ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.37
Committed: Fri Nov 4 03:09:27 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.36: +26 -25 lines
Log Message:
use methods from removeIf to improve batchRemove

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * Resizable-array implementation of the {@code List} interface. Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}. In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list. (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time. All of the other operations
44 * run in linear time (roughly speaking). The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 * the size of the array used to store the elements in the list. It is always
49 * at least as large as the list size. As elements are added to an ArrayList,
50 * its capacity grows automatically. The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation. This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally. (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.) This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method. This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}. Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification. Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness: <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author Josh Bloch
100 * @author Neal Gafter
101 * @see Collection
102 * @see List
103 * @see LinkedList
104 * @see Vector
105 * @since 1.2
106 */
107 public class ArrayList<E> extends AbstractList<E>
108 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109 {
110 private static final long serialVersionUID = 8683452581122892189L;
111
112 /**
113 * Default initial capacity.
114 */
115 private static final int DEFAULT_CAPACITY = 10;
116
117 /**
118 * Shared empty array instance used for empty instances.
119 */
120 private static final Object[] EMPTY_ELEMENTDATA = {};
121
122 /**
123 * Shared empty array instance used for default sized empty instances. We
124 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 * first element is added.
126 */
127 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129 /**
130 * The array buffer into which the elements of the ArrayList are stored.
131 * The capacity of the ArrayList is the length of this array buffer. Any
132 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 */
135 transient Object[] elementData; // non-private to simplify nested class access
136
137 /**
138 * The size of the ArrayList (the number of elements it contains).
139 *
140 * @serial
141 */
142 private int size;
143
144 /**
145 * Constructs an empty list with the specified initial capacity.
146 *
147 * @param initialCapacity the initial capacity of the list
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public ArrayList(int initialCapacity) {
152 if (initialCapacity > 0) {
153 this.elementData = new Object[initialCapacity];
154 } else if (initialCapacity == 0) {
155 this.elementData = EMPTY_ELEMENTDATA;
156 } else {
157 throw new IllegalArgumentException("Illegal Capacity: "+
158 initialCapacity);
159 }
160 }
161
162 /**
163 * Constructs an empty list with an initial capacity of ten.
164 */
165 public ArrayList() {
166 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 }
168
169 /**
170 * Constructs a list containing the elements of the specified
171 * collection, in the order they are returned by the collection's
172 * iterator.
173 *
174 * @param c the collection whose elements are to be placed into this list
175 * @throws NullPointerException if the specified collection is null
176 */
177 public ArrayList(Collection<? extends E> c) {
178 elementData = c.toArray();
179 if ((size = elementData.length) != 0) {
180 // defend against c.toArray (incorrectly) not returning Object[]
181 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 if (elementData.getClass() != Object[].class)
183 elementData = Arrays.copyOf(elementData, size, Object[].class);
184 } else {
185 // replace with empty array.
186 this.elementData = EMPTY_ELEMENTDATA;
187 }
188 }
189
190 /**
191 * Trims the capacity of this {@code ArrayList} instance to be the
192 * list's current size. An application can use this operation to minimize
193 * the storage of an {@code ArrayList} instance.
194 */
195 public void trimToSize() {
196 modCount++;
197 if (size < elementData.length) {
198 elementData = (size == 0)
199 ? EMPTY_ELEMENTDATA
200 : Arrays.copyOf(elementData, size);
201 }
202 }
203
204 /**
205 * Increases the capacity of this {@code ArrayList} instance, if
206 * necessary, to ensure that it can hold at least the number of elements
207 * specified by the minimum capacity argument.
208 *
209 * @param minCapacity the desired minimum capacity
210 */
211 public void ensureCapacity(int minCapacity) {
212 if (minCapacity > elementData.length
213 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 && minCapacity <= DEFAULT_CAPACITY)) {
215 modCount++;
216 grow(minCapacity);
217 }
218 }
219
220 /**
221 * The maximum size of array to allocate (unless necessary).
222 * Some VMs reserve some header words in an array.
223 * Attempts to allocate larger arrays may result in
224 * OutOfMemoryError: Requested array size exceeds VM limit
225 */
226 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227
228 /**
229 * Increases the capacity to ensure that it can hold at least the
230 * number of elements specified by the minimum capacity argument.
231 *
232 * @param minCapacity the desired minimum capacity
233 * @throws OutOfMemoryError if minCapacity is less than zero
234 */
235 private Object[] grow(int minCapacity) {
236 return elementData = Arrays.copyOf(elementData,
237 newCapacity(minCapacity));
238 }
239
240 private Object[] grow() {
241 return grow(size + 1);
242 }
243
244 /**
245 * Returns a capacity at least as large as the given minimum capacity.
246 * Returns the current capacity increased by 50% if that suffices.
247 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 *
250 * @param minCapacity the desired minimum capacity
251 * @throws OutOfMemoryError if minCapacity is less than zero
252 */
253 private int newCapacity(int minCapacity) {
254 // overflow-conscious code
255 int oldCapacity = elementData.length;
256 int newCapacity = oldCapacity + (oldCapacity >> 1);
257 if (newCapacity - minCapacity <= 0) {
258 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 return Math.max(DEFAULT_CAPACITY, minCapacity);
260 if (minCapacity < 0) // overflow
261 throw new OutOfMemoryError();
262 return minCapacity;
263 }
264 return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 ? newCapacity
266 : hugeCapacity(minCapacity);
267 }
268
269 private static int hugeCapacity(int minCapacity) {
270 if (minCapacity < 0) // overflow
271 throw new OutOfMemoryError();
272 return (minCapacity > MAX_ARRAY_SIZE)
273 ? Integer.MAX_VALUE
274 : MAX_ARRAY_SIZE;
275 }
276
277 /**
278 * Returns the number of elements in this list.
