ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.39
Committed: Sun Nov 13 02:10:09 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.38: +49 -33 lines
Log Message:
Tolerate reentrant read access in removeIf

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * Resizable-array implementation of the {@code List} interface. Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}. In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list. (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time. All of the other operations
44 * run in linear time (roughly speaking). The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 * the size of the array used to store the elements in the list. It is always
49 * at least as large as the list size. As elements are added to an ArrayList,
50 * its capacity grows automatically. The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation. This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally. (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.) This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method. This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}. Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification. Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness: <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author Josh Bloch
100 * @author Neal Gafter
101 * @see Collection
102 * @see List
103 * @see LinkedList
104 * @see Vector
105 * @since 1.2
106 */
107 public class ArrayList<E> extends AbstractList<E>
108 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109 {
110 private static final long serialVersionUID = 8683452581122892189L;
111
112 /**
113 * Default initial capacity.
114 */
115 private static final int DEFAULT_CAPACITY = 10;
116
117 /**
118 * Shared empty array instance used for empty instances.
119 */
120 private static final Object[] EMPTY_ELEMENTDATA = {};
121
122 /**
123 * Shared empty array instance used for default sized empty instances. We
124 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 * first element is added.
126 */
127 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129 /**
130 * The array buffer into which the elements of the ArrayList are stored.
131 * The capacity of the ArrayList is the length of this array buffer. Any
132 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 */
135 transient Object[] elementData; // non-private to simplify nested class access
136
137 /**
138 * The size of the ArrayList (the number of elements it contains).
139 *
140 * @serial
141 */
142 private int size;
143
144 /**
145 * Constructs an empty list with the specified initial capacity.
146 *
147 * @param initialCapacity the initial capacity of the list
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public ArrayList(int initialCapacity) {
152 if (initialCapacity > 0) {
153 this.elementData = new Object[initialCapacity];
154 } else if (initialCapacity == 0) {
155 this.elementData = EMPTY_ELEMENTDATA;
156 } else {
157 throw new IllegalArgumentException("Illegal Capacity: "+
158 initialCapacity);
159 }
160 }
161
162 /**
163 * Constructs an empty list with an initial capacity of ten.
164 */
165 public ArrayList() {
166 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 }
168
169 /**
170 * Constructs a list containing the elements of the specified
171 * collection, in the order they are returned by the collection's
172 * iterator.
173 *
174 * @param c the collection whose elements are to be placed into this list
175 * @throws NullPointerException if the specified collection is null
176 */
177 public ArrayList(Collection<? extends E> c) {
178 elementData = c.toArray();
179 if ((size = elementData.length) != 0) {
180 // defend against c.toArray (incorrectly) not returning Object[]
181 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 if (elementData.getClass() != Object[].class)
183 elementData = Arrays.copyOf(elementData, size, Object[].class);
184 } else {
185 // replace with empty array.
186 this.elementData = EMPTY_ELEMENTDATA;
187 }
188 }
189
190 /**
191 * Trims the capacity of this {@code ArrayList} instance to be the
192 * list's current size. An application can use this operation to minimize
193 * the storage of an {@code ArrayList} instance.
194 */
195 public void trimToSize() {
196 modCount++;
197 if (size < elementData.length) {
198 elementData = (size == 0)
199 ? EMPTY_ELEMENTDATA
200 : Arrays.copyOf(elementData, size);
201 }
202 }
203
204 /**
205 * Increases the capacity of this {@code ArrayList} instance, if
206 * necessary, to ensure that it can hold at least the number of elements
207 * specified by the minimum capacity argument.
208 *
209 * @param minCapacity the desired minimum capacity
210 */
211 public void ensureCapacity(int minCapacity) {
212 if (minCapacity > elementData.length
213 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 && minCapacity <= DEFAULT_CAPACITY)) {
215 modCount++;
216 grow(minCapacity);
217 }
218 }
219
220 /**
221 * The maximum size of array to allocate (unless necessary).
222 * Some VMs reserve some header words in an array.
223 * Attempts to allocate larger arrays may result in
224 * OutOfMemoryError: Requested array size exceeds VM limit
225 */
226 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227
228 /**
229 * Increases the capacity to ensure that it can hold at least the
230 * number of elements specified by the minimum capacity argument.
231 *
232 * @param minCapacity the desired minimum capacity
233 * @throws OutOfMemoryError if minCapacity is less than zero
234 */
235 private Object[] grow(int minCapacity) {
236 return elementData = Arrays.copyOf(elementData,
237 newCapacity(minCapacity));
238 }
239
240 private Object[] grow() {
241 return grow(size + 1);
242 }
243
244 /**
245 * Returns a capacity at least as large as the given minimum capacity.
246 * Returns the current capacity increased by 50% if that suffices.
247 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 *
250 * @param minCapacity the desired minimum capacity
251 * @throws OutOfMemoryError if minCapacity is less than zero
252 */
253 private int newCapacity(int minCapacity) {
254 // overflow-conscious code
255 int oldCapacity = elementData.length;
256 int newCapacity = oldCapacity + (oldCapacity >> 1);
257 if (newCapacity - minCapacity <= 0) {
258 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 return Math.max(DEFAULT_CAPACITY, minCapacity);
260 if (minCapacity < 0) // overflow
261 throw new OutOfMemoryError();
262 return minCapacity;
263 }
264 return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 ? newCapacity
266 : hugeCapacity(minCapacity);
267 }
268
269 private static int hugeCapacity(int minCapacity) {
270 if (minCapacity < 0) // overflow
271 throw new OutOfMemoryError();
272 return (minCapacity > MAX_ARRAY_SIZE)
273 ? Integer.MAX_VALUE
274 : MAX_ARRAY_SIZE;
275 }
276
277 /**
278 * Returns the number of elements in this list.
