ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.53
Committed: Mon Jul 3 20:08:10 2017 UTC (6 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.52: +21 -20 lines
Log Message:
batchRemove: rewrite to avoid errorprone [LogicalAssignment]

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * Resizable-array implementation of the {@code List} interface. Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}. In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list. (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time. All of the other operations
44 * run in linear time (roughly speaking). The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 * the size of the array used to store the elements in the list. It is always
49 * at least as large as the list size. As elements are added to an ArrayList,
50 * its capacity grows automatically. The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation. This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally. (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.) This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method. This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}. Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification. Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness: <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author Josh Bloch
100 * @author Neal Gafter
101 * @see Collection
102 * @see List
103 * @see LinkedList
104 * @see Vector
105 * @since 1.2
106 */
107 public class ArrayList<E> extends AbstractList<E>
108 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109 {
110 private static final long serialVersionUID = 8683452581122892189L;
111
112 /**
113 * Default initial capacity.
114 */
115 private static final int DEFAULT_CAPACITY = 10;
116
117 /**
118 * Shared empty array instance used for empty instances.
119 */
120 private static final Object[] EMPTY_ELEMENTDATA = {};
121
122 /**
123 * Shared empty array instance used for default sized empty instances. We
124 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 * first element is added.
126 */
127 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129 /**
130 * The array buffer into which the elements of the ArrayList are stored.
131 * The capacity of the ArrayList is the length of this array buffer. Any
132 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 */
135 transient Object[] elementData; // non-private to simplify nested class access
136
137 /**
138 * The size of the ArrayList (the number of elements it contains).
139 *
140 * @serial
141 */
142 private int size;
143
144 /**
145 * Constructs an empty list with the specified initial capacity.
146 *
147 * @param initialCapacity the initial capacity of the list
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public ArrayList(int initialCapacity) {
152 if (initialCapacity > 0) {
153 this.elementData = new Object[initialCapacity];
154 } else if (initialCapacity == 0) {
155 this.elementData = EMPTY_ELEMENTDATA;
156 } else {
157 throw new IllegalArgumentException("Illegal Capacity: "+
158 initialCapacity);
159 }
160 }
161
162 /**
163 * Constructs an empty list with an initial capacity of ten.
164 */
165 public ArrayList() {
166 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 }
168
169 /**
170 * Constructs a list containing the elements of the specified
171 * collection, in the order they are returned by the collection's
172 * iterator.
173 *
174 * @param c the collection whose elements are to be placed into this list
175 * @throws NullPointerException if the specified collection is null
176 */
177 public ArrayList(Collection<? extends E> c) {
178 elementData = c.toArray();
179 if ((size = elementData.length) != 0) {
180 // defend against c.toArray (incorrectly) not returning Object[]
181 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 if (elementData.getClass() != Object[].class)
183 elementData = Arrays.copyOf(elementData, size, Object[].class);
184 } else {
185 // replace with empty array.
186 this.elementData = EMPTY_ELEMENTDATA;
187 }
188 }
189
190 /**
191 * Trims the capacity of this {@code ArrayList} instance to be the
192 * list's current size. An application can use this operation to minimize
193 * the storage of an {@code ArrayList} instance.
194 */
195 public void trimToSize() {
196 modCount++;
197 if (size < elementData.length) {
198 elementData = (size == 0)
199 ? EMPTY_ELEMENTDATA
200 : Arrays.copyOf(elementData, size);
201 }
202 }
203
204 /**
205 * Increases the capacity of this {@code ArrayList} instance, if
206 * necessary, to ensure that it can hold at least the number of elements
207 * specified by the minimum capacity argument.
208 *
209 * @param minCapacity the desired minimum capacity
210 */
211 public void ensureCapacity(int minCapacity) {
212 if (minCapacity > elementData.length
213 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 && minCapacity <= DEFAULT_CAPACITY)) {
215 modCount++;
216 grow(minCapacity);
217 }
218 }
219
220 /**
221 * The maximum size of array to allocate (unless necessary).
222 * Some VMs reserve some header words in an array.
223 * Attempts to allocate larger arrays may result in
224 * OutOfMemoryError: Requested array size exceeds VM limit
225 */
226 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227
228 /**
229 * Increases the capacity to ensure that it can hold at least the
230 * number of elements specified by the minimum capacity argument.
231 *
232 * @param minCapacity the desired minimum capacity
233 * @throws OutOfMemoryError if minCapacity is less than zero
234 */
235 private Object[] grow(int minCapacity) {
236 return elementData = Arrays.copyOf(elementData,
237 newCapacity(minCapacity));
238 }
239
240 private Object[] grow() {
241 return grow(size + 1);
242 }
243
244 /**
245 * Returns a capacity at least as large as the given minimum capacity.
246 * Returns the current capacity increased by 50% if that suffices.
247 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 *
250 * @param minCapacity the desired minimum capacity
251 * @throws OutOfMemoryError if minCapacity is less than zero
252 */
253 private int newCapacity(int minCapacity) {
254 // overflow-conscious code
255 int oldCapacity = elementData.length;
256 int newCapacity = oldCapacity + (oldCapacity >> 1);
257 if (newCapacity - minCapacity <= 0) {
258 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 return Math.max(DEFAULT_CAPACITY, minCapacity);
260 if (minCapacity < 0) // overflow
261 throw new OutOfMemoryError();
262 return minCapacity;
263 }
264 return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 ? newCapacity
266 : hugeCapacity(minCapacity);
267 }
268
269 private static int hugeCapacity(int minCapacity) {
270 if (minCapacity < 0) // overflow
271 throw new OutOfMemoryError();
272 return (minCapacity > MAX_ARRAY_SIZE)
273 ? Integer.MAX_VALUE
274 : MAX_ARRAY_SIZE;
275 }
276
277 /**
278 * Returns the number of elements in this list.
279 *
280 * @return the number of elements in this list
281 */
282 public int size() {
283 return size;
284 }
285
286 /**
287 * Returns {@code true} if this list contains no elements.
