 */
945 private class ListItr extends Itr implements ListIterator<E> {
946 ListItr(int index) {
947 super();
948 cursor = index;
949 }
950
951 public boolean hasPrevious() {
952 return cursor != 0;
953 }
954
955 public int nextIndex() {
956 return cursor;
957 }
958
959 public int previousIndex() {
960 return cursor - 1;
961 }
962
963 @SuppressWarnings("unchecked")
964 public E previous() {
965 checkForComodification();
966 int i = cursor - 1;
967 if (i < 0)
968 throw new NoSuchElementException();
969 Object[] elementData = ArrayList.this.elementData;
970 if (i >= elementData.length)
971 throw new ConcurrentModificationException();
972 cursor = i;
973 return (E) elementData[lastRet = i];
974 }
975
976 public void set(E e) {
977 if (lastRet < 0)
978 throw new IllegalStateException();
979 checkForComodification();
980
981 try {
982 ArrayList.this.set(lastRet, e);
983 } catch (IndexOutOfBoundsException ex) {
984 throw new ConcurrentModificationException();
985 }
986 }
987
988 public void add(E e) {
989 checkForComodification();
990
991 try {
992 int i = cursor;
993 ArrayList.this.add(i, e);
994 cursor = i + 1;
995 lastRet = -1;
996 expectedModCount = modCount;
997 } catch (IndexOutOfBoundsException ex) {
998 throw new ConcurrentModificationException();
999 }
1000 }
1001 }
1002
1003 /**
1004 * Returns a view of the portion of this list between the specified
1005 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1006 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1007 * empty.) The returned list is backed by this list, so non-structural
1008 * changes in the returned list are reflected in this list, and vice-versa.
1009 * The returned list supports all of the optional list operations.
1010 *
1011 * <p>This method eliminates the need for explicit range operations (of
1012 * the sort that commonly exist for arrays). Any operation that expects
1013 * a list can be used as a range operation by passing a subList view
1014 * instead of a whole list. For example, the following idiom
1015 * removes a range of elements from a list:
1016 * <pre>
1017 * list.subList(from, to).clear();
1018 * </pre>
1019 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1020 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1021 * {@link Collections} class can be applied to a subList.
1022 *
1023 * <p>The semantics of the list returned by this method become undefined if
1024 * the backing list (i.e., this list) is <i>structurally modified</i> in
1025 * any way other than via the returned list. (Structural modifications are
1026 * those that change the size of this list, or otherwise perturb it in such
1027 * a fashion that iterations in progress may yield incorrect results.)
1028 *
1029 * @throws IndexOutOfBoundsException {@inheritDoc}
1030 * @throws IllegalArgumentException {@inheritDoc}
1031 */
1032 public List<E> subList(int fromIndex, int toIndex) {
1033 subListRangeCheck(fromIndex, toIndex, size);
1034 return new SubList<>(this, fromIndex, toIndex);
1035 }
1036
1037 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1038 private final ArrayList<E> root;
1039 private final SubList<E> parent;
1040 private final int offset;
1041 private int size;
1042
1043 /**
1044 * Constructs a sublist of an arbitrary ArrayList.
1045 */
1046 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1047 this.root = root;
1048 this.parent = null;
1049 this.offset = fromIndex;
1050 this.size = toIndex - fromIndex;
1051 this.modCount = root.modCount;
1052 }
1053
1054 /**
1055 * Constructs a sublist of another SubList.