279 *
280 * @return the number of elements in this list
281 */
282 public int size() {
283 return size;
284 }
285
286 /**
287 * Returns {@code true} if this list contains no elements.
288 *
289 * @return {@code true} if this list contains no elements
290 */
291 public boolean isEmpty() {
292 return size == 0;
293 }
294
295 /**
296 * Returns {@code true} if this list contains the specified element.
297 * More formally, returns {@code true} if and only if this list contains
298 * at least one element {@code e} such that
299 * {@code Objects.equals(o, e)}.
300 *
301 * @param o element whose presence in this list is to be tested
302 * @return {@code true} if this list contains the specified element
303 */
304 public boolean contains(Object o) {
305 return indexOf(o) >= 0;
306 }
307
308 /**
309 * Returns the index of the first occurrence of the specified element
310 * in this list, or -1 if this list does not contain the element.
311 * More formally, returns the lowest index {@code i} such that
312 * {@code Objects.equals(o, get(i))},
313 * or -1 if there is no such index.
314 */
315 public int indexOf(Object o) {
316 if (o == null) {
317 for (int i = 0; i < size; i++)
318 if (elementData[i]==null)
319 return i;
320 } else {
321 for (int i = 0; i < size; i++)
322 if (o.equals(elementData[i]))
323 return i;
324 }
325 return -1;
326 }
327
328 /**
329 * Returns the index of the last occurrence of the specified element
330 * in this list, or -1 if this list does not contain the element.
331 * More formally, returns the highest index {@code i} such that
332 * {@code Objects.equals(o, get(i))},
333 * or -1 if there is no such index.
334 */
335 public int lastIndexOf(Object o) {
336 if (o == null) {
337 for (int i = size-1; i >= 0; i--)
338 if (elementData[i]==null)
339 return i;
340 } else {
341 for (int i = size-1; i >= 0; i--)
342 if (o.equals(elementData[i]))
343 return i;
344 }
345 return -1;
346 }
347
348 /**
349 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 * elements themselves are not copied.)
351 *
352 * @return a clone of this {@code ArrayList} instance
353 */
354 public Object clone() {
355 try {
356 ArrayList<?> v = (ArrayList<?>) super.clone();
357 v.elementData = Arrays.copyOf(elementData, size);
358 v.modCount = 0;
359 return v;
360 } catch (CloneNotSupportedException e) {
361 // this shouldn't happen, since we are Cloneable
362 throw new InternalError(e);
363 }
364 }
365
366 /**
367 * Returns an array containing all of the elements in this list
368 * in proper sequence (from first to last element).
369 *
370 * <p>The returned array will be "safe" in that no references to it are
371 * maintained by this list. (In other words, this method must allocate
372 * a new array). The caller is thus free to modify the returned array.
373 *
374 * <p>This method acts as bridge between array-based and collection-based
375 * APIs.
376 *
377 * @return an array containing all of the elements in this list in
378 * proper sequence
379 */
380 public Object[] toArray() {
381 return Arrays.copyOf(elementData, size);
382 }
383
384 /**
385 * Returns an array containing all of the elements in this list in proper
386 * sequence (from first to last element); the runtime type of the returned
387 * array is that of the specified array. If the list fits in the
388 * specified array, it is returned therein. Otherwise, a new array is
389 * allocated with the runtime type of the specified array and the size of
390 * this list.
391 *
392 * <p>If the list fits in the specified array with room to spare
393 * (i.e., the array has more elements than the list), the element in
394 * the array immediately following the end of the collection is set to
395 * {@code null}. (This is useful in determining the length of the
396 * list <i>only</i> if the caller knows that the list does not contain
397 * any null elements.)
398 *
399 * @param a the array into which the elements of the list are to
400 * be stored, if it is big enough; otherwise, a new array of the
401 * same runtime type is allocated for this purpose.
402 * @return an array containing the elements of the list
403 * @throws ArrayStoreException if the runtime type of the specified array
404 * is not a supertype of the runtime type of every element in
405 * this list
406 * @throws NullPointerException if the specified array is null
407 */
408 @SuppressWarnings("unchecked")
409 public <T> T[] toArray(T[] a) {
410 if (a.length < size)
411 // Make a new array of a's runtime type, but my contents:
412 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 System.arraycopy(elementData, 0, a, 0, size);
414 if (a.length > size)
415 a[size] = null;
416 return a;
417 }
418
419 // Positional Access Operations
420
421 @SuppressWarnings("unchecked")
422 E elementData(int index) {
423 return (E) elementData[index];
424 }
425
426 @SuppressWarnings("unchecked")
427 static <E> E elementAt(Object[] es, int index) {
428 return (E) es[index];
429 }
430
431 /**
432 * Returns the element at the specified position in this list.
433 *
434 * @param index index of the element to return
435 * @return the element at the specified position in this list
436 * @throws IndexOutOfBoundsException {@inheritDoc}
437 */
438 public E get(int index) {
439 Objects.checkIndex(index, size);
440 return elementData(index);
441 }
442
443 /**
444 * Replaces the element at the specified position in this list with
445 * the specified element.
446 *
447 * @param index index of the element to replace
448 * @param element element to be stored at the specified position
449 * @return the element previously at the specified position
450 * @throws IndexOutOfBoundsException {@inheritDoc}
451 */
452 public E set(int index, E element) {
453 Objects.checkIndex(index, size);
454 E oldValue = elementData(index);
455 elementData[index] = element;
456 return oldValue;
457 }
458
459 /**
460 * This helper method split out from add(E) to keep method
461 * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 * which helps when add(E) is called in a C1-compiled loop.
463 */
464 private void add(E e, Object[] elementData, int s) {
465 if (s == elementData.length)
466 elementData = grow();
467 elementData[s] = e;
468 size = s + 1;
469 }
470
471 /**
472 * Appends the specified element to the end of this list.