288 *
289 * @return {@code true} if this list contains no elements
290 */
291 public boolean isEmpty() {
292 return size == 0;
293 }
294
295 /**
296 * Returns {@code true} if this list contains the specified element.
297 * More formally, returns {@code true} if and only if this list contains
298 * at least one element {@code e} such that
299 * {@code Objects.equals(o, e)}.
300 *
301 * @param o element whose presence in this list is to be tested
302 * @return {@code true} if this list contains the specified element
303 */
304 public boolean contains(Object o) {
305 return indexOf(o) >= 0;
306 }
307
308 /**
309 * Returns the index of the first occurrence of the specified element
310 * in this list, or -1 if this list does not contain the element.
311 * More formally, returns the lowest index {@code i} such that
312 * {@code Objects.equals(o, get(i))},
313 * or -1 if there is no such index.
314 */
315 public int indexOf(Object o) {
316 if (o == null) {
317 for (int i = 0; i < size; i++)
318 if (elementData[i]==null)
319 return i;
320 } else {
321 for (int i = 0; i < size; i++)
322 if (o.equals(elementData[i]))
323 return i;
324 }
325 return -1;
326 }
327
328 /**
329 * Returns the index of the last occurrence of the specified element
330 * in this list, or -1 if this list does not contain the element.
331 * More formally, returns the highest index {@code i} such that
332 * {@code Objects.equals(o, get(i))},
333 * or -1 if there is no such index.
334 */
335 public int lastIndexOf(Object o) {
336 if (o == null) {
337 for (int i = size-1; i >= 0; i--)
338 if (elementData[i]==null)
339 return i;
340 } else {
341 for (int i = size-1; i >= 0; i--)
342 if (o.equals(elementData[i]))
343 return i;
344 }
345 return -1;
346 }
347
348 /**
349 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 * elements themselves are not copied.)
351 *
352 * @return a clone of this {@code ArrayList} instance
353 */
354 public Object clone() {
355 try {
356 ArrayList<?> v = (ArrayList<?>) super.clone();
357 v.elementData = Arrays.copyOf(elementData, size);
358 v.modCount = 0;
359 return v;
360 } catch (CloneNotSupportedException e) {
361 // this shouldn't happen, since we are Cloneable
362 throw new InternalError(e);
363 }
364 }
365
366 /**
367 * Returns an array containing all of the elements in this list
368 * in proper sequence (from first to last element).
369 *
370 * <p>The returned array will be "safe" in that no references to it are
371 * maintained by this list. (In other words, this method must allocate
372 * a new array). The caller is thus free to modify the returned array.
373 *
374 * <p>This method acts as bridge between array-based and collection-based
375 * APIs.
376 *
377 * @return an array containing all of the elements in this list in
378 * proper sequence
379 */
380 public Object[] toArray() {
381 return Arrays.copyOf(elementData, size);
382 }
383
384 /**
385 * Returns an array containing all of the elements in this list in proper
386 * sequence (from first to last element); the runtime type of the returned
387 * array is that of the specified array. If the list fits in the
388 * specified array, it is returned therein. Otherwise, a new array is
389 * allocated with the runtime type of the specified array and the size of
390 * this list.
391 *
392 * <p>If the list fits in the specified array with room to spare
393 * (i.e., the array has more elements than the list), the element in
394 * the array immediately following the end of the collection is set to
395 * {@code null}. (This is useful in determining the length of the
396 * list <i>only</i> if the caller knows that the list does not contain
397 * any null elements.)
398 *
399 * @param a the array into which the elements of the list are to
400 * be stored, if it is big enough; otherwise, a new array of the
401 * same runtime type is allocated for this purpose.
402 * @return an array containing the elements of the list
403 * @throws ArrayStoreException if the runtime type of the specified array
404 * is not a supertype of the runtime type of every element in
405 * this list
406 * @throws NullPointerException if the specified array is null
407 */
408 @SuppressWarnings("unchecked")
409 public <T> T[] toArray(T[] a) {
410 if (a.length < size)
411 // Make a new array of a's runtime type, but my contents:
412 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 System.arraycopy(elementData, 0, a, 0, size);
414 if (a.length > size)
415 a[size] = null;
416 return a;
417 }
418
419 // Positional Access Operations
420
421 @SuppressWarnings("unchecked")
422 E elementData(int index) {
423 return (E) elementData[index];
424 }
425
426 @SuppressWarnings("unchecked")
427 static <E> E elementAt(Object[] es, int index) {
428 return (E) es[index];
429 }
430
431 /**
432 * Returns the element at the specified position in this list.
433 *
434 * @param index index of the element to return
435 * @return the element at the specified position in this list
436 * @throws IndexOutOfBoundsException {@inheritDoc}
437 */
438 public E get(int index) {
439 Objects.checkIndex(index, size);
440 return elementData(index);
441 }
442
443 /**
444 * Replaces the element at the specified position in this list with
445 * the specified element.
446 *
447 * @param index index of the element to replace
448 * @param element element to be stored at the specified position
449 * @return the element previously at the specified position
450 * @throws IndexOutOfBoundsException {@inheritDoc}
451 */
452 public E set(int index, E element) {
453 Objects.checkIndex(index, size);
454 E oldValue = elementData(index);
455 elementData[index] = element;
456 return oldValue;
457 }
458
459 /**
460 * This helper method split out from add(E) to keep method
461 * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 * which helps when add(E) is called in a C1-compiled loop.
463 */
464 private void add(E e, Object[] elementData, int s) {
465 if (s == elementData.length)
466 elementData = grow();
467 elementData[s] = e;
468 size = s + 1;
469 }
470
471 /**
472 * Appends the specified element to the end of this list.