279 *
280 * @return the number of elements in this list
281 */
282 public int size() {
283 return size;
284 }
285
286 /**
287 * Returns {@code true} if this list contains no elements.
288 *
289 * @return {@code true} if this list contains no elements
290 */
291 public boolean isEmpty() {
292 return size == 0;
293 }
294
295 /**
296 * Returns {@code true} if this list contains the specified element.
297 * More formally, returns {@code true} if and only if this list contains
298 * at least one element {@code e} such that
299 * {@code Objects.equals(o, e)}.
300 *
301 * @param o element whose presence in this list is to be tested
302 * @return {@code true} if this list contains the specified element
303 */
304 public boolean contains(Object o) {
305 return indexOf(o) >= 0;
306 }
307
308 /**
309 * Returns the index of the first occurrence of the specified element
310 * in this list, or -1 if this list does not contain the element.
311 * More formally, returns the lowest index {@code i} such that
312 * {@code Objects.equals(o, get(i))},
313 * or -1 if there is no such index.
314 */
315 public int indexOf(Object o) {
316 if (o == null) {
317 for (int i = 0; i < size; i++)
318 if (elementData[i]==null)
319 return i;
320 } else {
321 for (int i = 0; i < size; i++)
322 if (o.equals(elementData[i]))
323 return i;
324 }
325 return -1;
326 }
327
328 /**
329 * Returns the index of the last occurrence of the specified element
330 * in this list, or -1 if this list does not contain the element.
331 * More formally, returns the highest index {@code i} such that
332 * {@code Objects.equals(o, get(i))},
333 * or -1 if there is no such index.
334 */
335 public int lastIndexOf(Object o) {
336 if (o == null) {
337 for (int i = size-1; i >= 0; i--)
338 if (elementData[i]==null)
339 return i;
340 } else {
341 for (int i = size-1; i >= 0; i--)
342 if (o.equals(elementData[i]))
343 return i;
344 }
345 return -1;
346 }
347
348 /**
349 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 * elements themselves are not copied.)
351 *
352 * @return a clone of this {@code ArrayList} instance
353 */
354 public Object clone() {
355 try {
356 ArrayList<?> v = (ArrayList<?>) super.clone();
357 v.elementData = Arrays.copyOf(elementData, size);
358 v.modCount = 0;
359 return v;
360 } catch (CloneNotSupportedException e) {
361 // this shouldn't happen, since we are Cloneable
362 throw new InternalError(e);
363 }
364 }
365
366 /**
367 * Returns an array containing all of the elements in this list
368 * in proper sequence (from first to last element).
369 *
370 * <p>The returned array will be "safe" in that no references to it are
371 * maintained by this list. (In other words, this method must allocate
372 * a new array). The caller is thus free to modify the returned array.
373 *
374 * <p>This method acts as bridge between array-based and collection-based
375 * APIs.
376 *
377 * @return an array containing all of the elements in this list in
378 * proper sequence
379 */
380 public Object[] toArray() {
381 return Arrays.copyOf(elementData, size);
382 }
383
384 /**
385 * Returns an array containing all of the elements in this list in proper
386 * sequence (from first to last element); the runtime type of the returned
387 * array is that of the specified array. If the list fits in the
388 * specified array, it is returned therein. Otherwise, a new array is
389 * allocated with the runtime type of the specified array and the size of
390 * this list.
391 *
392 * <p>If the list fits in the specified array with room to spare
393 * (i.e., the array has more elements than the list), the element in
394 * the array immediately following the end of the collection is set to
395 * {@code null}. (This is useful in determining the length of the
396 * list <i>only</i> if the caller knows that the list does not contain
397 * any null elements.)
398 *
399 * @param a the array into which the elements of the list are to
400 * be stored, if it is big enough; otherwise, a new array of the
401 * same runtime type is allocated for this purpose.
402 * @return an array containing the elements of the list
403 * @throws ArrayStoreException if the runtime type of the specified array
404 * is not a supertype of the runtime type of every element in
405 * this list
406 * @throws NullPointerException if the specified array is null
407 */
408 @SuppressWarnings("unchecked")
409 public <T> T[] toArray(T[] a) {
410 if (a.length < size)
411 // Make a new array of a's runtime type, but my contents:
412 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 System.arraycopy(elementData, 0, a, 0, size);
414 if (a.length > size)
415 a[size] = null;
416 return a;
417 }
418
419 // Positional Access Operations
420
421 @SuppressWarnings("unchecked")
422 E elementData(int index) {
423 return (E) elementData[index];
424 }
425
426 /**
427 * Returns the element at the specified position in this list.
428 *
429 * @param index index of the element to return
430 * @return the element at the specified position in this list
431 * @throws IndexOutOfBoundsException {@inheritDoc}
432 */
433 public E get(int index) {
434 Objects.checkIndex(index, size);
435 return elementData(index);
436 }
437
438 /**
439 * Replaces the element at the specified position in this list with
440 * the specified element.
441 *
442 * @param index index of the element to replace
443 * @param element element to be stored at the specified position
444 * @return the element previously at the specified position
445 * @throws IndexOutOfBoundsException {@inheritDoc}
446 */
447 public E set(int index, E element) {
448 Objects.checkIndex(index, size);
449 E oldValue = elementData(index);
450 elementData[index] = element;
451 return oldValue;
452 }
453
454 /**
455 * This helper method split out from add(E) to keep method
456 * bytecode size under 35 (the -XX:MaxInlineSize default value),
457 * which helps when add(E) is called in a C1-compiled loop.
458 */
459 private void add(E e, Object[] elementData, int s) {
460 if (s == elementData.length)
461 elementData = grow();
462 elementData[s] = e;
463 size = s + 1;
464 }
465
466 /**
467 * Appends the specified element to the end of this list.