1056 */
1057 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1058 this.root = parent.root;
1059 this.parent = parent;
1060 this.offset = parent.offset + fromIndex;
1061 this.size = toIndex - fromIndex;
1062 this.modCount = root.modCount;
1063 }
1064
1065 public E set(int index, E element) {
1066 Objects.checkIndex(index, size);
1067 checkForComodification();
1068 E oldValue = root.elementData(offset + index);
1069 root.elementData[offset + index] = element;
1070 return oldValue;
1071 }
1072
1073 public E get(int index) {
1074 Objects.checkIndex(index, size);
1075 checkForComodification();
1076 return root.elementData(offset + index);
1077 }
1078
1079 public int size() {
1080 checkForComodification();
1081 return size;
1082 }
1083
1084 public void add(int index, E element) {
1085 rangeCheckForAdd(index);
1086 checkForComodification();
1087 root.add(offset + index, element);
1088 updateSizeAndModCount(1);
1089 }
1090
1091 public E remove(int index) {
1092 Objects.checkIndex(index, size);
1093 checkForComodification();
1094 E result = root.remove(offset + index);
1095 updateSizeAndModCount(-1);
1096 return result;
1097 }
1098
1099 protected void removeRange(int fromIndex, int toIndex) {
1100 checkForComodification();
1101 root.removeRange(offset + fromIndex, offset + toIndex);
1102 updateSizeAndModCount(fromIndex - toIndex);
1103 }
1104
1105 public boolean addAll(Collection<? extends E> c) {
1106 return addAll(this.size, c);
1107 }
1108
1109 public boolean addAll(int index, Collection<? extends E> c) {
1110 rangeCheckForAdd(index);
1111 int cSize = c.size();
1112 if (cSize==0)
1113 return false;
1114 checkForComodification();
1115 root.addAll(offset + index, c);
1116 updateSizeAndModCount(cSize);
1117 return true;
1118 }
1119
1120 public Iterator<E> iterator() {
1121 return listIterator();
1122 }
1123
1124 public ListIterator<E> listIterator(int index) {
1125 checkForComodification();
1126 rangeCheckForAdd(index);
1127
1128 return new ListIterator<E>() {
1129 int cursor = index;
1130 int lastRet = -1;
1131 int expectedModCount = root.modCount;
1132
1133 public boolean hasNext() {
1134 return cursor != SubList.this.size;
1135 }
1136
1137 @SuppressWarnings("unchecked")
1138 public E next() {
1139 checkForComodification();
1140 int i = cursor;
1141 if (i >= SubList.this.size)
1142 throw new NoSuchElementException();
1143 Object[] elementData = root.elementData;
1144 if (offset + i >= elementData.length)
1145 throw new ConcurrentModificationException();
1146 cursor = i + 1;
1147 return (E) elementData[offset + (lastRet = i)];
1148 }
1149
1150 public boolean hasPrevious() {
1151 return cursor != 0;
1152 }
1153
1154 @SuppressWarnings("unchecked")
1155 public E previous() {
1156 checkForComodification();
1157 int i = cursor - 1;
1158 if (i < 0)
1159 throw new NoSuchElementException();
1160 Object[] elementData = root.elementData;
1161 if (offset + i >= elementData.length)
1162 throw new ConcurrentModificationException();
1163 cursor = i;
1164 return (E) elementData[offset + (lastRet = i)];
1165 }
1166
1167 @SuppressWarnings("unchecked")
1168 public void forEachRemaining(Consumer<? super E> consumer) {
1169 Objects.requireNonNull(consumer);
1170 final int size = SubList.this.size;
1171 int i = cursor;
1172 if (i >= size) {
1173 return;
1174 }
1175 final Object[] elementData = root.elementData;
1176 if (offset + i >= elementData.length) {
1177 throw new ConcurrentModificationException();
1178 }
1179 while (i != size && modCount == expectedModCount) {
1180 consumer.accept((E) elementData[offset + (i++)]);
1181 }
1182 // update once at end of iteration to reduce heap write traffic
1183 lastRet = cursor = i;
1184 checkForComodification();
1185 }
1186
1187 public int nextIndex() {
1188 return cursor;
1189 }
1190
1191 public int previousIndex() {
1192 return cursor - 1;
1193 }
1194
1195 public void remove() {
1196 if (lastRet < 0)
1197 throw new IllegalStateException();
1198 checkForComodification();
1199
1200 try {
1201 SubList.this.remove(lastRet);
1202 cursor = lastRet;
1203 lastRet = -1;
1204 expectedModCount = root.modCount;
1205 } catch (IndexOutOfBoundsException ex) {
1206 throw new ConcurrentModificationException();
1207 }
1208 }
1209
1210 public void set(E e) {
1211 if (lastRet < 0)
1212 throw new IllegalStateException();
1213 checkForComodification();
1214
1215 try {
1216 root.set(offset + lastRet, e);