473 *
474 * @param e element to be appended to this list
475 * @return {@code true} (as specified by {@link Collection#add})
476 */
477 public boolean add(E e) {
478 modCount++;
479 add(e, elementData, size);
480 return true;
481 }
482
483 /**
484 * Inserts the specified element at the specified position in this
485 * list. Shifts the element currently at that position (if any) and
486 * any subsequent elements to the right (adds one to their indices).
487 *
488 * @param index index at which the specified element is to be inserted
489 * @param element element to be inserted
490 * @throws IndexOutOfBoundsException {@inheritDoc}
491 */
492 public void add(int index, E element) {
493 rangeCheckForAdd(index);
494 modCount++;
495 final int s;
496 Object[] elementData;
497 if ((s = size) == (elementData = this.elementData).length)
498 elementData = grow();
499 System.arraycopy(elementData, index,
500 elementData, index + 1,
501 s - index);
502 elementData[index] = element;
503 size = s + 1;
504 // checkInvariants();
505 }
506
507 /**
508 * Removes the element at the specified position in this list.
509 * Shifts any subsequent elements to the left (subtracts one from their
510 * indices).
511 *
512 * @param index the index of the element to be removed
513 * @return the element that was removed from the list
514 * @throws IndexOutOfBoundsException {@inheritDoc}
515 */
516 public E remove(int index) {
517 Objects.checkIndex(index, size);
518 final Object[] es = elementData;
519
520 @SuppressWarnings("unchecked") E oldValue = (E) es[index];
521 fastRemove(es, index);
522
523 // checkInvariants();
524 return oldValue;
525 }
526
527 /**
528 * Removes the first occurrence of the specified element from this list,
529 * if it is present. If the list does not contain the element, it is
530 * unchanged. More formally, removes the element with the lowest index
531 * {@code i} such that
532 * {@code Objects.equals(o, get(i))}
533 * (if such an element exists). Returns {@code true} if this list
534 * contained the specified element (or equivalently, if this list
535 * changed as a result of the call).
536 *
537 * @param o element to be removed from this list, if present
538 * @return {@code true} if this list contained the specified element
539 */
540 public boolean remove(Object o) {
541 final Object[] es = elementData;
542 final int size = this.size;
543 int i = 0;
544 found: {
545 if (o == null) {
546 for (; i < size; i++)
547 if (es[i] == null)
548 break found;
549 } else {
550 for (; i < size; i++)
551 if (o.equals(es[i]))
552 break found;
553 }
554 return false;
555 }
556 fastRemove(es, i);
557 return true;
558 }
559
560 /**
561 * Private remove method that skips bounds checking and does not
562 * return the value removed.
563 */
564 private void fastRemove(Object[] es, int i) {
565 modCount++;
566 final int newSize;
567 if ((newSize = size - 1) > i)
568 System.arraycopy(es, i + 1, es, i, newSize - i);
569 es[size = newSize] = null;
570 }
571
572 /**
573 * Removes all of the elements from this list. The list will
574 * be empty after this call returns.
575 */
576 public void clear() {
577 modCount++;
578 final Object[] es = elementData;
579 for (int to = size, i = size = 0; i < to; i++)
580 es[i] = null;
581 }
582
583 /**
584 * Appends all of the elements in the specified collection to the end of
585 * this list, in the order that they are returned by the
586 * specified collection's Iterator. The behavior of this operation is
587 * undefined if the specified collection is modified while the operation
588 * is in progress. (This implies that the behavior of this call is
589 * undefined if the specified collection is this list, and this
590 * list is nonempty.)
591 *
592 * @param c collection containing elements to be added to this list
593 * @return {@code true} if this list changed as a result of the call
594 * @throws NullPointerException if the specified collection is null
595 */
596 public boolean addAll(Collection<? extends E> c) {
597 Object[] a = c.toArray();
598 modCount++;
599 int numNew = a.length;
600 if (numNew == 0)
601 return false;
602 Object[] elementData;
603 final int s;
604 if (numNew > (elementData = this.elementData).length - (s = size))
605 elementData = grow(s + numNew);
606 System.arraycopy(a, 0, elementData, s, numNew);
607 size = s + numNew;
608 // checkInvariants();
609 return true;
610 }
611
612 /**
613 * Inserts all of the elements in the specified collection into this
614 * list, starting at the specified position. Shifts the element
615 * currently at that position (if any) and any subsequent elements to
616 * the right (increases their indices). The new elements will appear
617 * in the list in the order that they are returned by the
618 * specified collection's iterator.
619 *
620 * @param index index at which to insert the first element from the
621 * specified collection
622 * @param c collection containing elements to be added to this list
623 * @return {@code true} if this list changed as a result of the call
624 * @throws IndexOutOfBoundsException {@inheritDoc}
625 * @throws NullPointerException if the specified collection is null
626 */
627 public boolean addAll(int index, Collection<? extends E> c) {
628 rangeCheckForAdd(index);
629
630 Object[] a = c.toArray();
631 modCount++;
632 int numNew = a.length;
633 if (numNew == 0)
634 return false;
635 Object[] elementData;
636 final int s;
637 if (numNew > (elementData = this.elementData).length - (s = size))
638 elementData = grow(s + numNew);
639
640 int numMoved = s - index;
641 if (numMoved > 0)
642 System.arraycopy(elementData, index,
643 elementData, index + numNew,
644 numMoved);
645 System.arraycopy(a, 0, elementData, index, numNew);
646 size = s + numNew;
647 // checkInvariants();
648 return true;
649 }
650
651 /**
652 * Removes from this list all of the elements whose index is between
653 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
654 * Shifts any succeeding elements to the left (reduces their index).
655 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
656 * (If {@code toIndex==fromIndex}, this operation has no effect.)