473 *
474 * @param e element to be appended to this list
475 * @return {@code true} (as specified by {@link Collection#add})
476 */
477 public boolean add(E e) {
478 modCount++;
479 add(e, elementData, size);
480 return true;
481 }
482
483 /**
484 * Inserts the specified element at the specified position in this
485 * list. Shifts the element currently at that position (if any) and
486 * any subsequent elements to the right (adds one to their indices).
487 *
488 * @param index index at which the specified element is to be inserted
489 * @param element element to be inserted
490 * @throws IndexOutOfBoundsException {@inheritDoc}
491 */
492 public void add(int index, E element) {
493 rangeCheckForAdd(index);
494 modCount++;
495 final int s;
496 Object[] elementData;
497 if ((s = size) == (elementData = this.elementData).length)
498 elementData = grow();
499 System.arraycopy(elementData, index,
500 elementData, index + 1,
501 s - index);
502 elementData[index] = element;
503 size = s + 1;
504 }
505
506 /**
507 * Removes the element at the specified position in this list.
508 * Shifts any subsequent elements to the left (subtracts one from their
509 * indices).
510 *
511 * @param index the index of the element to be removed
512 * @return the element that was removed from the list
513 * @throws IndexOutOfBoundsException {@inheritDoc}
514 */
515 public E remove(int index) {
516 Objects.checkIndex(index, size);
517
518 modCount++;
519 E oldValue = elementData(index);
520
521 int numMoved = size - index - 1;
522 if (numMoved > 0)
523 System.arraycopy(elementData, index+1, elementData, index,
524 numMoved);
525 elementData[--size] = null; // clear to let GC do its work
526
527 return oldValue;
528 }
529
530 /**
531 * Removes the first occurrence of the specified element from this list,
532 * if it is present. If the list does not contain the element, it is
533 * unchanged. More formally, removes the element with the lowest index
534 * {@code i} such that
535 * {@code Objects.equals(o, get(i))}
536 * (if such an element exists). Returns {@code true} if this list
537 * contained the specified element (or equivalently, if this list
538 * changed as a result of the call).
539 *
540 * @param o element to be removed from this list, if present
541 * @return {@code true} if this list contained the specified element
542 */
543 public boolean remove(Object o) {
544 if (o == null) {
545 for (int index = 0; index < size; index++)
546 if (elementData[index] == null) {
547 fastRemove(index);
548 return true;
549 }
550 } else {
551 for (int index = 0; index < size; index++)
552 if (o.equals(elementData[index])) {
553 fastRemove(index);
554 return true;
555 }
556 }
557 return false;
558 }
559
560 /*
561 * Private remove method that skips bounds checking and does not
562 * return the value removed.
563 */
564 private void fastRemove(int index) {
565 modCount++;
566 int numMoved = size - index - 1;
567 if (numMoved > 0)
568 System.arraycopy(elementData, index+1, elementData, index,
569 numMoved);
570 elementData[--size] = null; // clear to let GC do its work
571 }
572
573 /**
574 * Removes all of the elements from this list. The list will
575 * be empty after this call returns.
576 */
577 public void clear() {
578 modCount++;
579
580 // clear to let GC do its work
581 for (int i = 0; i < size; i++)
582 elementData[i] = null;
583
584 size = 0;
585 }
586
587 /**
588 * Appends all of the elements in the specified collection to the end of
589 * this list, in the order that they are returned by the
590 * specified collection's Iterator. The behavior of this operation is
591 * undefined if the specified collection is modified while the operation
592 * is in progress. (This implies that the behavior of this call is
593 * undefined if the specified collection is this list, and this
594 * list is nonempty.)
595 *
596 * @param c collection containing elements to be added to this list
597 * @return {@code true} if this list changed as a result of the call
598 * @throws NullPointerException if the specified collection is null
599 */
600 public boolean addAll(Collection<? extends E> c) {
601 Object[] a = c.toArray();
602 modCount++;
603 int numNew = a.length;
604 if (numNew == 0)
605 return false;
606 Object[] elementData;
607 final int s;
608 if (numNew > (elementData = this.elementData).length - (s = size))
609 elementData = grow(s + numNew);
610 System.arraycopy(a, 0, elementData, s, numNew);
611 size = s + numNew;
612 return true;
613 }
614
615 /**
616 * Inserts all of the elements in the specified collection into this
617 * list, starting at the specified position. Shifts the element
618 * currently at that position (if any) and any subsequent elements to
619 * the right (increases their indices). The new elements will appear
620 * in the list in the order that they are returned by the
621 * specified collection's iterator.
622 *
623 * @param index index at which to insert the first element from the
624 * specified collection
625 * @param c collection containing elements to be added to this list
626 * @return {@code true} if this list changed as a result of the call
627 * @throws IndexOutOfBoundsException {@inheritDoc}
628 * @throws NullPointerException if the specified collection is null
629 */
630 public boolean addAll(int index, Collection<? extends E> c) {
631 rangeCheckForAdd(index);
632
633 Object[] a = c.toArray();
634 modCount++;
635 int numNew = a.length;
636 if (numNew == 0)
637 return false;
638 Object[] elementData;
639 final int s;
640 if (numNew > (elementData = this.elementData).length - (s = size))
641 elementData = grow(s + numNew);
642
643 int numMoved = s - index;
644 if (numMoved > 0)
645 System.arraycopy(elementData, index,
646 elementData, index + numNew,
647 numMoved);
648 System.arraycopy(a, 0, elementData, index, numNew);
649 size = s + numNew;
650 return true;
651 }
652
653 /**
654 * Removes from this list all of the elements whose index is between
655 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
656 * Shifts any succeeding elements to the left (reduces their index).
657 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
658 * (If {@code toIndex==fromIndex}, this operation has no effect.)