468 *
469 * @param e element to be appended to this list
470 * @return {@code true} (as specified by {@link Collection#add})
471 */
472 public boolean add(E e) {
473 modCount++;
474 add(e, elementData, size);
475 return true;
476 }
477
478 /**
479 * Inserts the specified element at the specified position in this
480 * list. Shifts the element currently at that position (if any) and
481 * any subsequent elements to the right (adds one to their indices).
482 *
483 * @param index index at which the specified element is to be inserted
484 * @param element element to be inserted
485 * @throws IndexOutOfBoundsException {@inheritDoc}
486 */
487 public void add(int index, E element) {
488 rangeCheckForAdd(index);
489 modCount++;
490 final int s;
491 Object[] elementData;
492 if ((s = size) == (elementData = this.elementData).length)
493 elementData = grow();
494 System.arraycopy(elementData, index,
495 elementData, index + 1,
496 s - index);
497 elementData[index] = element;
498 size = s + 1;
499 }
500
501 /**
502 * Removes the element at the specified position in this list.
503 * Shifts any subsequent elements to the left (subtracts one from their
504 * indices).
505 *
506 * @param index the index of the element to be removed
507 * @return the element that was removed from the list
508 * @throws IndexOutOfBoundsException {@inheritDoc}
509 */
510 public E remove(int index) {
511 Objects.checkIndex(index, size);
512
513 modCount++;
514 E oldValue = elementData(index);
515
516 int numMoved = size - index - 1;
517 if (numMoved > 0)
518 System.arraycopy(elementData, index+1, elementData, index,
519 numMoved);
520 elementData[--size] = null; // clear to let GC do its work
521
522 return oldValue;
523 }
524
525 /**
526 * Removes the first occurrence of the specified element from this list,
527 * if it is present. If the list does not contain the element, it is
528 * unchanged. More formally, removes the element with the lowest index
529 * {@code i} such that
530 * {@code Objects.equals(o, get(i))}
531 * (if such an element exists). Returns {@code true} if this list
532 * contained the specified element (or equivalently, if this list
533 * changed as a result of the call).
534 *
535 * @param o element to be removed from this list, if present
536 * @return {@code true} if this list contained the specified element
537 */
538 public boolean remove(Object o) {
539 if (o == null) {
540 for (int index = 0; index < size; index++)
541 if (elementData[index] == null) {
542 fastRemove(index);
543 return true;
544 }
545 } else {
546 for (int index = 0; index < size; index++)
547 if (o.equals(elementData[index])) {
548 fastRemove(index);
549 return true;
550 }
551 }
552 return false;
553 }
554
555 /*
556 * Private remove method that skips bounds checking and does not
557 * return the value removed.
558 */
559 private void fastRemove(int index) {
560 modCount++;
561 int numMoved = size - index - 1;
562 if (numMoved > 0)
563 System.arraycopy(elementData, index+1, elementData, index,
564 numMoved);
565 elementData[--size] = null; // clear to let GC do its work
566 }
567
568 /**
569 * Removes all of the elements from this list. The list will
570 * be empty after this call returns.
571 */
572 public void clear() {
573 modCount++;
574
575 // clear to let GC do its work
576 for (int i = 0; i < size; i++)
577 elementData[i] = null;
578
579 size = 0;
580 }
581
582 /**
583 * Appends all of the elements in the specified collection to the end of
584 * this list, in the order that they are returned by the
585 * specified collection's Iterator. The behavior of this operation is
586 * undefined if the specified collection is modified while the operation
587 * is in progress. (This implies that the behavior of this call is
588 * undefined if the specified collection is this list, and this
589 * list is nonempty.)
590 *
591 * @param c collection containing elements to be added to this list
592 * @return {@code true} if this list changed as a result of the call
593 * @throws NullPointerException if the specified collection is null
594 */
595 public boolean addAll(Collection<? extends E> c) {
596 Object[] a = c.toArray();
597 modCount++;
598 int numNew = a.length;
599 if (numNew == 0)
600 return false;
601 Object[] elementData;
602 final int s;
603 if (numNew > (elementData = this.elementData).length - (s = size))
604 elementData = grow(s + numNew);
605 System.arraycopy(a, 0, elementData, s, numNew);
606 size = s + numNew;
607 return true;
608 }
609
610 /**
611 * Inserts all of the elements in the specified collection into this
612 * list, starting at the specified position. Shifts the element
613 * currently at that position (if any) and any subsequent elements to
614 * the right (increases their indices). The new elements will appear
615 * in the list in the order that they are returned by the
616 * specified collection's iterator.
617 *
618 * @param index index at which to insert the first element from the
619 * specified collection
620 * @param c collection containing elements to be added to this list
621 * @return {@code true} if this list changed as a result of the call
622 * @throws IndexOutOfBoundsException {@inheritDoc}
623 * @throws NullPointerException if the specified collection is null
624 */
625 public boolean addAll(int index, Collection<? extends E> c) {
626 rangeCheckForAdd(index);
627
628 Object[] a = c.toArray();
629 modCount++;
630 int numNew = a.length;
631 if (numNew == 0)
632 return false;
633 Object[] elementData;
634 final int s;
635 if (numNew > (elementData = this.elementData).length - (s = size))
636 elementData = grow(s + numNew);
637
638 int numMoved = s - index;
639 if (numMoved > 0)
640 System.arraycopy(elementData, index,
641 elementData, index + numNew,
642 numMoved);
643 System.arraycopy(a, 0, elementData, index, numNew);
644 size = s + numNew;
645 return true;
646 }
647
648 /**
649 * Removes from this list all of the elements whose index is between
650 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
651 * Shifts any succeeding elements to the left (reduces their index).
