ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.128
Committed: Sun May 6 23:29:25 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.127: +72 -0 lines
Log Message:
implement optimized bulk remove methods

File Contents

# User Rev Content
1 dl 1.38 /*
2 jsr166 1.121 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.67 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.38 *
5 jsr166 1.67 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 dl 1.81 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.67 * particular file as subject to the "Classpath" exception as provided
9 dl 1.81 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.67 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.71 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.38 */
25    
26     package java.util;
27 jsr166 1.102
28 dl 1.89 import java.util.function.Consumer;
29 jsr166 1.128 import java.util.function.Predicate;
30 jsr166 1.120 import jdk.internal.misc.SharedSecrets;
31 tim 1.1
32     /**
33 jsr166 1.63 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34     * The elements of the priority queue are ordered according to their
35     * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36     * provided at queue construction time, depending on which constructor is
37     * used. A priority queue does not permit {@code null} elements.
38     * A priority queue relying on natural ordering also does not permit
39     * insertion of non-comparable objects (doing so may result in
40     * {@code ClassCastException}).
41 dl 1.40 *
42 dl 1.41 * <p>The <em>head</em> of this queue is the <em>least</em> element
43     * with respect to the specified ordering. If multiple elements are
44     * tied for least value, the head is one of those elements -- ties are
45 jsr166 1.63 * broken arbitrarily. The queue retrieval operations {@code poll},
46     * {@code remove}, {@code peek}, and {@code element} access the
47 dl 1.42 * element at the head of the queue.
48 tim 1.14 *
49 dl 1.41 * <p>A priority queue is unbounded, but has an internal
50     * <i>capacity</i> governing the size of an array used to store the
51 dl 1.40 * elements on the queue. It is always at least as large as the queue
52     * size. As elements are added to a priority queue, its capacity
53     * grows automatically. The details of the growth policy are not
54     * specified.
55 tim 1.2 *
56 dl 1.50 * <p>This class and its iterator implement all of the
57     * <em>optional</em> methods of the {@link Collection} and {@link
58 dl 1.52 * Iterator} interfaces. The Iterator provided in method {@link
59 jsr166 1.111 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
60     * are <em>not</em> guaranteed to traverse the elements of
61 dl 1.52 * the priority queue in any particular order. If you need ordered
62 jsr166 1.63 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
63 dl 1.29 *
64 jsr166 1.82 * <p><strong>Note that this implementation is not synchronized.</strong>
65 jsr166 1.63 * Multiple threads should not access a {@code PriorityQueue}
66     * instance concurrently if any of the threads modifies the queue.
67     * Instead, use the thread-safe {@link
68 dl 1.88 * java.util.concurrent.PriorityBlockingQueue} class.
69 dl 1.29 *
70 jsr166 1.63 * <p>Implementation note: this implementation provides
71 jsr166 1.98 * O(log(n)) time for the enqueuing and dequeuing methods
72 jsr166 1.63 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
73     * linear time for the {@code remove(Object)} and {@code contains(Object)}
74     * methods; and constant time for the retrieval methods
75     * ({@code peek}, {@code element}, and {@code size}).
76 tim 1.2 *
77     * <p>This class is a member of the
78 jsr166 1.119 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
79 tim 1.2 * Java Collections Framework</a>.
80 jsr166 1.63 *
81 dl 1.7 * @since 1.5
82 jsr166 1.63 * @author Josh Bloch, Doug Lea
83 jsr166 1.101 * @param <E> the type of elements held in this queue
84 tim 1.2 */
85 jsr166 1.124 @SuppressWarnings("unchecked")
86 tim 1.2 public class PriorityQueue<E> extends AbstractQueue<E>
87 dl 1.47 implements java.io.Serializable {
88 dholmes 1.11
89 dl 1.31 private static final long serialVersionUID = -7720805057305804111L;
90 dl 1.30
91 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
92 tim 1.1
93 tim 1.2 /**
94 dl 1.55 * Priority queue represented as a balanced binary heap: the two
95     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
96     * priority queue is ordered by comparator, or by the elements'
97     * natural ordering, if comparator is null: For each node n in the
98     * heap and each descendant d of n, n <= d. The element with the
99     * lowest value is in queue[0], assuming the queue is nonempty.
100 tim 1.2 */
101 dl 1.81 transient Object[] queue; // non-private to simplify nested class access
102 tim 1.1
103 tim 1.2 /**
104     * The number of elements in the priority queue.
105     */
106 jsr166 1.107 int size;
107 tim 1.1
108 tim 1.2 /**
109     * The comparator, or null if priority queue uses elements'
110     * natural ordering.
111     */
112 tim 1.16 private final Comparator<? super E> comparator;
113 tim 1.2
114     /**
115     * The number of times this priority queue has been
116     * <i>structurally modified</i>. See AbstractList for gory details.