1217 } catch (IndexOutOfBoundsException ex) {
1218 throw new ConcurrentModificationException();
1219 }
1220 }
1221
1222 public void add(E e) {
1223 checkForComodification();
1224
1225 try {
1226 int i = cursor;
1227 SubList.this.add(i, e);
1228 cursor = i + 1;
1229 lastRet = -1;
1230 expectedModCount = root.modCount;
1231 } catch (IndexOutOfBoundsException ex) {
1232 throw new ConcurrentModificationException();
1233 }
1234 }
1235
1236 final void checkForComodification() {
1237 if (root.modCount != expectedModCount)
1238 throw new ConcurrentModificationException();
1239 }
1240 };
1241 }
1242
1243 public List<E> subList(int fromIndex, int toIndex) {
1244 subListRangeCheck(fromIndex, toIndex, size);
1245 return new SubList<>(this, fromIndex, toIndex);
1246 }
1247
1248 private void rangeCheckForAdd(int index) {
1249 if (index < 0 || index > this.size)
1250 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1251 }
1252
1253 private String outOfBoundsMsg(int index) {
1254 return "Index: "+index+", Size: "+this.size;
1255 }
1256
1257 private void checkForComodification() {
1258 if (root.modCount != modCount)
1259 throw new ConcurrentModificationException();
1260 }
1261
1262 private void updateSizeAndModCount(int sizeChange) {
1263 SubList<E> slist = this;
1264 do {
1265 slist.size += sizeChange;
1266 slist.modCount = root.modCount;
1267 slist = slist.parent;
1268 } while (slist != null);
1269 }
1270
1271 public Spliterator<E> spliterator() {
1272 checkForComodification();
1273
1274 // ArrayListSpliterator is not used because late-binding logic
1275 // is different here
1276 return new Spliterator<>() {
1277 private int index = offset; // current index, modified on advance/split
1278 private int fence = -1; // -1 until used; then one past last index
1279 private int expectedModCount; // initialized when fence set
1280
1281 private int getFence() { // initialize fence to size on first use
1282 int hi; // (a specialized variant appears in method forEach)
1283 if ((hi = fence) < 0) {
1284 expectedModCount = modCount;
1285 hi = fence = offset + size;
1286 }
1287 return hi;
1288 }
1289
1290 public ArrayListSpliterator<E> trySplit() {
1291 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1292 // ArrayListSpliterator could be used here as the source is already bound
1293 return (lo >= mid) ? null : // divide range in half unless too small
1294 new ArrayListSpliterator<>(root, lo, index = mid,
1295 expectedModCount);
1296 }
1297
1298 public boolean tryAdvance(Consumer<? super E> action) {
1299 Objects.requireNonNull(action);
1300 int hi = getFence(), i = index;
1301 if (i < hi) {
1302 index = i + 1;
1303 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1304 action.accept(e);
1305 if (root.modCount != expectedModCount)
1306 throw new ConcurrentModificationException();
1307 return true;
1308 }
1309 return false;
1310 }
1311
1312 public void forEachRemaining(Consumer<? super E> action) {
1313 Objects.requireNonNull(action);
1314 int i, hi, mc; // hoist accesses and checks from loop
1315 ArrayList<E> lst = root;
1316 Object[] a;
1317 if ((a = lst.elementData) != null) {
1318 if ((hi = fence) < 0) {
1319 mc = modCount;
1320 hi = offset + size;
1321 }
1322 else
1323 mc = expectedModCount;
1324 if ((i = index) >= 0 && (index = hi) <= a.length) {
1325 for (; i < hi; ++i) {
1326 @SuppressWarnings("unchecked") E e = (E) a[i];
1327 action.accept(e);
1328 }
1329 if (lst.modCount == mc)
1330 return;
1331 }
1332 }
1333 throw new ConcurrentModificationException();
1334 }
1335
1336 public long estimateSize() {
1337 return (long) (getFence() - index);
1338 }
1339
1340 public int characteristics() {
1341 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1342 }
1343 };
1344 }
1345 }
1346
1347 @Override
1348 public void forEach(Consumer<? super E> action) {
1349 Objects.requireNonNull(action);
1350 final int expectedModCount = modCount;
1351 @SuppressWarnings("unchecked")
1352 final E[] elementData = (E[]) this.elementData;
1353 final int size = this.size;
1354 for (int i=0; modCount == expectedModCount && i < size; i++) {
1355 action.accept(elementData[i]);
1356 }
1357 if (modCount != expectedModCount) {
1358 throw new ConcurrentModificationException();
1359 }
1360 }
1361
1362 /**
1363 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1364 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1365 * list.