652 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
653 * (If {@code toIndex==fromIndex}, this operation has no effect.)
654 *
655 * @throws IndexOutOfBoundsException if {@code fromIndex} or
656 * {@code toIndex} is out of range
657 * ({@code fromIndex < 0 ||
658 * toIndex > size() ||
659 * toIndex < fromIndex})
660 */
661 protected void removeRange(int fromIndex, int toIndex) {
662 if (fromIndex > toIndex) {
663 throw new IndexOutOfBoundsException(
664 outOfBoundsMsg(fromIndex, toIndex));
665 }
666 modCount++;
667 int numMoved = size - toIndex;
668 System.arraycopy(elementData, toIndex, elementData, fromIndex,
669 numMoved);
670
671 // clear to let GC do its work
672 int newSize = size - (toIndex-fromIndex);
673 for (int i = newSize; i < size; i++) {
674 elementData[i] = null;
675 }
676 size = newSize;
677 }
678
679 /**
680 * A version of rangeCheck used by add and addAll.
681 */
682 private void rangeCheckForAdd(int index) {
683 if (index > size || index < 0)
684 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
685 }
686
687 /**
688 * Constructs an IndexOutOfBoundsException detail message.
689 * Of the many possible refactorings of the error handling code,
690 * this "outlining" performs best with both server and client VMs.
691 */
692 private String outOfBoundsMsg(int index) {
693 return "Index: "+index+", Size: "+size;
694 }
695
696 /**
697 * A version used in checking (fromIndex > toIndex) condition
698 */
699 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
700 return "From Index: " + fromIndex + " > To Index: " + toIndex;
701 }
702
703 /**
704 * Removes from this list all of its elements that are contained in the
705 * specified collection.
706 *
707 * @param c collection containing elements to be removed from this list
708 * @return {@code true} if this list changed as a result of the call
709 * @throws ClassCastException if the class of an element of this list
710 * is incompatible with the specified collection
711 * (<a href="Collection.html#optional-restrictions">optional</a>)
712 * @throws NullPointerException if this list contains a null element and the
713 * specified collection does not permit null elements
714 * (<a href="Collection.html#optional-restrictions">optional</a>),
715 * or if the specified collection is null
716 * @see Collection#contains(Object)
717 */
718 public boolean removeAll(Collection<?> c) {
719 return batchRemove(c, false);
720 }
721
722 /**
723 * Retains only the elements in this list that are contained in the
724 * specified collection. In other words, removes from this list all
725 * of its elements that are not contained in the specified collection.
726 *
727 * @param c collection containing elements to be retained in this list
728 * @return {@code true} if this list changed as a result of the call
729 * @throws ClassCastException if the class of an element of this list
730 * is incompatible with the specified collection
731 * (<a href="Collection.html#optional-restrictions">optional</a>)
732 * @throws NullPointerException if this list contains a null element and the
733 * specified collection does not permit null elements
734 * (<a href="Collection.html#optional-restrictions">optional</a>),
735 * or if the specified collection is null
736 * @see Collection#contains(Object)
737 */
738 public boolean retainAll(Collection<?> c) {
739 return batchRemove(c, true);
740 }
741
742 private boolean batchRemove(Collection<?> c, boolean complement) {
743 Objects.requireNonNull(c);
744 final Object[] es = elementData;
745 final int size = this.size;
746 final boolean modified;
747 int r;
748 // Optimize for initial run of survivors
749 for (r = 0; r < size; r++)
750 if (c.contains(es[r]) != complement)
751 break;
752 if (modified = (r < size)) {
753 int w = r++;
754 try {
755 for (Object e; r < size; r++)
756 if (c.contains(e = es[r]) == complement)
757 es[w++] = e;
758 } catch (Throwable ex) {
759 // Preserve behavioral compatibility with AbstractCollection,
760 // even if c.contains() throws.
761 System.arraycopy(es, r, es, w, size - r);
762 w += size - r;
763 throw ex;
764 } finally {
765 modCount += size - w;
766 Arrays.fill(es, (this.size = w), size, null);
767 }
768 }
769 return modified;
770 }
771
772 /**
773 * Save the state of the {@code ArrayList} instance to a stream (that
774 * is, serialize it).
775 *
776 * @serialData The length of the array backing the {@code ArrayList}
777 * instance is emitted (int), followed by all of its elements
778 * (each an {@code Object}) in the proper order.
779 */
780 private void writeObject(java.io.ObjectOutputStream s)
781 throws java.io.IOException{
782 // Write out element count, and any hidden stuff
783 int expectedModCount = modCount;
784 s.defaultWriteObject();
785
786 // Write out size as capacity for behavioural compatibility with clone()
787 s.writeInt(size);
788
789 // Write out all elements in the proper order.
790 for (int i=0; i<size; i++) {
791 s.writeObject(elementData[i]);
792 }
793
794 if (modCount != expectedModCount) {
795 throw new ConcurrentModificationException();
796 }
797 }
798
799 /**
800 * Reconstitute the {@code ArrayList} instance from a stream (that is,
801 * deserialize it).
802 */
803 private void readObject(java.io.ObjectInputStream s)
804 throws java.io.IOException, ClassNotFoundException {
805
806 // Read in size, and any hidden stuff
807 s.defaultReadObject();
808
809 // Read in capacity
810 s.readInt(); // ignored
811
812 if (size > 0) {
813 // like clone(), allocate array based upon size not capacity
814 Object[] elements = new Object[size];
815
816 // Read in all elements in the proper order.