117     */
118 jsr166 1.106 transient int modCount; // non-private to simplify nested class access
119 tim 1.2
120     /**
121 jsr166 1.63 * Creates a {@code PriorityQueue} with the default initial
122 dl 1.52 * capacity (11) that orders its elements according to their
123     * {@linkplain Comparable natural ordering}.
124 tim 1.2 */
125     public PriorityQueue() {
126 dholmes 1.11 this(DEFAULT_INITIAL_CAPACITY, null);
127 tim 1.1 }
128 tim 1.2
129     /**
130 jsr166 1.63 * Creates a {@code PriorityQueue} with the specified initial
131 dl 1.52 * capacity that orders its elements according to their
132     * {@linkplain Comparable natural ordering}.
133 tim 1.2 *
134 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
135 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
136     * than 1
137 tim 1.2 */
138     public PriorityQueue(int initialCapacity) {
139     this(initialCapacity, null);
140 tim 1.1 }
141 tim 1.2
142     /**
143 jsr166 1.106 * Creates a {@code PriorityQueue} with the default initial capacity and
144     * whose elements are ordered according to the specified comparator.
145     *
146     * @param comparator the comparator that will be used to order this
147     * priority queue. If {@code null}, the {@linkplain Comparable
148     * natural ordering} of the elements will be used.
149     * @since 1.8
150     */
151     public PriorityQueue(Comparator<? super E> comparator) {
152     this(DEFAULT_INITIAL_CAPACITY, comparator);
153     }
154    
155     /**
156 jsr166 1.63 * Creates a {@code PriorityQueue} with the specified initial capacity
157 tim 1.2 * that orders its elements according to the specified comparator.
158     *
159 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
160 jsr166 1.63 * @param comparator the comparator that will be used to order this
161     * priority queue. If {@code null}, the {@linkplain Comparable
162     * natural ordering} of the elements will be used.
163     * @throws IllegalArgumentException if {@code initialCapacity} is
164 dl 1.52 * less than 1
165 tim 1.2 */
166 dl 1.52 public PriorityQueue(int initialCapacity,
167 dholmes 1.23 Comparator<? super E> comparator) {
168 dl 1.55 // Note: This restriction of at least one is not actually needed,
169     // but continues for 1.5 compatibility
170 tim 1.2 if (initialCapacity < 1)
171 dholmes 1.15 throw new IllegalArgumentException();
172 dl 1.55 this.queue = new Object[initialCapacity];
173 tim 1.2 this.comparator = comparator;
174 tim 1.1 }
175 jsr166 1.56
176 dl 1.22 /**
177 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
178     * specified collection. If the specified collection is an instance of
179     * a {@link SortedSet} or is another {@code PriorityQueue}, this
180     * priority queue will be ordered according to the same ordering.
181     * Otherwise, this priority queue will be ordered according to the
182     * {@linkplain Comparable natural ordering} of its elements.
183 tim 1.2 *
184 dl 1.52 * @param c the collection whose elements are to be placed
185     * into this priority queue
186 tim 1.2 * @throws ClassCastException if elements of the specified collection
187     * cannot be compared to one another according to the priority
188 dl 1.52 * queue's ordering
189     * @throws NullPointerException if the specified collection or any
190     * of its elements are null
191 tim 1.2 */
192 tim 1.16 public PriorityQueue(Collection<? extends E> c) {
193 jsr166 1.70 if (c instanceof SortedSet<?>) {
194     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
195     this.comparator = (Comparator<? super E>) ss.comparator();
196     initElementsFromCollection(ss);
197     }
198     else if (c instanceof PriorityQueue<?>) {
199     PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
200     this.comparator = (Comparator<? super E>) pq.comparator();
201     initFromPriorityQueue(pq);
202     }
203 dl 1.55 else {
204 jsr166 1.70 this.comparator = null;
205     initFromCollection(c);
206 tim 1.2 }
207 dl 1.22 }
208    
209     /**
210 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
211 dl 1.55 * specified priority queue. This priority queue will be
212 dl 1.52 * ordered according to the same ordering as the given priority
213     * queue.
214     *
215     * @param c the priority queue whose elements are to be placed
216     * into this priority queue
217 jsr166 1.63 * @throws ClassCastException if elements of {@code c} cannot be
218     * compared to one another according to {@code c}'s
219 dl 1.52 * ordering
220     * @throws NullPointerException if the specified priority queue or any
221     * of its elements are null
222 dl 1.22 */
223     public PriorityQueue(PriorityQueue<? extends E> c) {
224 jsr166 1.70 this.comparator = (Comparator<? super E>) c.comparator();
225     initFromPriorityQueue(c);
226 dl 1.22 }
227 dholmes 1.18
228 dl 1.22 /**
229 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
230     * specified sorted set. This priority queue will be ordered
231 dl 1.52 * according to the same ordering as the given sorted set.