1366 *
1367 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1368 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1369 * Overriding implementations should document the reporting of additional
1370 * characteristic values.
1371 *
1372 * @return a {@code Spliterator} over the elements in this list
1373 * @since 1.8
1374 */
1375 @Override
1376 public Spliterator<E> spliterator() {
1377 return new ArrayListSpliterator<>(this, 0, -1, 0);
1378 }
1379
1380 /** Index-based split-by-two, lazily initialized Spliterator */
1381 static final class ArrayListSpliterator<E> implements Spliterator<E> {
1382
1383 /*
1384 * If ArrayLists were immutable, or structurally immutable (no
1385 * adds, removes, etc), we could implement their spliterators
1386 * with Arrays.spliterator. Instead we detect as much
1387 * interference during traversal as practical without
1388 * sacrificing much performance. We rely primarily on
1389 * modCounts. These are not guaranteed to detect concurrency
1390 * violations, and are sometimes overly conservative about
1391 * within-thread interference, but detect enough problems to
1392 * be worthwhile in practice. To carry this out, we (1) lazily
1393 * initialize fence and expectedModCount until the latest
1394 * point that we need to commit to the state we are checking
1395 * against; thus improving precision. (This doesn't apply to
1396 * SubLists, that create spliterators with current non-lazy
1397 * values). (2) We perform only a single
1398 * ConcurrentModificationException check at the end of forEach
1399 * (the most performance-sensitive method). When using forEach
1400 * (as opposed to iterators), we can normally only detect
1401 * interference after actions, not before. Further
1402 * CME-triggering checks apply to all other possible
1403 * violations of assumptions for example null or too-small
1404 * elementData array given its size(), that could only have
1405 * occurred due to interference. This allows the inner loop
1406 * of forEach to run without any further checks, and
1407 * simplifies lambda-resolution. While this does entail a
1408 * number of checks, note that in the common case of
1409 * list.stream().forEach(a), no checks or other computation
1410 * occur anywhere other than inside forEach itself. The other
1411 * less-often-used methods cannot take advantage of most of
1412 * these streamlinings.