817 for (int i = 0; i < size; i++) {
818 elements[i] = s.readObject();
819 }
820
821 elementData = elements;
822 } else if (size == 0) {
823 elementData = EMPTY_ELEMENTDATA;
824 } else {
825 throw new java.io.InvalidObjectException("Invalid size: " + size);
826 }
827 }
828
829 /**
830 * Returns a list iterator over the elements in this list (in proper
831 * sequence), starting at the specified position in the list.
832 * The specified index indicates the first element that would be
833 * returned by an initial call to {@link ListIterator#next next}.
834 * An initial call to {@link ListIterator#previous previous} would
835 * return the element with the specified index minus one.
836 *
837 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
838 *
839 * @throws IndexOutOfBoundsException {@inheritDoc}
840 */
841 public ListIterator<E> listIterator(int index) {
842 rangeCheckForAdd(index);
843 return new ListItr(index);
844 }
845
846 /**
847 * Returns a list iterator over the elements in this list (in proper
848 * sequence).
849 *
850 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
851 *
852 * @see #listIterator(int)
853 */
854 public ListIterator<E> listIterator() {
855 return new ListItr(0);
856 }
857
858 /**
859 * Returns an iterator over the elements in this list in proper sequence.
860 *
861 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
862 *
863 * @return an iterator over the elements in this list in proper sequence
864 */
865 public Iterator<E> iterator() {
866 return new Itr();
867 }
868
869 /**
870 * An optimized version of AbstractList.Itr
871 */
872 private class Itr implements Iterator<E> {
873 int cursor; // index of next element to return
874 int lastRet = -1; // index of last element returned; -1 if no such
875 int expectedModCount = modCount;
876
877 // prevent creating a synthetic constructor
878 Itr() {}
879
880 public boolean hasNext() {
881 return cursor != size;
882 }
883
884 @SuppressWarnings("unchecked")
885 public E next() {
886 checkForComodification();
887 int i = cursor;
888 if (i >= size)
889 throw new NoSuchElementException();
890 Object[] elementData = ArrayList.this.elementData;
891 if (i >= elementData.length)
892 throw new ConcurrentModificationException();
893 cursor = i + 1;
894 return (E) elementData[lastRet = i];
895 }
896
897 public void remove() {
898 if (lastRet < 0)
899 throw new IllegalStateException();
900 checkForComodification();
901
902 try {
903 ArrayList.this.remove(lastRet);
904 cursor = lastRet;
905 lastRet = -1;
906 expectedModCount = modCount;
907 } catch (IndexOutOfBoundsException ex) {
908 throw new ConcurrentModificationException();
909 }
910 }
911
912 @Override
913 @SuppressWarnings("unchecked")
914 public void forEachRemaining(Consumer<? super E> consumer) {
915 Objects.requireNonNull(consumer);
916 final int size = ArrayList.this.size;
917 int i = cursor;
918 if (i >= size) {
919 return;
920 }
921 final Object[] elementData = ArrayList.this.elementData;
922 if (i >= elementData.length) {
923 throw new ConcurrentModificationException();
924 }
925 while (i != size && modCount == expectedModCount) {
926 consumer.accept((E) elementData[i++]);
927 }
928 // update once at end of iteration to reduce heap write traffic
929 cursor = i;
930 lastRet = i - 1;
931 checkForComodification();
932 }
933
934 final void checkForComodification() {
935 if (modCount != expectedModCount)
936 throw new ConcurrentModificationException();
937 }
938 }
939
940 /**
941 * An optimized version of AbstractList.ListItr
942 */
943 private class ListItr extends Itr implements ListIterator<E> {
944 ListItr(int index) {
945 super();
946 cursor = index;
947 }
948
949 public boolean hasPrevious() {
950 return cursor != 0;
951 }
952
953 public int nextIndex() {
954 return cursor;
955 }
956
957 public int previousIndex() {
958 return cursor - 1;
959 }
960
961 @SuppressWarnings("unchecked")
962 public E previous() {
963 checkForComodification();
964 int i = cursor - 1;
965 if (i < 0)
966 throw new NoSuchElementException();
967 Object[] elementData = ArrayList.this.elementData;
968 if (i >= elementData.length)
969 throw new ConcurrentModificationException();
970 cursor = i;
971 return (E) elementData[lastRet = i];
972 }
973
974 public void set(E e) {
975 if (lastRet < 0)
976 throw new IllegalStateException();
977 checkForComodification();
978
979 try {
980 ArrayList.this.set(lastRet, e);
981 } catch (IndexOutOfBoundsException ex) {
982 throw new ConcurrentModificationException();
983 }
984 }
985
986 public void add(E e) {
987 checkForComodification();
988
989 try {
990 int i = cursor;
991 ArrayList.this.add(i, e);
992 cursor = i + 1;
993 lastRet = -1;
994 expectedModCount = modCount;
995 } catch (IndexOutOfBoundsException ex) {
996 throw new ConcurrentModificationException();
997 }
998 }
999 }
1000
1001 /**
1002 * Returns a view of the portion of this list between the specified
1003 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1004 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1005 * empty.) The returned list is backed by this list, so non-structural
1006 * changes in the returned list are reflected in this list, and vice-versa.
1007 * The returned list supports all of the optional list operations.
1008 *
1009 * <p>This method eliminates the need for explicit range operations (of
1010 * the sort that commonly exist for arrays). Any operation that expects
1011 * a list can be used as a range operation by passing a subList view
1012 * instead of a whole list. For example, the following idiom
1013 * removes a range of elements from a list:
1014 * <pre>
1015 * list.subList(from, to).clear();
1016 * </pre>
1017 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1018 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1019 * {@link Collections} class can be applied to a subList.
1020 *
1021 * <p>The semantics of the list returned by this method become undefined if
1022 * the backing list (i.e., this list) is <i>structurally modified</i> in
1023 * any way other than via the returned list. (Structural modifications are
1024 * those that change the size of this list, or otherwise perturb it in such
1025 * a fashion that iterations in progress may yield incorrect results.)