657 *
658 * @throws IndexOutOfBoundsException if {@code fromIndex} or
659 * {@code toIndex} is out of range
660 * ({@code fromIndex < 0 ||
661 * toIndex > size() ||
662 * toIndex < fromIndex})
663 */
664 protected void removeRange(int fromIndex, int toIndex) {
665 if (fromIndex > toIndex) {
666 throw new IndexOutOfBoundsException(
667 outOfBoundsMsg(fromIndex, toIndex));
668 }
669 modCount++;
670 shiftTailOverGap(elementData, fromIndex, toIndex);
671 // checkInvariants();
672 }
673
674 /** Erases the gap from lo to hi, by sliding down following elements. */
675 private void shiftTailOverGap(Object[] es, int lo, int hi) {
676 System.arraycopy(es, hi, es, lo, size - hi);
677 for (int to = size, i = (size -= hi - lo); i < to; i++)
678 es[i] = null;
679 }
680
681 /**
682 * A version of rangeCheck used by add and addAll.
683 */
684 private void rangeCheckForAdd(int index) {
685 if (index > size || index < 0)
686 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
687 }
688
689 /**
690 * Constructs an IndexOutOfBoundsException detail message.
691 * Of the many possible refactorings of the error handling code,
692 * this "outlining" performs best with both server and client VMs.
693 */
694 private String outOfBoundsMsg(int index) {
695 return "Index: "+index+", Size: "+size;
696 }
697
698 /**
699 * A version used in checking (fromIndex > toIndex) condition
700 */
701 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
702 return "From Index: " + fromIndex + " > To Index: " + toIndex;
703 }
704
705 /**
706 * Removes from this list all of its elements that are contained in the
707 * specified collection.
708 *
709 * @param c collection containing elements to be removed from this list
710 * @return {@code true} if this list changed as a result of the call
711 * @throws ClassCastException if the class of an element of this list
712 * is incompatible with the specified collection
713 * (<a href="Collection.html#optional-restrictions">optional</a>)
714 * @throws NullPointerException if this list contains a null element and the
715 * specified collection does not permit null elements
716 * (<a href="Collection.html#optional-restrictions">optional</a>),
717 * or if the specified collection is null
718 * @see Collection#contains(Object)
719 */
720 public boolean removeAll(Collection<?> c) {
721 return batchRemove(c, false, 0, size);
722 }
723
724 /**
725 * Retains only the elements in this list that are contained in the
726 * specified collection. In other words, removes from this list all
727 * of its elements that are not contained in the specified collection.
728 *
729 * @param c collection containing elements to be retained in this list
730 * @return {@code true} if this list changed as a result of the call
731 * @throws ClassCastException if the class of an element of this list
732 * is incompatible with the specified collection
733 * (<a href="Collection.html#optional-restrictions">optional</a>)
734 * @throws NullPointerException if this list contains a null element and the
735 * specified collection does not permit null elements
736 * (<a href="Collection.html#optional-restrictions">optional</a>),
737 * or if the specified collection is null
738 * @see Collection#contains(Object)
739 */
740 public boolean retainAll(Collection<?> c) {
741 return batchRemove(c, true, 0, size);
742 }
743
744 boolean batchRemove(Collection<?> c, boolean complement,
745 final int from, final int end) {
746 Objects.requireNonNull(c);
747 final Object[] es = elementData;
748 int r;
749 // Optimize for initial run of survivors
750 for (r = from;; r++) {
751 if (r == end)
752 return false;
753 if (c.contains(es[r]) != complement)
754 break;
755 }
756 int w = r++;
757 try {
758 for (Object e; r < end; r++)
759 if (c.contains(e = es[r]) == complement)
760 es[w++] = e;
761 } catch (Throwable ex) {
762 // Preserve behavioral compatibility with AbstractCollection,
763 // even if c.contains() throws.
764 System.arraycopy(es, r, es, w, end - r);
765 w += end - r;
766 throw ex;
767 } finally {
768 modCount += end - w;
769 shiftTailOverGap(es, w, end);
770 }
771 // checkInvariants();
772 return true;
773 }
774
775 /**
776 * Saves the state of the {@code ArrayList} instance to a stream
777 * (that is, serializes it).
778 *
779 * @param s the stream
780 * @throws java.io.IOException if an I/O error occurs
781 * @serialData The length of the array backing the {@code ArrayList}
782 * instance is emitted (int), followed by all of its elements
783 * (each an {@code Object}) in the proper order.
784 */
785 private void writeObject(java.io.ObjectOutputStream s)
786 throws java.io.IOException {
787 // Write out element count, and any hidden stuff
788 int expectedModCount = modCount;
789 s.defaultWriteObject();
790
791 // Write out size as capacity for behavioral compatibility with clone()
792 s.writeInt(size);
793
794 // Write out all elements in the proper order.
795 for (int i=0; i<size; i++) {
796 s.writeObject(elementData[i]);
797 }
798
799 if (modCount != expectedModCount) {
800 throw new ConcurrentModificationException();
801 }
802 }
803
804 /**
805 * Reconstitutes the {@code ArrayList} instance from a stream (that is,
806 * deserializes it).
807 * @param s the stream
808 * @throws ClassNotFoundException if the class of a serialized object
809 * could not be found
810 * @throws java.io.IOException if an I/O error occurs
811 */
812 private void readObject(java.io.ObjectInputStream s)
813 throws java.io.IOException, ClassNotFoundException {
814
815 // Read in size, and any hidden stuff
816 s.defaultReadObject();
817
818 // Read in capacity
819 s.readInt(); // ignored
820
821 if (size > 0) {
822 // like clone(), allocate array based upon size not capacity
823 Object[] elements = new Object[size];
824
825 // Read in all elements in the proper order.
826 for (int i = 0; i < size; i++) {
827 elements[i] = s.readObject();
828 }
829
830 elementData = elements;
831 } else if (size == 0) {
832 elementData = EMPTY_ELEMENTDATA;
833 } else {
834 throw new java.io.InvalidObjectException("Invalid size: " + size);
835 }
836 }
837
838 /**
839 * Returns a list iterator over the elements in this list (in proper
840 * sequence), starting at the specified position in the list.
841 * The specified index indicates the first element that would be
842 * returned by an initial call to {@link ListIterator#next next}.