232     *
233     * @param c the sorted set whose elements are to be placed
234 jsr166 1.63 * into this priority queue
235 dl 1.52 * @throws ClassCastException if elements of the specified sorted
236     * set cannot be compared to one another according to the
237     * sorted set's ordering
238     * @throws NullPointerException if the specified sorted set or any
239     * of its elements are null
240 dl 1.22 */
241     public PriorityQueue(SortedSet<? extends E> c) {
242 jsr166 1.70 this.comparator = (Comparator<? super E>) c.comparator();
243     initElementsFromCollection(c);
244     }
245    
246 jsr166 1.125 /** Ensures that queue[0] exists, helping peek() and poll(). */
247     private static Object[] ensureNonEmpty(Object[] es) {
248     return (es.length > 0) ? es : new Object[1];
249     }
250    
251 jsr166 1.70 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
252     if (c.getClass() == PriorityQueue.class) {
253 jsr166 1.125 this.queue = ensureNonEmpty(c.toArray());
254 jsr166 1.70 this.size = c.size();
255     } else {
256     initFromCollection(c);
257     }
258     }
259    
260     private void initElementsFromCollection(Collection<? extends E> c) {
261 jsr166 1.124 Object[] es = c.toArray();
262     int len = es.length;
263 jsr166 1.70 // If c.toArray incorrectly doesn't return Object[], copy it.
264 jsr166 1.124 if (es.getClass() != Object[].class)
265     es = Arrays.copyOf(es, len, Object[].class);
266 jsr166 1.70 if (len == 1 || this.comparator != null)
267 jsr166 1.124 for (Object e : es)
268 jsr166 1.106 if (e == null)
269 jsr166 1.70 throw new NullPointerException();
270 jsr166 1.125 this.queue = ensureNonEmpty(es);
271 jsr166 1.124 this.size = len;
272 tim 1.1 }
273    
274 dl 1.22 /**
275 jsr166 1.63 * Initializes queue array with elements from the given Collection.
276     *
277 dl 1.55 * @param c the collection
278 dl 1.22 */
279 dl 1.55 private void initFromCollection(Collection<? extends E> c) {
280 jsr166 1.70 initElementsFromCollection(c);
281     heapify();
282 jsr166 1.56 }
283 dl 1.55
284     /**
285 jsr166 1.70 * The maximum size of array to allocate.
286     * Some VMs reserve some header words in an array.
287     * Attempts to allocate larger arrays may result in
288     * OutOfMemoryError: Requested array size exceeds VM limit
289     */
290     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
291    
292     /**
293 dl 1.55 * Increases the capacity of the array.
294     *
295     * @param minCapacity the desired minimum capacity
296     */
297     private void grow(int minCapacity) {
298 jsr166 1.68 int oldCapacity = queue.length;
299 dl 1.55 // Double size if small; else grow by 50%
300 jsr166 1.70 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
301     (oldCapacity + 2) :
302     (oldCapacity >> 1));
303     // overflow-conscious code
304     if (newCapacity - MAX_ARRAY_SIZE > 0)
305     newCapacity = hugeCapacity(minCapacity);
306 dl 1.55 queue = Arrays.copyOf(queue, newCapacity);
307 dl 1.22 }
308 dl 1.36
309 jsr166 1.70 private static int hugeCapacity(int minCapacity) {
310     if (minCapacity < 0) // overflow
311     throw new OutOfMemoryError();
312     return (minCapacity > MAX_ARRAY_SIZE) ?
313     Integer.MAX_VALUE :
314     MAX_ARRAY_SIZE;
315     }
316    
317 tim 1.2 /**
318 dl 1.42 * Inserts the specified element into this priority queue.
319 tim 1.2 *
320 jsr166 1.63 * @return {@code true} (as specified by {@link Collection#add})
321 dl 1.52 * @throws ClassCastException if the specified element cannot be
322     * compared with elements currently in this priority queue
323     * according to the priority queue's ordering
324     * @throws NullPointerException if the specified element is null
325 tim 1.2 */
326 dl 1.52 public boolean add(E e) {
327     return offer(e);
328     }
329    
330     /**
331     * Inserts the specified element into this priority queue.