659 *
660 * @throws IndexOutOfBoundsException if {@code fromIndex} or
661 * {@code toIndex} is out of range
662 * ({@code fromIndex < 0 ||
663 * toIndex > size() ||
664 * toIndex < fromIndex})
665 */
666 protected void removeRange(int fromIndex, int toIndex) {
667 if (fromIndex > toIndex) {
668 throw new IndexOutOfBoundsException(
669 outOfBoundsMsg(fromIndex, toIndex));
670 }
671 modCount++;
672 int numMoved = size - toIndex;
673 System.arraycopy(elementData, toIndex, elementData, fromIndex,
674 numMoved);
675
676 // clear to let GC do its work
677 int newSize = size - (toIndex-fromIndex);
678 for (int i = newSize; i < size; i++) {
679 elementData[i] = null;
680 }
681 size = newSize;
682 }
683
684 /**
685 * A version of rangeCheck used by add and addAll.
686 */
687 private void rangeCheckForAdd(int index) {
688 if (index > size || index < 0)
689 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
690 }
691
692 /**
693 * Constructs an IndexOutOfBoundsException detail message.
694 * Of the many possible refactorings of the error handling code,
695 * this "outlining" performs best with both server and client VMs.
696 */
697 private String outOfBoundsMsg(int index) {
698 return "Index: "+index+", Size: "+size;
699 }
700
701 /**
702 * A version used in checking (fromIndex > toIndex) condition
703 */
704 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
705 return "From Index: " + fromIndex + " > To Index: " + toIndex;
706 }
707
708 /**
709 * Removes from this list all of its elements that are contained in the
710 * specified collection.
711 *
712 * @param c collection containing elements to be removed from this list
713 * @return {@code true} if this list changed as a result of the call
714 * @throws ClassCastException if the class of an element of this list
715 * is incompatible with the specified collection
716 * (<a href="Collection.html#optional-restrictions">optional</a>)
717 * @throws NullPointerException if this list contains a null element and the
718 * specified collection does not permit null elements
719 * (<a href="Collection.html#optional-restrictions">optional</a>),
720 * or if the specified collection is null
721 * @see Collection#contains(Object)
722 */
723 public boolean removeAll(Collection<?> c) {
724 return batchRemove(c, false);
725 }
726
727 /**
728 * Retains only the elements in this list that are contained in the
729 * specified collection. In other words, removes from this list all
730 * of its elements that are not contained in the specified collection.
731 *
732 * @param c collection containing elements to be retained in this list
733 * @return {@code true} if this list changed as a result of the call
734 * @throws ClassCastException if the class of an element of this list
735 * is incompatible with the specified collection
736 * (<a href="Collection.html#optional-restrictions">optional</a>)
737 * @throws NullPointerException if this list contains a null element and the
738 * specified collection does not permit null elements
739 * (<a href="Collection.html#optional-restrictions">optional</a>),
740 * or if the specified collection is null
741 * @see Collection#contains(Object)
742 */
743 public boolean retainAll(Collection<?> c) {
744 return batchRemove(c, true);
745 }
746
747 private boolean batchRemove(Collection<?> c, boolean complement) {
748 Objects.requireNonNull(c);
749 final Object[] es = elementData;
750 final int end = size;
751 final boolean modified;
752 int r;
753 // Optimize for initial run of survivors
754 for (r = 0; r < end && c.contains(es[r]) == complement; r++)
755 ;
756 if (modified = (r < end)) {
757 int w = r++;
758 try {
759 for (Object e; r < end; r++)
760 if (c.contains(e = es[r]) == complement)
761 es[w++] = e;
762 } catch (Throwable ex) {
763 // Preserve behavioral compatibility with AbstractCollection,
764 // even if c.contains() throws.
765 System.arraycopy(es, r, es, w, end - r);
766 w += end - r;
767 throw ex;
768 } finally {
769 modCount += end - w;
770 Arrays.fill(es, size = w, end, null);
771 }
772 }
773 return modified;
774 }
775
776 /**
777 * Save the state of the {@code ArrayList} instance to a stream (that
778 * is, serialize it).
779 *
780 * @serialData The length of the array backing the {@code ArrayList}
781 * instance is emitted (int), followed by all of its elements
782 * (each an {@code Object}) in the proper order.
783 */
784 private void writeObject(java.io.ObjectOutputStream s)
785 throws java.io.IOException{
786 // Write out element count, and any hidden stuff
787 int expectedModCount = modCount;
788 s.defaultWriteObject();
789
790 // Write out size as capacity for behavioural compatibility with clone()
791 s.writeInt(size);
792
793 // Write out all elements in the proper order.
794 for (int i=0; i<size; i++) {
795 s.writeObject(elementData[i]);
796 }
797
798 if (modCount != expectedModCount) {
799 throw new ConcurrentModificationException();
800 }
801 }
802
803 /**
804 * Reconstitute the {@code ArrayList} instance from a stream (that is,
805 * deserialize it).
806 */
807 private void readObject(java.io.ObjectInputStream s)
808 throws java.io.IOException, ClassNotFoundException {
809
810 // Read in size, and any hidden stuff
811 s.defaultReadObject();
812
813 // Read in capacity
814 s.readInt(); // ignored
815
816 if (size > 0) {
817 // like clone(), allocate array based upon size not capacity
818 Object[] elements = new Object[size];
819
820 // Read in all elements in the proper order.
821 for (int i = 0; i < size; i++) {
822 elements[i] = s.readObject();
823 }
824
825 elementData = elements;
826 } else if (size == 0) {
827 elementData = EMPTY_ELEMENTDATA;
828 } else {
829 throw new java.io.InvalidObjectException("Invalid size: " + size);
830 }
831 }
832
833 /**
834 * Returns a list iterator over the elements in this list (in proper
835 * sequence), starting at the specified position in the list.