1413 */
1414
1415 private final ArrayList<E> list;
1416 private int index; // current index, modified on advance/split
1417 private int fence; // -1 until used; then one past last index
1418 private int expectedModCount; // initialized when fence set
1419
1420 /** Create new spliterator covering the given range */
1421 ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1422 int expectedModCount) {
1423 this.list = list; // OK if null unless traversed
1424 this.index = origin;
1425 this.fence = fence;
1426 this.expectedModCount = expectedModCount;
1427 }
1428
1429 private int getFence() { // initialize fence to size on first use
1430 int hi; // (a specialized variant appears in method forEach)
1431 ArrayList<E> lst;
1432 if ((hi = fence) < 0) {
1433 if ((lst = list) == null)
1434 hi = fence = 0;
1435 else {
1436 expectedModCount = lst.modCount;
1437 hi = fence = lst.size;
1438 }
1439 }
1440 return hi;
1441 }
1442
1443 public ArrayListSpliterator<E> trySplit() {
1444 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1445 return (lo >= mid) ? null : // divide range in half unless too small
1446 new ArrayListSpliterator<>(list, lo, index = mid,
1447 expectedModCount);
1448 }
1449
1450 public boolean tryAdvance(Consumer<? super E> action) {
1451 if (action == null)
1452 throw new NullPointerException();
1453 int hi = getFence(), i = index;
1454 if (i < hi) {
1455 index = i + 1;
1456 @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1457 action.accept(e);
1458 if (list.modCount != expectedModCount)
1459 throw new ConcurrentModificationException();
1460 return true;
1461 }
1462 return false;
1463 }
1464
1465 public void forEachRemaining(Consumer<? super E> action) {
1466 int i, hi, mc; // hoist accesses and checks from loop
1467 ArrayList<E> lst; Object[] a;
1468 if (action == null)
1469 throw new NullPointerException();
1470 if ((lst = list) != null && (a = lst.elementData) != null) {
1471 if ((hi = fence) < 0) {
1472 mc = lst.modCount;
1473 hi = lst.size;
1474 }
1475 else
1476 mc = expectedModCount;
1477 if ((i = index) >= 0 && (index = hi) <= a.length) {
1478 for (; i < hi; ++i) {
1479 @SuppressWarnings("unchecked") E e = (E) a[i];
1480 action.accept(e);
1481 }
1482 if (lst.modCount == mc)
1483 return;
1484 }
1485 }
1486 throw new ConcurrentModificationException();
1487 }
1488
1489 public long estimateSize() {
1490 return (long) (getFence() - index);
1491 }
1492
1493 public int characteristics() {
1494 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1495 }
1496 }
1497
1498 @Override
1499 public boolean removeIf(Predicate<? super E> filter) {
1500 Objects.requireNonNull(filter);
1501 final int expectedModCount = modCount;
1502 final Object[] elementData = this.elementData;
1503 int r = 0, w = 0, remaining = size, deleted = 0;
1504 try {
1505 for (; remaining > 0; remaining--, r++) {
1506 @SuppressWarnings("unchecked") E e = (E) elementData[r];
1507 if (filter.test(e))
1508 deleted++;
1509 else {
1510 if (r != w)
1511 elementData[w] = e;
1512 w++;
1513 }
1514 }
1515 if (modCount != expectedModCount)
1516 throw new ConcurrentModificationException();
1517 return deleted > 0;
1518 } catch (Throwable ex) {
1519 for (; remaining > 0; remaining--, r++, w++)
1520 elementData[w] = elementData[r];
1521 throw ex;
1522 } finally {
1523 if (deleted > 0) {
1524 modCount++;
1525 size -= deleted;
1526 while (--deleted >= 0)
1527 elementData[w++] = null;
1528 }
1529 }
1530 }
1531
1532 @Override
1533 @SuppressWarnings("unchecked")
1534 public void replaceAll(UnaryOperator<E> operator) {
1535 Objects.requireNonNull(operator);
1536 final int expectedModCount = modCount;
1537 final int size = this.size;
1538 for (int i=0; modCount == expectedModCount && i < size; i++) {
1539 elementData[i] = operator.apply((E) elementData[i]);
1540 }
1541 if (modCount != expectedModCount) {
1542 throw new ConcurrentModificationException();
1543 }
1544 modCount++;
1545 }
1546
1547 @Override
1548 @SuppressWarnings("unchecked")
1549 public void sort(Comparator<? super E> c) {
1550 final int expectedModCount = modCount;
1551 Arrays.sort((E[]) elementData, 0, size, c);
1552 if (modCount != expectedModCount) {
1553 throw new ConcurrentModificationException();
1554 }
1555 modCount++;
1556 }
1557 }