332     *
333 jsr166 1.63 * @return {@code true} (as specified by {@link Queue#offer})
334 dl 1.52 * @throws ClassCastException if the specified element cannot be
335     * compared with elements currently in this priority queue
336     * according to the priority queue's ordering
337     * @throws NullPointerException if the specified element is null
338     */
339     public boolean offer(E e) {
340     if (e == null)
341 dholmes 1.11 throw new NullPointerException();
342     modCount++;
343 dl 1.55 int i = size;
344     if (i >= queue.length)
345     grow(i + 1);
346 jsr166 1.109 siftUp(i, e);
347 dl 1.55 size = i + 1;
348 dholmes 1.11 return true;
349     }
350    
351 dl 1.40 public E peek() {
352 jsr166 1.125 return (E) queue[0];
353 tim 1.1 }
354    
355 dl 1.52 private int indexOf(Object o) {
356 jsr166 1.68 if (o != null) {
357 jsr166 1.123 final Object[] es = queue;
358     for (int i = 0, n = size; i < n; i++)
359     if (o.equals(es[i]))
360 dl 1.55 return i;
361     }
362 dl 1.52 return -1;
363     }
364    
365     /**
366     * Removes a single instance of the specified element from this queue,
367 jsr166 1.63 * if it is present. More formally, removes an element {@code e} such
368     * that {@code o.equals(e)}, if this queue contains one or more such
369     * elements. Returns {@code true} if and only if this queue contained
370     * the specified element (or equivalently, if this queue changed as a
371     * result of the call).
372 dl 1.52 *
373     * @param o element to be removed from this queue, if present
374 jsr166 1.63 * @return {@code true} if this queue changed as a result of the call
375 dl 1.52 */
376     public boolean remove(Object o) {
377 jsr166 1.68 int i = indexOf(o);
378     if (i == -1)
379     return false;
380     else {
381     removeAt(i);
382     return true;
383     }
384 dl 1.52 }
385 dholmes 1.11
386 jsr166 1.56 /**
387 jsr166 1.123 * Identity-based version for use in Itr.remove.
388 jsr166 1.56 *
389 dl 1.55 * @param o element to be removed from this queue, if present
390     */
391 jsr166 1.123 void removeEq(Object o) {
392     final Object[] es = queue;
393     for (int i = 0, n = size; i < n; i++) {
394     if (o == es[i]) {
395 dl 1.55 removeAt(i);
396 jsr166 1.123 break;
397 dl 1.55 }
398     }
399     }
400    
401 dholmes 1.11 /**
402 jsr166 1.63 * Returns {@code true} if this queue contains the specified element.
403     * More formally, returns {@code true} if and only if this queue contains
404     * at least one element {@code e} such that {@code o.equals(e)}.
405 dholmes 1.23 *
406 dl 1.52 * @param o object to be checked for containment in this queue
407 jsr166 1.63 * @return {@code true} if this queue contains the specified element
408 dholmes 1.11 */
409 dl 1.52 public boolean contains(Object o) {
410 jsr166 1.100 return indexOf(o) >= 0;
411 tim 1.14 }
412 dholmes 1.11
413 dl 1.49 /**
414 jsr166 1.63 * Returns an array containing all of the elements in this queue.
415 dl 1.52 * The elements are in no particular order.
416     *
417     * <p>The returned array will be "safe" in that no references to it are
418 jsr166 1.63 * maintained by this queue. (In other words, this method must allocate
419 dl 1.52 * a new array). The caller is thus free to modify the returned array.
420     *
421 jsr166 1.63 * <p>This method acts as bridge between array-based and collection-based
422     * APIs.
423     *
424 jsr166 1.59 * @return an array containing all of the elements in this queue
425 dl 1.49 */
426 dl 1.52 public Object[] toArray() {
427 dl 1.55 return Arrays.copyOf(queue, size);
428 dl 1.52 }
429 tim 1.2
430 dl 1.52 /**
431 jsr166 1.63 * Returns an array containing all of the elements in this queue; the
432     * runtime type of the returned array is that of the specified array.
433     * The returned array elements are in no particular order.
434     * If the queue fits in the specified array, it is returned therein.
435     * Otherwise, a new array is allocated with the runtime type of the
436     * specified array and the size of this queue.
437 dl 1.52 *
438     * <p>If the queue fits in the specified array with room to spare
439     * (i.e., the array has more elements than the queue), the element in
440     * the array immediately following the end of the collection is set to
441 jsr166 1.63 * {@code null}.
442     *
443     * <p>Like the {@link #toArray()} method, this method acts as bridge between
444     * array-based and collection-based APIs. Further, this method allows
445     * precise control over the runtime type of the output array, and may,
446     * under certain circumstances, be used to save allocation costs.
447     *
448 jsr166 1.80 * <p>Suppose {@code x} is a queue known to contain only strings.
449 jsr166 1.63 * The following code can be used to dump the queue into a newly
450 jsr166 1.80 * allocated array of {@code String}:
451 jsr166 1.63 *
452 jsr166 1.104 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
453 jsr166 1.63 *
454 jsr166 1.80 * Note that {@code toArray(new Object[0])} is identical in function to
455     * {@code toArray()}.
456 dl 1.52 *
457     * @param a the array into which the elements of the queue are to
458     * be stored, if it is big enough; otherwise, a new array of the
459     * same runtime type is allocated for this purpose.