1026 *
1027 * @throws IndexOutOfBoundsException {@inheritDoc}
1028 * @throws IllegalArgumentException {@inheritDoc}
1029 */
1030 public List<E> subList(int fromIndex, int toIndex) {
1031 subListRangeCheck(fromIndex, toIndex, size);
1032 return new SubList<>(this, fromIndex, toIndex);
1033 }
1034
1035 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1036 private final ArrayList<E> root;
1037 private final SubList<E> parent;
1038 private final int offset;
1039 private int size;
1040
1041 /**
1042 * Constructs a sublist of an arbitrary ArrayList.
1043 */
1044 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1045 this.root = root;
1046 this.parent = null;
1047 this.offset = fromIndex;
1048 this.size = toIndex - fromIndex;
1049 this.modCount = root.modCount;
1050 }
1051
1052 /**
1053 * Constructs a sublist of another SubList.
1054 */
1055 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1056 this.root = parent.root;
1057 this.parent = parent;
1058 this.offset = parent.offset + fromIndex;
1059 this.size = toIndex - fromIndex;
1060 this.modCount = root.modCount;
1061 }
1062
1063 public E set(int index, E element) {
1064 Objects.checkIndex(index, size);
1065 checkForComodification();
1066 E oldValue = root.elementData(offset + index);
1067 root.elementData[offset + index] = element;
1068 return oldValue;
1069 }
1070
1071 public E get(int index) {
1072 Objects.checkIndex(index, size);
1073 checkForComodification();
1074 return root.elementData(offset + index);
1075 }
1076
1077 public int size() {
1078 checkForComodification();
1079 return size;
1080 }
1081
1082 public void add(int index, E element) {
1083 rangeCheckForAdd(index);
1084 checkForComodification();
1085 root.add(offset + index, element);
1086 updateSizeAndModCount(1);
1087 }
1088
1089 public E remove(int index) {
1090 Objects.checkIndex(index, size);
1091 checkForComodification();
1092 E result = root.remove(offset + index);
1093 updateSizeAndModCount(-1);
1094 return result;
1095 }
1096
1097 protected void removeRange(int fromIndex, int toIndex) {
1098 checkForComodification();
1099 root.removeRange(offset + fromIndex, offset + toIndex);
1100 updateSizeAndModCount(fromIndex - toIndex);
1101 }
1102
1103 public boolean addAll(Collection<? extends E> c) {
1104 return addAll(this.size, c);
1105 }
1106
1107 public boolean addAll(int index, Collection<? extends E> c) {
1108 rangeCheckForAdd(index);
1109 int cSize = c.size();
1110 if (cSize==0)
1111 return false;
1112 checkForComodification();
1113 root.addAll(offset + index, c);
1114 updateSizeAndModCount(cSize);
1115 return true;
1116 }
1117
1118 public Iterator<E> iterator() {
1119 return listIterator();
1120 }
1121
1122 public ListIterator<E> listIterator(int index) {
1123 checkForComodification();
1124 rangeCheckForAdd(index);
1125
1126 return new ListIterator<E>() {
1127 int cursor = index;
1128 int lastRet = -1;
1129 int expectedModCount = root.modCount;
1130
1131 public boolean hasNext() {
1132 return cursor != SubList.this.size;
1133 }
1134
1135 @SuppressWarnings("unchecked")
1136 public E next() {
1137 checkForComodification();
1138 int i = cursor;
1139 if (i >= SubList.this.size)
1140 throw new NoSuchElementException();
1141 Object[] elementData = root.elementData;
1142 if (offset + i >= elementData.length)
1143 throw new ConcurrentModificationException();
1144 cursor = i + 1;
1145 return (E) elementData[offset + (lastRet = i)];
1146 }
1147
1148 public boolean hasPrevious() {
1149 return cursor != 0;
1150 }
1151
1152 @SuppressWarnings("unchecked")
1153 public E previous() {
1154 checkForComodification();
1155 int i = cursor - 1;
1156 if (i < 0)
1157 throw new NoSuchElementException();
1158 Object[] elementData = root.elementData;
1159 if (offset + i >= elementData.length)
1160 throw new ConcurrentModificationException();
1161 cursor = i;
1162 return (E) elementData[offset + (lastRet = i)];
1163 }
1164
1165 @SuppressWarnings("unchecked")
1166 public void forEachRemaining(Consumer<? super E> consumer) {
1167 Objects.requireNonNull(consumer);
1168 final int size = SubList.this.size;
1169 int i = cursor;
1170 if (i >= size) {
1171 return;
1172 }
1173 final Object[] elementData = root.elementData;
1174 if (offset + i >= elementData.length) {
1175 throw new ConcurrentModificationException();
1176 }
1177 while (i != size && modCount == expectedModCount) {
1178 consumer.accept((E) elementData[offset + (i++)]);
1179 }
1180 // update once at end of iteration to reduce heap write traffic
1181 lastRet = cursor = i;
1182 checkForComodification();
1183 }
1184
1185 public int nextIndex() {
1186 return cursor;
1187 }
1188
1189 public int previousIndex() {
1190 return cursor - 1;
1191 }
1192
1193 public void remove() {
1194 if (lastRet < 0)
1195 throw new IllegalStateException();
1196 checkForComodification();
1197
1198 try {
1199 SubList.this.remove(lastRet);
1200 cursor = lastRet;
1201 lastRet = -1;