843 * An initial call to {@link ListIterator#previous previous} would
844 * return the element with the specified index minus one.
845 *
846 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
847 *
848 * @throws IndexOutOfBoundsException {@inheritDoc}
849 */
850 public ListIterator<E> listIterator(int index) {
851 rangeCheckForAdd(index);
852 return new ListItr(index);
853 }
854
855 /**
856 * Returns a list iterator over the elements in this list (in proper
857 * sequence).
858 *
859 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
860 *
861 * @see #listIterator(int)
862 */
863 public ListIterator<E> listIterator() {
864 return new ListItr(0);
865 }
866
867 /**
868 * Returns an iterator over the elements in this list in proper sequence.
869 *
870 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
871 *
872 * @return an iterator over the elements in this list in proper sequence
873 */
874 public Iterator<E> iterator() {
875 return new Itr();
876 }
877
878 /**
879 * An optimized version of AbstractList.Itr
880 */
881 private class Itr implements Iterator<E> {
882 int cursor; // index of next element to return
883 int lastRet = -1; // index of last element returned; -1 if no such
884 int expectedModCount = modCount;
885
886 // prevent creating a synthetic constructor
887 Itr() {}
888
889 public boolean hasNext() {
890 return cursor != size;
891 }
892
893 @SuppressWarnings("unchecked")
894 public E next() {
895 checkForComodification();
896 int i = cursor;
897 if (i >= size)
898 throw new NoSuchElementException();
899 Object[] elementData = ArrayList.this.elementData;
900 if (i >= elementData.length)
901 throw new ConcurrentModificationException();
902 cursor = i + 1;
903 return (E) elementData[lastRet = i];
904 }
905
906 public void remove() {
907 if (lastRet < 0)
908 throw new IllegalStateException();
909 checkForComodification();
910
911 try {
912 ArrayList.this.remove(lastRet);
913 cursor = lastRet;
914 lastRet = -1;
915 expectedModCount = modCount;
916 } catch (IndexOutOfBoundsException ex) {
917 throw new ConcurrentModificationException();
918 }
919 }
920
921 @Override
922 public void forEachRemaining(Consumer<? super E> action) {
923 Objects.requireNonNull(action);
924 final int size = ArrayList.this.size;
925 int i = cursor;
926 if (i < size) {
927 final Object[] es = elementData;
928 if (i >= es.length)
929 throw new ConcurrentModificationException();
930 for (; i < size && modCount == expectedModCount; i++)
931 action.accept(elementAt(es, i));
932 // update once at end to reduce heap write traffic
933 cursor = i;
934 lastRet = i - 1;
935 checkForComodification();
936 }
937 }
938
939 final void checkForComodification() {
940 if (modCount != expectedModCount)
941 throw new ConcurrentModificationException();
942 }
943 }
944
945 /**
946 * An optimized version of AbstractList.ListItr
947 */
948 private class ListItr extends Itr implements ListIterator<E> {
949 ListItr(int index) {
950 super();
951 cursor = index;
952 }
953
954 public boolean hasPrevious() {
955 return cursor != 0;
956 }
957
958 public int nextIndex() {
959 return cursor;
960 }
961
962 public int previousIndex() {
963 return cursor - 1;
964 }
965
966 @SuppressWarnings("unchecked")
967 public E previous() {
968 checkForComodification();
969 int i = cursor - 1;
970 if (i < 0)
971 throw new NoSuchElementException();
972 Object[] elementData = ArrayList.this.elementData;
973 if (i >= elementData.length)
974 throw new ConcurrentModificationException();
975 cursor = i;
976 return (E) elementData[lastRet = i];
977 }
978
979 public void set(E e) {
980 if (lastRet < 0)
981 throw new IllegalStateException();
982 checkForComodification();
983
984 try {
985 ArrayList.this.set(lastRet, e);
986 } catch (IndexOutOfBoundsException ex) {
987 throw new ConcurrentModificationException();
988 }
989 }
990
991 public void add(E e) {
992 checkForComodification();
993
994 try {
995 int i = cursor;
996 ArrayList.this.add(i, e);
997 cursor = i + 1;
998 lastRet = -1;
999 expectedModCount = modCount;
1000 } catch (IndexOutOfBoundsException ex) {
1001 throw new ConcurrentModificationException();
1002 }
1003 }
1004 }
1005
1006 /**
1007 * Returns a view of the portion of this list between the specified
1008 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1009 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1010 * empty.) The returned list is backed by this list, so non-structural
1011 * changes in the returned list are reflected in this list, and vice-versa.
1012 * The returned list supports all of the optional list operations.
1013 *
1014 * <p>This method eliminates the need for explicit range operations (of
1015 * the sort that commonly exist for arrays). Any operation that expects
1016 * a list can be used as a range operation by passing a subList view
1017 * instead of a whole list. For example, the following idiom
1018 * removes a range of elements from a list:
1019 * <pre>
1020 * list.subList(from, to).clear();
1021 * </pre>
1022 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1023 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1024 * {@link Collections} class can be applied to a subList.
1025 *
1026 * <p>The semantics of the list returned by this method become undefined if
1027 * the backing list (i.e., this list) is <i>structurally modified</i> in
1028 * any way other than via the returned list. (Structural modifications are
1029 * those that change the size of this list, or otherwise perturb it in such
1030 * a fashion that iterations in progress may yield incorrect results.)
1031 *
1032 * @throws IndexOutOfBoundsException {@inheritDoc}
1033 * @throws IllegalArgumentException {@inheritDoc}
1034 */
1035 public List<E> subList(int fromIndex, int toIndex) {
1036 subListRangeCheck(fromIndex, toIndex, size);
1037 return new SubList<>(this, fromIndex, toIndex);
1038 }
1039
1040 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1041 private final ArrayList<E> root;
1042 private final SubList<E> parent;
1043 private final int offset;
1044 private int size;
1045
1046 /**
1047 * Constructs a sublist of an arbitrary ArrayList.