460 jsr166 1.63 * @return an array containing all of the elements in this queue
461 dl 1.52 * @throws ArrayStoreException if the runtime type of the specified array
462     * is not a supertype of the runtime type of every element in
463     * this queue
464     * @throws NullPointerException if the specified array is null
465     */
466     public <T> T[] toArray(T[] a) {
467 jsr166 1.85 final int size = this.size;
468 dl 1.52 if (a.length < size)
469     // Make a new array of a's runtime type, but my contents:
470 dl 1.55 return (T[]) Arrays.copyOf(queue, size, a.getClass());
471 jsr166 1.68 System.arraycopy(queue, 0, a, 0, size);
472 dl 1.52 if (a.length > size)
473     a[size] = null;
474     return a;
475 tim 1.1 }
476 tim 1.2
477 dholmes 1.23 /**
478     * Returns an iterator over the elements in this queue. The iterator
479     * does not return the elements in any particular order.
480     *
481 dl 1.52 * @return an iterator over the elements in this queue
482 dholmes 1.23 */
483 tim 1.2 public Iterator<E> iterator() {
484 dl 1.7 return new Itr();
485 tim 1.2 }
486    
487 dl 1.55 private final class Itr implements Iterator<E> {
488 dl 1.7 /**
489     * Index (into queue array) of element to be returned by
490 tim 1.2 * subsequent call to next.
491 dl 1.7 */
492 jsr166 1.99 private int cursor;
493 tim 1.2
494 dl 1.7 /**
495 dl 1.36 * Index of element returned by most recent call to next,
496     * unless that element came from the forgetMeNot list.
497 dl 1.55 * Set to -1 if element is deleted by a call to remove.
498 dl 1.7 */
499 dl 1.55 private int lastRet = -1;
500 dl 1.7
501     /**
502 dl 1.55 * A queue of elements that were moved from the unvisited portion of
503 dl 1.36 * the heap into the visited portion as a result of "unlucky" element
504     * removals during the iteration. (Unlucky element removals are those
505 dl 1.55 * that require a siftup instead of a siftdown.) We must visit all of
506 dl 1.36 * the elements in this list to complete the iteration. We do this
507     * after we've completed the "normal" iteration.
508     *
509     * We expect that most iterations, even those involving removals,
510 jsr166 1.63 * will not need to store elements in this field.
511 dl 1.36 */
512 jsr166 1.99 private ArrayDeque<E> forgetMeNot;
513 dl 1.36
514     /**
515     * Element returned by the most recent call to next iff that
516     * element was drawn from the forgetMeNot list.
517     */
518 jsr166 1.99 private E lastRetElt;
519 dl 1.55
520     /**
521     * The modCount value that the iterator believes that the backing
522 jsr166 1.63 * Queue should have. If this expectation is violated, the iterator
523 dl 1.55 * has detected concurrent modification.
524     */
525     private int expectedModCount = modCount;
526 dl 1.35
527 jsr166 1.117 Itr() {} // prevent access constructor creation
528    
529 dl 1.7 public boolean hasNext() {
530 jsr166 1.56 return cursor < size ||
531 dl 1.55 (forgetMeNot != null && !forgetMeNot.isEmpty());
532 dl 1.7 }
533    
534     public E next() {
535 dl 1.55 if (expectedModCount != modCount)
536     throw new ConcurrentModificationException();
537 jsr166 1.56 if (cursor < size)
538 dl 1.55 return (E) queue[lastRet = cursor++];
539     if (forgetMeNot != null) {
540     lastRet = -1;
541     lastRetElt = forgetMeNot.poll();
542 jsr166 1.56 if (lastRetElt != null)
543 dl 1.55 return lastRetElt;
544 dl 1.36 }
545 dl 1.55 throw new NoSuchElementException();
546 dl 1.7 }
547 tim 1.2
548 dl 1.7 public void remove() {
549 dl 1.55 if (expectedModCount != modCount)
550     throw new ConcurrentModificationException();
551     if (lastRet != -1) {
552 dl 1.36 E moved = PriorityQueue.this.removeAt(lastRet);
553 dl 1.55 lastRet = -1;
554 jsr166 1.56 if (moved == null)
555 dl 1.36 cursor--;
556 dl 1.55 else {
557 dl 1.36 if (forgetMeNot == null)
558 dl 1.89 forgetMeNot = new ArrayDeque<>();
559 dl 1.36 forgetMeNot.add(moved);
560 jsr166 1.56 }
561 jsr166 1.63 } else if (lastRetElt != null) {
562 dl 1.55 PriorityQueue.this.removeEq(lastRetElt);
563 dl 1.36 lastRetElt = null;
564 jsr166 1.63 } else {
565     throw new IllegalStateException();
566 jsr166 1.68 }
567 tim 1.2 expectedModCount = modCount;
568 dl 1.7 }
569 tim 1.2 }
570    
571 tim 1.1 public int size() {
572 tim 1.2 return size;
573 tim 1.1 }
574 tim 1.2
575     /**
576 dl 1.52 * Removes all of the elements from this priority queue.