836 * The specified index indicates the first element that would be
837 * returned by an initial call to {@link ListIterator#next next}.
838 * An initial call to {@link ListIterator#previous previous} would
839 * return the element with the specified index minus one.
840 *
841 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
842 *
843 * @throws IndexOutOfBoundsException {@inheritDoc}
844 */
845 public ListIterator<E> listIterator(int index) {
846 rangeCheckForAdd(index);
847 return new ListItr(index);
848 }
849
850 /**
851 * Returns a list iterator over the elements in this list (in proper
852 * sequence).
853 *
854 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
855 *
856 * @see #listIterator(int)
857 */
858 public ListIterator<E> listIterator() {
859 return new ListItr(0);
860 }
861
862 /**
863 * Returns an iterator over the elements in this list in proper sequence.
864 *
865 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
866 *
867 * @return an iterator over the elements in this list in proper sequence
868 */
869 public Iterator<E> iterator() {
870 return new Itr();
871 }
872
873 /**
874 * An optimized version of AbstractList.Itr
875 */
876 private class Itr implements Iterator<E> {
877 int cursor; // index of next element to return
878 int lastRet = -1; // index of last element returned; -1 if no such
879 int expectedModCount = modCount;
880
881 // prevent creating a synthetic constructor
882 Itr() {}
883
884 public boolean hasNext() {
885 return cursor != size;
886 }
887
888 @SuppressWarnings("unchecked")
889 public E next() {
890 checkForComodification();
891 int i = cursor;
892 if (i >= size)
893 throw new NoSuchElementException();
894 Object[] elementData = ArrayList.this.elementData;
895 if (i >= elementData.length)
896 throw new ConcurrentModificationException();
897 cursor = i + 1;
898 return (E) elementData[lastRet = i];
899 }
900
901 public void remove() {
902 if (lastRet < 0)
903 throw new IllegalStateException();
904 checkForComodification();
905
906 try {
907 ArrayList.this.remove(lastRet);
908 cursor = lastRet;
909 lastRet = -1;
910 expectedModCount = modCount;
911 } catch (IndexOutOfBoundsException ex) {
912 throw new ConcurrentModificationException();
913 }
914 }
915
916 @Override
917 @SuppressWarnings("unchecked")
918 public void forEachRemaining(Consumer<? super E> consumer) {
919 Objects.requireNonNull(consumer);
920 final int size = ArrayList.this.size;
921 int i = cursor;
922 if (i >= size) {
923 return;
924 }
925 final Object[] elementData = ArrayList.this.elementData;
926 if (i >= elementData.length) {
927 throw new ConcurrentModificationException();
928 }
929 while (i != size && modCount == expectedModCount) {
930 consumer.accept((E) elementData[i++]);
931 }
932 // update once at end of iteration to reduce heap write traffic
933 cursor = i;
934 lastRet = i - 1;
935 checkForComodification();
936 }
937
938 final void checkForComodification() {
939 if (modCount != expectedModCount)
940 throw new ConcurrentModificationException();
941 }
942 }
943
944 /**
945 * An optimized version of AbstractList.ListItr
946 */
947 private class ListItr extends Itr implements ListIterator<E> {
948 ListItr(int index) {
949 super();
950 cursor = index;
951 }
952
953 public boolean hasPrevious() {
954 return cursor != 0;
955 }
956
957 public int nextIndex() {
958 return cursor;
959 }
960
961 public int previousIndex() {
962 return cursor - 1;
963 }
964
965 @SuppressWarnings("unchecked")
966 public E previous() {
967 checkForComodification();
968 int i = cursor - 1;
969 if (i < 0)
970 throw new NoSuchElementException();
971 Object[] elementData = ArrayList.this.elementData;
972 if (i >= elementData.length)
973 throw new ConcurrentModificationException();
974 cursor = i;
975 return (E) elementData[lastRet = i];
976 }
977
978 public void set(E e) {
979 if (lastRet < 0)
980 throw new IllegalStateException();
981 checkForComodification();
982
983 try {
984 ArrayList.this.set(lastRet, e);
985 } catch (IndexOutOfBoundsException ex) {
986 throw new ConcurrentModificationException();
987 }
988 }
989
990 public void add(E e) {
991 checkForComodification();
992
993 try {
994 int i = cursor;
995 ArrayList.this.add(i, e);
996 cursor = i + 1;
997 lastRet = -1;
998 expectedModCount = modCount;
999 } catch (IndexOutOfBoundsException ex) {
1000 throw new ConcurrentModificationException();
1001 }
1002 }
1003 }
1004
1005 /**
1006 * Returns a view of the portion of this list between the specified
1007 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1008 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1009 * empty.) The returned list is backed by this list, so non-structural
1010 * changes in the returned list are reflected in this list, and vice-versa.
1011 * The returned list supports all of the optional list operations.
1012 *
1013 * <p>This method eliminates the need for explicit range operations (of
1014 * the sort that commonly exist for arrays). Any operation that expects
1015 * a list can be used as a range operation by passing a subList view
1016 * instead of a whole list. For example, the following idiom
1017 * removes a range of elements from a list:
1018 * <pre>
1019 * list.subList(from, to).clear();
1020 * </pre>
1021 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1022 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1023 * {@link Collections} class can be applied to a subList.
1024 *
1025 * <p>The semantics of the list returned by this method become undefined if
1026 * the backing list (i.e., this list) is <i>structurally modified</i> in
1027 * any way other than via the returned list. (Structural modifications are
1028 * those that change the size of this list, or otherwise perturb it in such
1029 * a fashion that iterations in progress may yield incorrect results.)