1202 expectedModCount = root.modCount;
1203 } catch (IndexOutOfBoundsException ex) {
1204 throw new ConcurrentModificationException();
1205 }
1206 }
1207
1208 public void set(E e) {
1209 if (lastRet < 0)
1210 throw new IllegalStateException();
1211 checkForComodification();
1212
1213 try {
1214 root.set(offset + lastRet, e);
1215 } catch (IndexOutOfBoundsException ex) {
1216 throw new ConcurrentModificationException();
1217 }
1218 }
1219
1220 public void add(E e) {
1221 checkForComodification();
1222
1223 try {
1224 int i = cursor;
1225 SubList.this.add(i, e);
1226 cursor = i + 1;
1227 lastRet = -1;
1228 expectedModCount = root.modCount;
1229 } catch (IndexOutOfBoundsException ex) {
1230 throw new ConcurrentModificationException();
1231 }
1232 }
1233
1234 final void checkForComodification() {
1235 if (root.modCount != expectedModCount)
1236 throw new ConcurrentModificationException();
1237 }
1238 };
1239 }
1240
1241 public List<E> subList(int fromIndex, int toIndex) {
1242 subListRangeCheck(fromIndex, toIndex, size);
1243 return new SubList<>(this, fromIndex, toIndex);
1244 }
1245
1246 private void rangeCheckForAdd(int index) {
1247 if (index < 0 || index > this.size)
1248 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1249 }
1250
1251 private String outOfBoundsMsg(int index) {
1252 return "Index: "+index+", Size: "+this.size;
1253 }
1254
1255 private void checkForComodification() {
1256 if (root.modCount != modCount)
1257 throw new ConcurrentModificationException();
1258 }
1259
1260 private void updateSizeAndModCount(int sizeChange) {
1261 SubList<E> slist = this;
1262 do {
1263 slist.size += sizeChange;
1264 slist.modCount = root.modCount;
1265 slist = slist.parent;
1266 } while (slist != null);
1267 }
1268
1269 public Spliterator<E> spliterator() {
1270 checkForComodification();
1271
1272 // ArrayListSpliterator is not used because late-binding logic
1273 // is different here
1274 return new Spliterator<>() {
1275 private int index = offset; // current index, modified on advance/split
1276 private int fence = -1; // -1 until used; then one past last index
1277 private int expectedModCount; // initialized when fence set
1278
1279 private int getFence() { // initialize fence to size on first use
1280 int hi; // (a specialized variant appears in method forEach)
1281 if ((hi = fence) < 0) {
1282 expectedModCount = modCount;
1283 hi = fence = offset + size;
1284 }
1285 return hi;
1286 }
1287
1288 public ArrayListSpliterator<E> trySplit() {
1289 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1290 // ArrayListSpliterator could be used here as the source is already bound
1291 return (lo >= mid) ? null : // divide range in half unless too small
1292 new ArrayListSpliterator<>(root, lo, index = mid,
1293 expectedModCount);
1294 }
1295
1296 public boolean tryAdvance(Consumer<? super E> action) {
1297 Objects.requireNonNull(action);
1298 int hi = getFence(), i = index;
1299 if (i < hi) {
1300 index = i + 1;
1301 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1302 action.accept(e);
1303 if (root.modCount != expectedModCount)
1304 throw new ConcurrentModificationException();
1305 return true;
1306 }
1307 return false;
1308 }
1309
1310 public void forEachRemaining(Consumer<? super E> action) {
1311 Objects.requireNonNull(action);
1312 int i, hi, mc; // hoist accesses and checks from loop
1313 ArrayList<E> lst = root;
1314 Object[] a;
1315 if ((a = lst.elementData) != null) {
1316 if ((hi = fence) < 0) {
1317 mc = modCount;
1318 hi = offset + size;
1319 }
1320 else
1321 mc = expectedModCount;
1322 if ((i = index) >= 0 && (index = hi) <= a.length) {
1323 for (; i < hi; ++i) {
1324 @SuppressWarnings("unchecked") E e = (E) a[i];
1325 action.accept(e);
1326 }
1327 if (lst.modCount == mc)
1328 return;
1329 }
1330 }
1331 throw new ConcurrentModificationException();
1332 }
1333
1334 public long estimateSize() {
1335 return (long) (getFence() - index);
1336 }
1337
1338 public int characteristics() {
1339 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1340 }
1341 };
1342 }
1343 }
1344
1345 @Override
1346 public void forEach(Consumer<? super E> action) {
1347 Objects.requireNonNull(action);
1348 final int expectedModCount = modCount;
1349 @SuppressWarnings("unchecked")
1350 final E[] elementData = (E[]) this.elementData;
1351 final int size = this.size;
1352 for (int i=0; modCount == expectedModCount && i < size; i++) {
1353 action.accept(elementData[i]);
1354 }
1355 if (modCount != expectedModCount) {
1356 throw new ConcurrentModificationException();
1357 }
1358 }
1359
1360 /**
1361 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1362 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1363 * list.
1364 *
1365 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1366 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1367 * Overriding implementations should document the reporting of additional
1368 * characteristic values.