577 dl 1.49 * The queue will be empty after this call returns.
578 tim 1.2 */
579     public void clear() {
580     modCount++;
581 jsr166 1.123 final Object[] es = queue;
582     for (int i = 0, n = size; i < n; i++)
583     es[i] = null;
584 tim 1.2 size = 0;
585     }
586    
587 dl 1.40 public E poll() {
588 jsr166 1.125 final Object[] es;
589     final E result;
590    
591     if ((result = (E) ((es = queue)[0])) != null) {
592     modCount++;
593     final int n;
594     final E x = (E) es[(n = --size)];
595     es[n] = null;
596     if (n > 0) {
597     final Comparator<? super E> cmp;
598     if ((cmp = comparator) == null)
599     siftDownComparable(0, x, es, n);
600     else
601     siftDownUsingComparator(0, x, es, n, cmp);
602     }
603     }
604 dl 1.36 return result;
605     }
606    
607     /**
608 dl 1.55 * Removes the ith element from queue.
609 tim 1.2 *
610 dl 1.55 * Normally this method leaves the elements at up to i-1,
611     * inclusive, untouched. Under these circumstances, it returns
612     * null. Occasionally, in order to maintain the heap invariant,
613     * it must swap a later element of the list with one earlier than
614     * i. Under these circumstances, this method returns the element
615     * that was previously at the end of the list and is now at some
616     * position before i. This fact is used by iterator.remove so as to
617 jsr166 1.63 * avoid missing traversing elements.
618 tim 1.2 */
619 jsr166 1.107 E removeAt(int i) {
620 jsr166 1.74 // assert i >= 0 && i < size;
621 jsr166 1.126 final Object[] es = queue;
622 tim 1.2 modCount++;
623 dl 1.55 int s = --size;
624     if (s == i) // removed last element
625 jsr166 1.126 es[i] = null;
626 dl 1.55 else {
627 jsr166 1.127 E moved = (E) es[s];
628 jsr166 1.126 es[s] = null;
629 dl 1.55 siftDown(i, moved);
630 jsr166 1.126 if (es[i] == moved) {
631 dl 1.55 siftUp(i, moved);
632 jsr166 1.126 if (es[i] != moved)
633 dl 1.36 return moved;
634     }
635 dl 1.35 }
636 dl 1.36 return null;
637 tim 1.1 }
638    
639 tim 1.2 /**
640 dl 1.55 * Inserts item x at position k, maintaining heap invariant by
641     * promoting x up the tree until it is greater than or equal to
642     * its parent, or is the root.
643     *
644 jsr166 1.116 * To simplify and speed up coercions and comparisons, the
645 dl 1.55 * Comparable and Comparator versions are separated into different
646     * methods that are otherwise identical. (Similarly for siftDown.)
647 jsr166 1.56 *
648 dl 1.55 * @param k the position to fill
649     * @param x the item to insert
650     */
651     private void siftUp(int k, E x) {
652 jsr166 1.56 if (comparator != null)
653 jsr166 1.124 siftUpUsingComparator(k, x, queue, comparator);
654 dl 1.55 else
655 jsr166 1.124 siftUpComparable(k, x, queue);
656 dl 1.55 }
657    
658 jsr166 1.124 private static <T> void siftUpComparable(int k, T x, Object[] es) {
659     Comparable<? super T> key = (Comparable<? super T>) x;
660 dl 1.55 while (k > 0) {
661     int parent = (k - 1) >>> 1;
662 jsr166 1.124 Object e = es[parent];
663     if (key.compareTo((T) e) >= 0)
664 dl 1.55 break;
665 jsr166 1.124 es[k] = e;
666 dl 1.55 k = parent;
667     }
668 jsr166 1.124 es[k] = key;
669 dl 1.55 }
670    
671 jsr166 1.124 private static <T> void siftUpUsingComparator(
672     int k, T x, Object[] es, Comparator<? super T> cmp) {
673 dl 1.55 while (k > 0) {
674     int parent = (k - 1) >>> 1;
675 jsr166 1.124 Object e = es[parent];
676     if (cmp.compare(x, (T) e) >= 0)
677 dl 1.55 break;
678 jsr166 1.124 es[k] = e;
679 dl 1.55 k = parent;
680     }
681 jsr166 1.124 es[k] = x;
682 dl 1.55 }
683    
684     /**
685     * Inserts item x at position k, maintaining heap invariant by
686     * demoting x down the tree repeatedly until it is less than or
687     * equal to its children or is a leaf.