1030 *
1031 * @throws IndexOutOfBoundsException {@inheritDoc}
1032 * @throws IllegalArgumentException {@inheritDoc}
1033 */
1034 public List<E> subList(int fromIndex, int toIndex) {
1035 subListRangeCheck(fromIndex, toIndex, size);
1036 return new SubList<>(this, fromIndex, toIndex);
1037 }
1038
1039 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1040 private final ArrayList<E> root;
1041 private final SubList<E> parent;
1042 private final int offset;
1043 private int size;
1044
1045 /**
1046 * Constructs a sublist of an arbitrary ArrayList.
1047 */
1048 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1049 this.root = root;
1050 this.parent = null;
1051 this.offset = fromIndex;
1052 this.size = toIndex - fromIndex;
1053 this.modCount = root.modCount;
1054 }
1055
1056 /**
1057 * Constructs a sublist of another SubList.
1058 */
1059 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1060 this.root = parent.root;
1061 this.parent = parent;
1062 this.offset = parent.offset + fromIndex;
1063 this.size = toIndex - fromIndex;
1064 this.modCount = root.modCount;
1065 }
1066
1067 public E set(int index, E element) {
1068 Objects.checkIndex(index, size);
1069 checkForComodification();
1070 E oldValue = root.elementData(offset + index);
1071 root.elementData[offset + index] = element;
1072 return oldValue;
1073 }
1074
1075 public E get(int index) {
1076 Objects.checkIndex(index, size);
1077 checkForComodification();
1078 return root.elementData(offset + index);
1079 }
1080
1081 public int size() {
1082 checkForComodification();
1083 return size;
1084 }
1085
1086 public void add(int index, E element) {
1087 rangeCheckForAdd(index);
1088 checkForComodification();
1089 root.add(offset + index, element);
1090 updateSizeAndModCount(1);
1091 }
1092
1093 public E remove(int index) {
1094 Objects.checkIndex(index, size);
1095 checkForComodification();
1096 E result = root.remove(offset + index);
1097 updateSizeAndModCount(-1);
1098 return result;
1099 }
1100
1101 protected void removeRange(int fromIndex, int toIndex) {
1102 checkForComodification();
1103 root.removeRange(offset + fromIndex, offset + toIndex);
1104 updateSizeAndModCount(fromIndex - toIndex);
1105 }
1106
1107 public boolean addAll(Collection<? extends E> c) {
1108 return addAll(this.size, c);
1109 }
1110
1111 public boolean addAll(int index, Collection<? extends E> c) {
1112 rangeCheckForAdd(index);
1113 int cSize = c.size();
1114 if (cSize==0)
1115 return false;
1116 checkForComodification();
1117 root.addAll(offset + index, c);
1118 updateSizeAndModCount(cSize);
1119 return true;
1120 }
1121
1122 public Iterator<E> iterator() {
1123 return listIterator();
1124 }
1125
1126 public ListIterator<E> listIterator(int index) {
1127 checkForComodification();
1128 rangeCheckForAdd(index);
1129
1130 return new ListIterator<E>() {
1131 int cursor = index;
1132 int lastRet = -1;
1133 int expectedModCount = root.modCount;
1134
1135 public boolean hasNext() {
1136 return cursor != SubList.this.size;
1137 }
1138
1139 @SuppressWarnings("unchecked")
1140 public E next() {
1141 checkForComodification();
1142 int i = cursor;
1143 if (i >= SubList.this.size)
1144 throw new NoSuchElementException();
1145 Object[] elementData = root.elementData;
1146 if (offset + i >= elementData.length)
1147 throw new ConcurrentModificationException();
1148 cursor = i + 1;
1149 return (E) elementData[offset + (lastRet = i)];
1150 }
1151
1152 public boolean hasPrevious() {
1153 return cursor != 0;
1154 }
1155
1156 @SuppressWarnings("unchecked")
1157 public E previous() {
1158 checkForComodification();
1159 int i = cursor - 1;
1160 if (i < 0)
1161 throw new NoSuchElementException();
1162 Object[] elementData = root.elementData;
1163 if (offset + i >= elementData.length)
1164 throw new ConcurrentModificationException();
1165 cursor = i;
1166 return (E) elementData[offset + (lastRet = i)];
1167 }
1168
1169 @SuppressWarnings("unchecked")
1170 public void forEachRemaining(Consumer<? super E> consumer) {
1171 Objects.requireNonNull(consumer);
1172 final int size = SubList.this.size;
1173 int i = cursor;
1174 if (i >= size) {
1175 return;
1176 }
1177 final Object[] elementData = root.elementData;
1178 if (offset + i >= elementData.length) {
1179 throw new ConcurrentModificationException();
1180 }
1181 while (i != size && modCount == expectedModCount) {
1182 consumer.accept((E) elementData[offset + (i++)]);
1183 }
1184 // update once at end of iteration to reduce heap write traffic
1185 lastRet = cursor = i;
1186 checkForComodification();
1187 }
1188
1189 public int nextIndex() {
1190 return cursor;
1191 }
1192
1193 public int previousIndex() {
1194 return cursor - 1;
1195 }
1196
1197 public void remove() {
1198 if (lastRet < 0)
1199 throw new IllegalStateException();
1200 checkForComodification();
1201
1202 try {
1203 SubList.this.remove(lastRet);
1204 cursor = lastRet;
1205 lastRet = -1;
1206 expectedModCount = root.modCount;
1207 } catch (IndexOutOfBoundsException ex) {
1208 throw new ConcurrentModificationException();
1209 }
1210 }
1211
1212 public void set(E e) {
1213 if (lastRet < 0)
1214 throw new IllegalStateException();
1215 checkForComodification();
1216
1217 try {
1218 root.set(offset + lastRet, e);
1219 } catch (IndexOutOfBoundsException ex) {
1220 throw new ConcurrentModificationException();
1221 }
1222 }
1223
1224 public void add(E e) {
1225 checkForComodification();
1226
1227 try {
1228 int i = cursor;
1229 SubList.this.add(i, e);
1230 cursor = i + 1;
1231 lastRet = -1;
1232 expectedModCount = root.modCount;
1233 } catch (IndexOutOfBoundsException ex) {
1234 throw new ConcurrentModificationException();
1235 }
1236 }
1237
1238 final void checkForComodification() {
1239 if (root.modCount != expectedModCount)
1240 throw new ConcurrentModificationException();
1241 }
1242 };
1243 }
1244
1245 public List<E> subList(int fromIndex, int toIndex) {
1246 subListRangeCheck(fromIndex, toIndex, size);
1247 return new SubList<>(this, fromIndex, toIndex);