1369 *
1370 * @return a {@code Spliterator} over the elements in this list
1371 * @since 1.8
1372 */
1373 @Override
1374 public Spliterator<E> spliterator() {
1375 return new ArrayListSpliterator<>(this, 0, -1, 0);
1376 }
1377
1378 /** Index-based split-by-two, lazily initialized Spliterator */
1379 static final class ArrayListSpliterator<E> implements Spliterator<E> {
1380
1381 /*
1382 * If ArrayLists were immutable, or structurally immutable (no
1383 * adds, removes, etc), we could implement their spliterators
1384 * with Arrays.spliterator. Instead we detect as much
1385 * interference during traversal as practical without
1386 * sacrificing much performance. We rely primarily on
1387 * modCounts. These are not guaranteed to detect concurrency
1388 * violations, and are sometimes overly conservative about
1389 * within-thread interference, but detect enough problems to
1390 * be worthwhile in practice. To carry this out, we (1) lazily
1391 * initialize fence and expectedModCount until the latest
1392 * point that we need to commit to the state we are checking
1393 * against; thus improving precision. (This doesn't apply to
1394 * SubLists, that create spliterators with current non-lazy
1395 * values). (2) We perform only a single
1396 * ConcurrentModificationException check at the end of forEach
1397 * (the most performance-sensitive method). When using forEach
1398 * (as opposed to iterators), we can normally only detect
1399 * interference after actions, not before. Further
1400 * CME-triggering checks apply to all other possible
1401 * violations of assumptions for example null or too-small
1402 * elementData array given its size(), that could only have
1403 * occurred due to interference. This allows the inner loop
1404 * of forEach to run without any further checks, and
1405 * simplifies lambda-resolution. While this does entail a
1406 * number of checks, note that in the common case of
1407 * list.stream().forEach(a), no checks or other computation
1408 * occur anywhere other than inside forEach itself. The other
1409 * less-often-used methods cannot take advantage of most of
1410 * these streamlinings.
1411 */
1412
1413 private final ArrayList<E> list;
1414 private int index; // current index, modified on advance/split
1415 private int fence; // -1 until used; then one past last index
1416 private int expectedModCount; // initialized when fence set
1417
1418 /** Create new spliterator covering the given range */
1419 ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1420 int expectedModCount) {
1421 this.list = list; // OK if null unless traversed
1422 this.index = origin;
1423 this.fence = fence;
1424 this.expectedModCount = expectedModCount;
1425 }
1426
1427 private int getFence() { // initialize fence to size on first use
1428 int hi; // (a specialized variant appears in method forEach)
1429 ArrayList<E> lst;
1430 if ((hi = fence) < 0) {
1431 if ((lst = list) == null)
1432 hi = fence = 0;
1433 else {
1434 expectedModCount = lst.modCount;
1435 hi = fence = lst.size;
1436 }
1437 }
1438 return hi;
1439 }
1440
1441 public ArrayListSpliterator<E> trySplit() {
1442 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1443 return (lo >= mid) ? null : // divide range in half unless too small
1444 new ArrayListSpliterator<>(list, lo, index = mid,
1445 expectedModCount);
1446 }
1447
1448 public boolean tryAdvance(Consumer<? super E> action) {
1449 if (action == null)
1450 throw new NullPointerException();
1451 int hi = getFence(), i = index;
1452 if (i < hi) {
1453 index = i + 1;
1454 @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1455 action.accept(e);
1456 if (list.modCount != expectedModCount)
1457 throw new ConcurrentModificationException();
1458 return true;
1459 }
1460 return false;
1461 }
1462
1463 public void forEachRemaining(Consumer<? super E> action) {
1464 int i, hi, mc; // hoist accesses and checks from loop
1465 ArrayList<E> lst; Object[] a;
1466 if (action == null)
1467 throw new NullPointerException();
1468 if ((lst = list) != null && (a = lst.elementData) != null) {
1469 if ((hi = fence) < 0) {
1470 mc = lst.modCount;
1471 hi = lst.size;
1472 }
1473 else
1474 mc = expectedModCount;
1475 if ((i = index) >= 0 && (index = hi) <= a.length) {
1476 for (; i < hi; ++i) {
1477 @SuppressWarnings("unchecked") E e = (E) a[i];
1478 action.accept(e);
1479 }
1480 if (lst.modCount == mc)
1481 return;
1482 }
1483 }
1484 throw new ConcurrentModificationException();
1485 }
1486
1487 public long estimateSize() {
1488 return (long) (getFence() - index);
1489 }
1490
1491 public int characteristics() {
1492 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1493 }
1494 }
1495
1496 @SuppressWarnings("unchecked")
1497 @Override
1498 public boolean removeIf(Predicate<? super E> filter) {
1499 Objects.requireNonNull(filter);
1500 int expectedModCount = modCount;
1501 final Object[] es = elementData;
1502 final int size = this.size;
1503 final boolean modified;
1504 int r;
1505 // Optimize for initial run of survivors
1506 for (r = 0; r < size; r++)
1507 if (filter.test((E) es[r]))
1508 break;
1509 if (modified = (r < size)) {
1510 expectedModCount++;
1511 modCount++;
1512 int w = r++;
1513 try {
1514 for (E e; r < size; r++)
1515 if (!filter.test(e = (E) es[r]))
1516 es[w++] = e;
1517 } catch (Throwable ex) {
1518 // copy remaining elements
1519 System.arraycopy(es, r, es, w, size - r);
1520 w += size - r;
1521 throw ex;
1522 } finally {
1523 Arrays.fill(es, (this.size = w), size, null);
1524 }
1525 }
1526 if (modCount != expectedModCount)
1527 throw new ConcurrentModificationException();
1528 return modified;
1529 }
1530
1531 @Override
1532 @SuppressWarnings("unchecked")
1533 public void replaceAll(UnaryOperator<E> operator) {
1534 Objects.requireNonNull(operator);
1535 final int expectedModCount = modCount;
1536 final int size = this.size;
1537 for (int i=0; modCount == expectedModCount && i < size; i++) {
1538 elementData[i] = operator.apply((E) elementData[i]);
1539 }
1540 if (modCount != expectedModCount) {
1541 throw new ConcurrentModificationException();
1542 }
1543 modCount++;
1544 }
1545
1546 @Override
1547 @SuppressWarnings("unchecked")
1548 public void sort(Comparator<? super E> c) {
1549 final int expectedModCount = modCount;
1550 Arrays.sort((E[]) elementData, 0, size, c);
1551 if (modCount != expectedModCount) {
1552 throw new ConcurrentModificationException();
1553 }
1554 modCount++;
1555 }
1556 }