688     *
689     * @param k the position to fill
690     * @param x the item to insert
691     */
692     private void siftDown(int k, E x) {
693 jsr166 1.56 if (comparator != null)
694 jsr166 1.124 siftDownUsingComparator(k, x, queue, size, comparator);
695 dl 1.55 else
696 jsr166 1.124 siftDownComparable(k, x, queue, size);
697 dl 1.55 }
698    
699 jsr166 1.124 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
700     // assert n > 0;
701     Comparable<? super T> key = (Comparable<? super T>)x;
702     int half = n >>> 1; // loop while a non-leaf
703 dl 1.55 while (k < half) {
704     int child = (k << 1) + 1; // assume left child is least
705 jsr166 1.124 Object c = es[child];
706 dl 1.55 int right = child + 1;
707 jsr166 1.124 if (right < n &&
708     ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
709     c = es[child = right];
710     if (key.compareTo((T) c) <= 0)
711 dl 1.55 break;
712 jsr166 1.124 es[k] = c;
713 dl 1.55 k = child;
714     }
715 jsr166 1.124 es[k] = key;
716 dl 1.55 }
717    
718 jsr166 1.124 private static <T> void siftDownUsingComparator(
719     int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
720     // assert n > 0;
721     int half = n >>> 1;
722 dl 1.55 while (k < half) {
723     int child = (k << 1) + 1;
724 jsr166 1.124 Object c = es[child];
725 dl 1.55 int right = child + 1;
726 jsr166 1.124 if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
727     c = es[child = right];
728     if (cmp.compare(x, (T) c) <= 0)
729 dl 1.55 break;
730 jsr166 1.124 es[k] = c;
731 dl 1.55 k = child;
732 tim 1.2 }
733 jsr166 1.124 es[k] = x;
734 dl 1.36 }
735 dl 1.35
736 dl 1.36 /**
737     * Establishes the heap invariant (described above) in the entire tree,
738     * assuming nothing about the order of the elements prior to the call.
739 jsr166 1.112 * This classic algorithm due to Floyd (1964) is known to be O(size).
740 dl 1.36 */
741     private void heapify() {
742 jsr166 1.114 final Object[] es = queue;
743 jsr166 1.124 int n = size, i = (n >>> 1) - 1;
744 jsr166 1.125 final Comparator<? super E> cmp;
745     if ((cmp = comparator) == null)
746 jsr166 1.118 for (; i >= 0; i--)
747 jsr166 1.124 siftDownComparable(i, (E) es[i], es, n);
748 jsr166 1.114 else
749 jsr166 1.118 for (; i >= 0; i--)
750 jsr166 1.124 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
751 tim 1.2 }
752    
753 dholmes 1.23 /**
754 dl 1.52 * Returns the comparator used to order the elements in this
755 jsr166 1.63 * queue, or {@code null} if this queue is sorted according to
756 dl 1.52 * the {@linkplain Comparable natural ordering} of its elements.
757     *
758     * @return the comparator used to order this queue, or
759 jsr166 1.63 * {@code null} if this queue is sorted according to the
760     * natural ordering of its elements
761 dholmes 1.23 */
762 tim 1.16 public Comparator<? super E> comparator() {
763 tim 1.2 return comparator;
764     }
765 dl 1.5
766     /**
767 jsr166 1.77 * Saves this queue to a stream (that is, serializes it).
768 dl 1.5 *
769 jsr166 1.110 * @param s the stream
770     * @throws java.io.IOException if an I/O error occurs
771 dl 1.5 * @serialData The length of the array backing the instance is
772 jsr166 1.63 * emitted (int), followed by all of its elements
773     * (each an {@code Object}) in the proper order.
774 dl 1.5 */
775 dl 1.22 private void writeObject(java.io.ObjectOutputStream s)
776 jsr166 1.75 throws java.io.IOException {
777 dl 1.7 // Write out element count, and any hidden stuff
778     s.defaultWriteObject();
779 dl 1.5
780 jsr166 1.63 // Write out array length, for compatibility with 1.5 version
781     s.writeInt(Math.max(2, size + 1));
782 dl 1.5
783 jsr166 1.64 // Write out all elements in the "proper order".
784 jsr166 1.123 final Object[] es = queue;
785     for (int i = 0, n = size; i < n; i++)
786     s.writeObject(es[i]);
787 dl 1.5 }
788    
789     /**
790 dl 1.81 * Reconstitutes the {@code PriorityQueue} instance from a stream
791     * (that is, deserializes it).