1048 */
1049 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1050 this.root = root;
1051 this.parent = null;
1052 this.offset = fromIndex;
1053 this.size = toIndex - fromIndex;
1054 this.modCount = root.modCount;
1055 }
1056
1057 /**
1058 * Constructs a sublist of another SubList.
1059 */
1060 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1061 this.root = parent.root;
1062 this.parent = parent;
1063 this.offset = parent.offset + fromIndex;
1064 this.size = toIndex - fromIndex;
1065 this.modCount = root.modCount;
1066 }
1067
1068 public E set(int index, E element) {
1069 Objects.checkIndex(index, size);
1070 checkForComodification();
1071 E oldValue = root.elementData(offset + index);
1072 root.elementData[offset + index] = element;
1073 return oldValue;
1074 }
1075
1076 public E get(int index) {
1077 Objects.checkIndex(index, size);
1078 checkForComodification();
1079 return root.elementData(offset + index);
1080 }
1081
1082 public int size() {
1083 checkForComodification();
1084 return size;
1085 }
1086
1087 public void add(int index, E element) {
1088 rangeCheckForAdd(index);
1089 checkForComodification();
1090 root.add(offset + index, element);
1091 updateSizeAndModCount(1);
1092 }
1093
1094 public E remove(int index) {
1095 Objects.checkIndex(index, size);
1096 checkForComodification();
1097 E result = root.remove(offset + index);
1098 updateSizeAndModCount(-1);
1099 return result;
1100 }
1101
1102 protected void removeRange(int fromIndex, int toIndex) {
1103 checkForComodification();
1104 root.removeRange(offset + fromIndex, offset + toIndex);
1105 updateSizeAndModCount(fromIndex - toIndex);
1106 }
1107
1108 public boolean addAll(Collection<? extends E> c) {
1109 return addAll(this.size, c);
1110 }
1111
1112 public boolean addAll(int index, Collection<? extends E> c) {
1113 rangeCheckForAdd(index);
1114 int cSize = c.size();
1115 if (cSize==0)
1116 return false;
1117 checkForComodification();
1118 root.addAll(offset + index, c);
1119 updateSizeAndModCount(cSize);
1120 return true;
1121 }
1122
1123 public boolean removeAll(Collection<?> c) {
1124 return batchRemove(c, false);
1125 }
1126
1127 public boolean retainAll(Collection<?> c) {
1128 return batchRemove(c, true);
1129 }
1130
1131 private boolean batchRemove(Collection<?> c, boolean complement) {
1132 checkForComodification();
1133 int oldSize = root.size;
1134 boolean modified =
1135 root.batchRemove(c, complement, offset, offset + size);
1136 if (modified)
1137 updateSizeAndModCount(root.size - oldSize);
1138 return modified;
1139 }
1140
1141 public boolean removeIf(Predicate<? super E> filter) {
1142 checkForComodification();
1143 int oldSize = root.size;
1144 boolean modified = root.removeIf(filter, offset, offset + size);
1145 if (modified)
1146 updateSizeAndModCount(root.size - oldSize);
1147 return modified;
1148 }
1149
1150 public Iterator<E> iterator() {
1151 return listIterator();
1152 }
1153
1154 public ListIterator<E> listIterator(int index) {
1155 checkForComodification();
1156 rangeCheckForAdd(index);
1157
1158 return new ListIterator<E>() {
1159 int cursor = index;
1160 int lastRet = -1;
1161 int expectedModCount = root.modCount;
1162
1163 public boolean hasNext() {
1164 return cursor != SubList.this.size;
1165 }
1166
1167 @SuppressWarnings("unchecked")
1168 public E next() {
1169 checkForComodification();
1170 int i = cursor;
1171 if (i >= SubList.this.size)
1172 throw new NoSuchElementException();
1173 Object[] elementData = root.elementData;
1174 if (offset + i >= elementData.length)
1175 throw new ConcurrentModificationException();
1176 cursor = i + 1;
1177 return (E) elementData[offset + (lastRet = i)];
1178 }
1179
1180 public boolean hasPrevious() {
1181 return cursor != 0;
1182 }
1183
1184 @SuppressWarnings("unchecked")
1185 public E previous() {
1186 checkForComodification();
1187 int i = cursor - 1;
1188 if (i < 0)
1189 throw new NoSuchElementException();
1190 Object[] elementData = root.elementData;
1191 if (offset + i >= elementData.length)
1192 throw new ConcurrentModificationException();
1193 cursor = i;
1194 return (E) elementData[offset + (lastRet = i)];
1195 }
1196
1197 public void forEachRemaining(Consumer<? super E> action) {
1198 Objects.requireNonNull(action);
1199 final int size = SubList.this.size;
1200 int i = cursor;
1201 if (i < size) {
1202 final Object[] es = root.elementData;
1203 if (offset + i >= es.length)
1204 throw new ConcurrentModificationException();
1205 for (; i < size && modCount == expectedModCount; i++)
1206 action.accept(elementAt(es, offset + i));
1207 // update once at end to reduce heap write traffic
1208 cursor = i;
1209 lastRet = i - 1;
1210 checkForComodification();
1211 }
1212 }
1213
1214 public int nextIndex() {
1215 return cursor;
1216 }
1217
1218 public int previousIndex() {
1219 return cursor - 1;
1220 }
1221
1222 public void remove() {
1223 if (lastRet < 0)
1224 throw new IllegalStateException();
1225 checkForComodification();
1226
1227 try {
1228 SubList.this.remove(lastRet);
1229 cursor = lastRet;
1230 lastRet = -1;
1231 expectedModCount = root.modCount;
1232 } catch (IndexOutOfBoundsException ex) {
1233 throw new ConcurrentModificationException();
1234 }
1235 }
1236
1237 public void set(E e) {
1238 if (lastRet < 0)
1239 throw new IllegalStateException();
1240 checkForComodification();
1241
1242 try {
1243 root.set(offset + lastRet, e);
1244 } catch (IndexOutOfBoundsException ex) {
1245 throw new ConcurrentModificationException();
1246 }
1247 }
1248
1249 public void add(E e) {
1250 checkForComodification();
1251
1252 try {
1253 int i = cursor;
1254 SubList.this.add(i, e);
1255 cursor = i + 1;
1256 lastRet = -1;
1257 expectedModCount = root.modCount;
1258 } catch (IndexOutOfBoundsException ex) {
1259 throw new ConcurrentModificationException();
1260 }
1261 }
1262
1263 final void checkForComodification() {
1264 if (root.modCount != expectedModCount)
1265 throw new ConcurrentModificationException();
1266 }
1267 };
1268 }
1269
1270 public List<E> subList(int fromIndex, int toIndex) {