1248 }
1249
1250 private void rangeCheckForAdd(int index) {
1251 if (index < 0 || index > this.size)
1252 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1253 }
1254
1255 private String outOfBoundsMsg(int index) {
1256 return "Index: "+index+", Size: "+this.size;
1257 }
1258
1259 private void checkForComodification() {
1260 if (root.modCount != modCount)
1261 throw new ConcurrentModificationException();
1262 }
1263
1264 private void updateSizeAndModCount(int sizeChange) {
1265 SubList<E> slist = this;
1266 do {
1267 slist.size += sizeChange;
1268 slist.modCount = root.modCount;
1269 slist = slist.parent;
1270 } while (slist != null);
1271 }
1272
1273 public Spliterator<E> spliterator() {
1274 checkForComodification();
1275
1276 // ArrayListSpliterator is not used because late-binding logic
1277 // is different here
1278 return new Spliterator<>() {
1279 private int index = offset; // current index, modified on advance/split
1280 private int fence = -1; // -1 until used; then one past last index
1281 private int expectedModCount; // initialized when fence set
1282
1283 private int getFence() { // initialize fence to size on first use
1284 int hi; // (a specialized variant appears in method forEach)
1285 if ((hi = fence) < 0) {
1286 expectedModCount = modCount;
1287 hi = fence = offset + size;
1288 }
1289 return hi;
1290 }
1291
1292 public ArrayListSpliterator<E> trySplit() {
1293 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1294 // ArrayListSpliterator could be used here as the source is already bound
1295 return (lo >= mid) ? null : // divide range in half unless too small
1296 new ArrayListSpliterator<>(root, lo, index = mid,
1297 expectedModCount);
1298 }
1299
1300 public boolean tryAdvance(Consumer<? super E> action) {
1301 Objects.requireNonNull(action);
1302 int hi = getFence(), i = index;
1303 if (i < hi) {
1304 index = i + 1;
1305 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1306 action.accept(e);
1307 if (root.modCount != expectedModCount)
1308 throw new ConcurrentModificationException();
1309 return true;
1310 }
1311 return false;
1312 }
1313
1314 public void forEachRemaining(Consumer<? super E> action) {
1315 Objects.requireNonNull(action);
1316 int i, hi, mc; // hoist accesses and checks from loop
1317 ArrayList<E> lst = root;
1318 Object[] a;
1319 if ((a = lst.elementData) != null) {
1320 if ((hi = fence) < 0) {
1321 mc = modCount;
1322 hi = offset + size;
1323 }
1324 else
1325 mc = expectedModCount;
1326 if ((i = index) >= 0 && (index = hi) <= a.length) {
1327 for (; i < hi; ++i) {
1328 @SuppressWarnings("unchecked") E e = (E) a[i];
1329 action.accept(e);
1330 }
1331 if (lst.modCount == mc)
1332 return;
1333 }
1334 }
1335 throw new ConcurrentModificationException();
1336 }
1337
1338 public long estimateSize() {
1339 return (long) (getFence() - index);
1340 }
1341
1342 public int characteristics() {
1343 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1344 }
1345 };
1346 }
1347 }
1348
1349 @Override
1350 public void forEach(Consumer<? super E> action) {
1351 Objects.requireNonNull(action);
1352 final int expectedModCount = modCount;
1353 final Object[] es = elementData;
1354 final int size = this.size;
1355 for (int i = 0; modCount == expectedModCount && i < size; i++) {
1356 action.accept(elementAt(es, i));
1357 }
1358 if (modCount != expectedModCount) {
1359 throw new ConcurrentModificationException();
1360 }
1361 }
1362
1363 /**
1364 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1365 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1366 * list.
1367 *
1368 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1369 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1370 * Overriding implementations should document the reporting of additional
1371 * characteristic values.
1372 *
1373 * @return a {@code Spliterator} over the elements in this list
1374 * @since 1.8
1375 */
1376 @Override
1377 public Spliterator<E> spliterator() {
1378 return new ArrayListSpliterator<>(this, 0, -1, 0);
1379 }
1380
1381 /** Index-based split-by-two, lazily initialized Spliterator */
1382 static final class ArrayListSpliterator<E> implements Spliterator<E> {
1383
1384 /*
1385 * If ArrayLists were immutable, or structurally immutable (no
1386 * adds, removes, etc), we could implement their spliterators
1387 * with Arrays.spliterator. Instead we detect as much
1388 * interference during traversal as practical without
1389 * sacrificing much performance. We rely primarily on
1390 * modCounts. These are not guaranteed to detect concurrency
1391 * violations, and are sometimes overly conservative about
1392 * within-thread interference, but detect enough problems to
1393 * be worthwhile in practice. To carry this out, we (1) lazily
1394 * initialize fence and expectedModCount until the latest
1395 * point that we need to commit to the state we are checking
1396 * against; thus improving precision. (This doesn't apply to
1397 * SubLists, that create spliterators with current non-lazy
1398 * values). (2) We perform only a single
1399 * ConcurrentModificationException check at the end of forEach
1400 * (the most performance-sensitive method). When using forEach
1401 * (as opposed to iterators), we can normally only detect
1402 * interference after actions, not before. Further
1403 * CME-triggering checks apply to all other possible
1404 * violations of assumptions for example null or too-small
1405 * elementData array given its size(), that could only have
1406 * occurred due to interference. This allows the inner loop
1407 * of forEach to run without any further checks, and
1408 * simplifies lambda-resolution. While this does entail a
1409 * number of checks, note that in the common case of
1410 * list.stream().forEach(a), no checks or other computation
1411 * occur anywhere other than inside forEach itself. The other
1412 * less-often-used methods cannot take advantage of most of
1413 * these streamlinings.