1271 subListRangeCheck(fromIndex, toIndex, size);
1272 return new SubList<>(this, fromIndex, toIndex);
1273 }
1274
1275 private void rangeCheckForAdd(int index) {
1276 if (index < 0 || index > this.size)
1277 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1278 }
1279
1280 private String outOfBoundsMsg(int index) {
1281 return "Index: "+index+", Size: "+this.size;
1282 }
1283
1284 private void checkForComodification() {
1285 if (root.modCount != modCount)
1286 throw new ConcurrentModificationException();
1287 }
1288
1289 private void updateSizeAndModCount(int sizeChange) {
1290 SubList<E> slist = this;
1291 do {
1292 slist.size += sizeChange;
1293 slist.modCount = root.modCount;
1294 slist = slist.parent;
1295 } while (slist != null);
1296 }
1297
1298 public Spliterator<E> spliterator() {
1299 checkForComodification();
1300
1301 // ArrayListSpliterator not used here due to late-binding
1302 return new Spliterator<E>() {
1303 private int index = offset; // current index, modified on advance/split
1304 private int fence = -1; // -1 until used; then one past last index
1305 private int expectedModCount; // initialized when fence set
1306
1307 private int getFence() { // initialize fence to size on first use
1308 int hi; // (a specialized variant appears in method forEach)
1309 if ((hi = fence) < 0) {
1310 expectedModCount = modCount;
1311 hi = fence = offset + size;
1312 }
1313 return hi;
1314 }
1315
1316 public ArrayList<E>.ArrayListSpliterator trySplit() {
1317 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1318 // ArrayListSpliterator can be used here as the source is already bound
1319 return (lo >= mid) ? null : // divide range in half unless too small
1320 root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1321 }
1322
1323 public boolean tryAdvance(Consumer<? super E> action) {
1324 Objects.requireNonNull(action);
1325 int hi = getFence(), i = index;
1326 if (i < hi) {
1327 index = i + 1;
1328 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1329 action.accept(e);
1330 if (root.modCount != expectedModCount)
1331 throw new ConcurrentModificationException();
1332 return true;
1333 }
1334 return false;
1335 }
1336
1337 public void forEachRemaining(Consumer<? super E> action) {
1338 Objects.requireNonNull(action);
1339 int i, hi, mc; // hoist accesses and checks from loop
1340 ArrayList<E> lst = root;
1341 Object[] a;
1342 if ((a = lst.elementData) != null) {
1343 if ((hi = fence) < 0) {
1344 mc = modCount;
1345 hi = offset + size;
1346 }
1347 else
1348 mc = expectedModCount;
1349 if ((i = index) >= 0 && (index = hi) <= a.length) {
1350 for (; i < hi; ++i) {
1351 @SuppressWarnings("unchecked") E e = (E) a[i];
1352 action.accept(e);
1353 }
1354 if (lst.modCount == mc)
1355 return;
1356 }
1357 }
1358 throw new ConcurrentModificationException();
1359 }
1360
1361 public long estimateSize() {
1362 return getFence() - index;
1363 }
1364
1365 public int characteristics() {
1366 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1367 }
1368 };
1369 }
1370 }
1371
1372 /**
1373 * @throws NullPointerException {@inheritDoc}
1374 */
1375 @Override
1376 public void forEach(Consumer<? super E> action) {
1377 Objects.requireNonNull(action);
1378 final int expectedModCount = modCount;
1379 final Object[] es = elementData;
1380 final int size = this.size;
1381 for (int i = 0; modCount == expectedModCount && i < size; i++)
1382 action.accept(elementAt(es, i));
1383 if (modCount != expectedModCount)
1384 throw new ConcurrentModificationException();
1385 }
1386
1387 /**
1388 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1389 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1390 * list.
1391 *
1392 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1393 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1394 * Overriding implementations should document the reporting of additional
1395 * characteristic values.
1396 *
1397 * @return a {@code Spliterator} over the elements in this list
1398 * @since 1.8
1399 */
1400 @Override
1401 public Spliterator<E> spliterator() {
1402 return new ArrayListSpliterator(0, -1, 0);
1403 }
1404
1405 /** Index-based split-by-two, lazily initialized Spliterator */
1406 final class ArrayListSpliterator implements Spliterator<E> {
1407
1408 /*
1409 * If ArrayLists were immutable, or structurally immutable (no
1410 * adds, removes, etc), we could implement their spliterators
1411 * with Arrays.spliterator. Instead we detect as much
1412 * interference during traversal as practical without
1413 * sacrificing much performance. We rely primarily on
1414 * modCounts. These are not guaranteed to detect concurrency
1415 * violations, and are sometimes overly conservative about
1416 * within-thread interference, but detect enough problems to
1417 * be worthwhile in practice. To carry this out, we (1) lazily
1418 * initialize fence and expectedModCount until the latest
1419 * point that we need to commit to the state we are checking
1420 * against; thus improving precision. (This doesn't apply to
1421 * SubLists, that create spliterators with current non-lazy
1422 * values). (2) We perform only a single
1423 * ConcurrentModificationException check at the end of forEach
1424 * (the most performance-sensitive method). When using forEach
1425 * (as opposed to iterators), we can normally only detect
1426 * interference after actions, not before. Further
1427 * CME-triggering checks apply to all other possible
1428 * violations of assumptions for example null or too-small
1429 * elementData array given its size(), that could only have
1430 * occurred due to interference. This allows the inner loop
1431 * of forEach to run without any further checks, and
1432 * simplifies lambda-resolution. While this does entail a
1433 * number of checks, note that in the common case of
1434 * list.stream().forEach(a), no checks or other computation
1435 * occur anywhere other than inside forEach itself. The other
1436 * less-often-used methods cannot take advantage of most of
1437 * these streamlinings.