1414 */
1415
1416 private final ArrayList<E> list;
1417 private int index; // current index, modified on advance/split
1418 private int fence; // -1 until used; then one past last index
1419 private int expectedModCount; // initialized when fence set
1420
1421 /** Create new spliterator covering the given range */
1422 ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1423 int expectedModCount) {
1424 this.list = list; // OK if null unless traversed
1425 this.index = origin;
1426 this.fence = fence;
1427 this.expectedModCount = expectedModCount;
1428 }
1429
1430 private int getFence() { // initialize fence to size on first use
1431 int hi; // (a specialized variant appears in method forEach)
1432 ArrayList<E> lst;
1433 if ((hi = fence) < 0) {
1434 if ((lst = list) == null)
1435 hi = fence = 0;
1436 else {
1437 expectedModCount = lst.modCount;
1438 hi = fence = lst.size;
1439 }
1440 }
1441 return hi;
1442 }
1443
1444 public ArrayListSpliterator<E> trySplit() {
1445 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1446 return (lo >= mid) ? null : // divide range in half unless too small
1447 new ArrayListSpliterator<>(list, lo, index = mid,
1448 expectedModCount);
1449 }
1450
1451 public boolean tryAdvance(Consumer<? super E> action) {
1452 if (action == null)
1453 throw new NullPointerException();
1454 int hi = getFence(), i = index;
1455 if (i < hi) {
1456 index = i + 1;
1457 @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1458 action.accept(e);
1459 if (list.modCount != expectedModCount)
1460 throw new ConcurrentModificationException();
1461 return true;
1462 }
1463 return false;
1464 }
1465
1466 public void forEachRemaining(Consumer<? super E> action) {
1467 int i, hi, mc; // hoist accesses and checks from loop
1468 ArrayList<E> lst; Object[] a;
1469 if (action == null)
1470 throw new NullPointerException();
1471 if ((lst = list) != null && (a = lst.elementData) != null) {
1472 if ((hi = fence) < 0) {
1473 mc = lst.modCount;
1474 hi = lst.size;
1475 }
1476 else
1477 mc = expectedModCount;
1478 if ((i = index) >= 0 && (index = hi) <= a.length) {
1479 for (; i < hi; ++i) {
1480 @SuppressWarnings("unchecked") E e = (E) a[i];
1481 action.accept(e);
1482 }
1483 if (lst.modCount == mc)
1484 return;
1485 }
1486 }
1487 throw new ConcurrentModificationException();
1488 }
1489
1490 public long estimateSize() {
1491 return (long) (getFence() - index);
1492 }
1493
1494 public int characteristics() {
1495 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1496 }
1497 }
1498
1499 // A tiny bit set implementation
1500
1501 private static long[] nBits(int n) {
1502 return new long[((n - 1) >> 6) + 1];
1503 }
1504 private static void setBit(long[] bits, int i) {
1505 bits[i >> 6] |= 1L << i;
1506 }
1507 private static boolean isClear(long[] bits, int i) {
1508 return (bits[i >> 6] & (1L << i)) == 0;
1509 }
1510
1511 @Override
1512 public boolean removeIf(Predicate<? super E> filter) {
1513 Objects.requireNonNull(filter);
1514 int expectedModCount = modCount;
1515 final Object[] es = elementData;
1516 final int end = size;
1517 final boolean modified;
1518 int i;
1519 // Optimize for initial run of survivors
1520 for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1521 ;
1522 // Tolerate predicates that reentrantly access the collection for
1523 // read (but writers still get CME), so traverse once to find
1524 // elements to delete, a second pass to physically expunge.
1525 if (modified = (i < end)) {
1526 expectedModCount++;
1527 modCount++;
1528 final int beg = i;
1529 final long[] deathRow = nBits(end - beg);
1530 deathRow[0] = 1L; // set bit 0
1531 for (i = beg + 1; i < end; i++)
1532 if (filter.test(elementAt(es, i)))
1533 setBit(deathRow, i - beg);
1534 int w = beg;
1535 for (i = beg; i < end; i++)
1536 if (isClear(deathRow, i - beg))
1537 es[w++] = es[i];
1538 Arrays.fill(es, size = w, end, null);
1539 }
1540 if (modCount != expectedModCount)
1541 throw new ConcurrentModificationException();
1542 return modified;
1543 }
1544
1545 @Override
1546 public void replaceAll(UnaryOperator<E> operator) {
1547 Objects.requireNonNull(operator);
1548 final int expectedModCount = modCount;
1549 final Object[] es = elementData;
1550 final int size = this.size;
1551 for (int i=0; modCount == expectedModCount && i < size; i++) {
1552 es[i] = operator.apply(elementAt(es, i));
1553 }
1554 if (modCount != expectedModCount) {
1555 throw new ConcurrentModificationException();
1556 }
1557 modCount++;
1558 }
1559
1560 @Override
1561 @SuppressWarnings("unchecked")
1562 public void sort(Comparator<? super E> c) {
1563 final int expectedModCount = modCount;
1564 Arrays.sort((E[]) elementData, 0, size, c);
1565 if (modCount != expectedModCount) {
1566 throw new ConcurrentModificationException();
1567 }
1568 modCount++;
1569 }
1570 }