1438 */
1439
1440 private int index; // current index, modified on advance/split
1441 private int fence; // -1 until used; then one past last index
1442 private int expectedModCount; // initialized when fence set
1443
1444 /** Creates new spliterator covering the given range. */
1445 ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1446 this.index = origin;
1447 this.fence = fence;
1448 this.expectedModCount = expectedModCount;
1449 }
1450
1451 private int getFence() { // initialize fence to size on first use
1452 int hi; // (a specialized variant appears in method forEach)
1453 if ((hi = fence) < 0) {
1454 expectedModCount = modCount;
1455 hi = fence = size;
1456 }
1457 return hi;
1458 }
1459
1460 public ArrayListSpliterator trySplit() {
1461 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1462 return (lo >= mid) ? null : // divide range in half unless too small
1463 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1464 }
1465
1466 public boolean tryAdvance(Consumer<? super E> action) {
1467 if (action == null)
1468 throw new NullPointerException();
1469 int hi = getFence(), i = index;
1470 if (i < hi) {
1471 index = i + 1;
1472 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1473 action.accept(e);
1474 if (modCount != expectedModCount)
1475 throw new ConcurrentModificationException();
1476 return true;
1477 }
1478 return false;
1479 }
1480
1481 public void forEachRemaining(Consumer<? super E> action) {
1482 int i, hi, mc; // hoist accesses and checks from loop
1483 Object[] a;
1484 if (action == null)
1485 throw new NullPointerException();
1486 if ((a = elementData) != null) {
1487 if ((hi = fence) < 0) {
1488 mc = modCount;
1489 hi = size;
1490 }
1491 else
1492 mc = expectedModCount;
1493 if ((i = index) >= 0 && (index = hi) <= a.length) {
1494 for (; i < hi; ++i) {
1495 @SuppressWarnings("unchecked") E e = (E) a[i];
1496 action.accept(e);
1497 }
1498 if (modCount == mc)
1499 return;
1500 }
1501 }
1502 throw new ConcurrentModificationException();
1503 }
1504
1505 public long estimateSize() {
1506 return getFence() - index;
1507 }
1508
1509 public int characteristics() {
1510 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1511 }
1512 }
1513
1514 // A tiny bit set implementation
1515
1516 private static long[] nBits(int n) {
1517 return new long[((n - 1) >> 6) + 1];
1518 }
1519 private static void setBit(long[] bits, int i) {
1520 bits[i >> 6] |= 1L << i;
1521 }
1522 private static boolean isClear(long[] bits, int i) {
1523 return (bits[i >> 6] & (1L << i)) == 0;
1524 }
1525
1526 /**
1527 * @throws NullPointerException {@inheritDoc}
1528 */
1529 @Override
1530 public boolean removeIf(Predicate<? super E> filter) {
1531 return removeIf(filter, 0, size);
1532 }
1533
1534 /**
1535 * Removes all elements satisfying the given predicate, from index
1536 * i (inclusive) to index end (exclusive).
1537 */
1538 boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1539 Objects.requireNonNull(filter);
1540 int expectedModCount = modCount;
1541 final Object[] es = elementData;
1542 // Optimize for initial run of survivors
1543 for (; i < end && !filter.test(elementAt(es, i)); i++)
1544 ;
1545 // Tolerate predicates that reentrantly access the collection for
1546 // read (but writers still get CME), so traverse once to find
1547 // elements to delete, a second pass to physically expunge.
1548 if (i < end) {
1549 final int beg = i;
1550 final long[] deathRow = nBits(end - beg);
1551 deathRow[0] = 1L; // set bit 0
1552 for (i = beg + 1; i < end; i++)
1553 if (filter.test(elementAt(es, i)))
1554 setBit(deathRow, i - beg);
1555 if (modCount != expectedModCount)
1556 throw new ConcurrentModificationException();
1557 expectedModCount++;
1558 modCount++;
1559 int w = beg;
1560 for (i = beg; i < end; i++)
1561 if (isClear(deathRow, i - beg))
1562 es[w++] = es[i];
1563 shiftTailOverGap(es, w, end);
1564 // checkInvariants();
1565 return true;
1566 } else {
1567 if (modCount != expectedModCount)
1568 throw new ConcurrentModificationException();
1569 // checkInvariants();
1570 return false;
1571 }
1572 }
1573
1574 @Override
1575 public void replaceAll(UnaryOperator<E> operator) {
1576 Objects.requireNonNull(operator);
1577 final int expectedModCount = modCount;
1578 final Object[] es = elementData;
1579 final int size = this.size;
1580 for (int i = 0; modCount == expectedModCount && i < size; i++)
1581 es[i] = operator.apply(elementAt(es, i));
1582 if (modCount != expectedModCount)
1583 throw new ConcurrentModificationException();
1584 modCount++;
1585 // checkInvariants();
1586 }
1587
1588 @Override
1589 @SuppressWarnings("unchecked")
1590 public void sort(Comparator<? super E> c) {
1591 final int expectedModCount = modCount;
1592 Arrays.sort((E[]) elementData, 0, size, c);
1593 if (modCount != expectedModCount)
1594 throw new ConcurrentModificationException();
1595 modCount++;
1596 // checkInvariants();
1597 }
1598
1599 void checkInvariants() {
1600 // assert size >= 0;
1601 // assert size == elementData.length || elementData[size] == null;
1602 }
1603 }