792     *
793     * @param s the stream
794 jsr166 1.97 * @throws ClassNotFoundException if the class of a serialized object
795     * could not be found
796     * @throws java.io.IOException if an I/O error occurs
797 dl 1.5 */
798 dl 1.22 private void readObject(java.io.ObjectInputStream s)
799 dl 1.5 throws java.io.IOException, ClassNotFoundException {
800 dl 1.7 // Read in size, and any hidden stuff
801     s.defaultReadObject();
802 dl 1.5
803 jsr166 1.63 // Read in (and discard) array length
804     s.readInt();
805    
806 jsr166 1.120 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
807 jsr166 1.125 final Object[] es = queue = new Object[Math.max(size, 1)];
808 dl 1.5
809 jsr166 1.64 // Read in all elements.
810 jsr166 1.123 for (int i = 0, n = size; i < n; i++)
811     es[i] = s.readObject();
812 jsr166 1.64
813 jsr166 1.68 // Elements are guaranteed to be in "proper order", but the
814     // spec has never explained what that might be.
815     heapify();
816 dl 1.5 }
817 dl 1.81
818 jsr166 1.106 /**
819     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
820     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
821 jsr166 1.111 * queue. The spliterator does not traverse elements in any particular order
822     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
823 jsr166 1.106 *
824     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
825     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
826     * Overriding implementations should document the reporting of additional
827     * characteristic values.
828     *
829     * @return a {@code Spliterator} over the elements in this queue
830     * @since 1.8
831     */
832     public final Spliterator<E> spliterator() {
833 jsr166 1.113 return new PriorityQueueSpliterator(0, -1, 0);
834 dl 1.81 }
835    
836 jsr166 1.113 final class PriorityQueueSpliterator implements Spliterator<E> {
837 dl 1.89 private int index; // current index, modified on advance/split
838     private int fence; // -1 until first use
839     private int expectedModCount; // initialized when fence set
840 dl 1.81
841 jsr166 1.108 /** Creates new spliterator covering the given range. */
842 jsr166 1.113 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
843 dl 1.89 this.index = origin;
844     this.fence = fence;
845 dl 1.81 this.expectedModCount = expectedModCount;
846     }
847    
848 dl 1.89 private int getFence() { // initialize fence to size on first use
849     int hi;
850     if ((hi = fence) < 0) {
851 jsr166 1.113 expectedModCount = modCount;
852     hi = fence = size;
853 dl 1.89 }
854     return hi;
855     }
856 jsr166 1.90
857 jsr166 1.113 public PriorityQueueSpliterator trySplit() {
858 dl 1.89 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
859 dl 1.81 return (lo >= mid) ? null :
860 jsr166 1.113 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
861 dl 1.81 }
862    
863 dl 1.95 public void forEachRemaining(Consumer<? super E> action) {
864 dl 1.89 if (action == null)
865 dl 1.81 throw new NullPointerException();
866 jsr166 1.115 if (fence < 0) { fence = size; expectedModCount = modCount; }
867 jsr166 1.124 final Object[] es = queue;
868 jsr166 1.115 int i, hi; E e;
869     for (i = index, index = hi = fence; i < hi; i++) {
870 jsr166 1.124 if ((e = (E) es[i]) == null)
871 jsr166 1.115 break; // must be CME
872     action.accept(e);
873 dl 1.81 }
874 jsr166 1.115 if (modCount != expectedModCount)
875     throw new ConcurrentModificationException();
876 dl 1.81 }
877    
878 dl 1.89 public boolean tryAdvance(Consumer<? super E> action) {
879 jsr166 1.106 if (action == null)
880     throw new NullPointerException();
881 jsr166 1.115 if (fence < 0) { fence = size; expectedModCount = modCount; }
882     int i;
883     if ((i = index) < fence) {
884     index = i + 1;
885     E e;
886     if ((e = (E) queue[i]) == null
887     || modCount != expectedModCount)
888 dl 1.89 throw new ConcurrentModificationException();
889     action.accept(e);
890 dl 1.81 return true;
891     }
892     return false;
893     }
894    
895 jsr166 1.90 public long estimateSize() {
896 jsr166 1.113 return getFence() - index;
897 dl 1.89 }
898    
899     public int characteristics() {
900     return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
901     }
902 dl 1.81 }
903 jsr166 1.122
904     /**
905     * @throws NullPointerException {@inheritDoc}
906     */
907 jsr166 1.128 public boolean removeIf(Predicate<? super E> filter) {
908     Objects.requireNonNull(filter);
909     return bulkRemove(filter);
910     }
911    
912     /**
913     * @throws NullPointerException {@inheritDoc}
914     */
915     public boolean removeAll(Collection<?> c) {
916     Objects.requireNonNull(c);
917     return bulkRemove(e -> c.contains(e));
918     }
919    
920     /**
921     * @throws NullPointerException {@inheritDoc}
922     */
923     public boolean retainAll(Collection<?> c) {
924     Objects.requireNonNull(c);
925     return bulkRemove(e -> !c.contains(e));
926     }
927    
928     // A tiny bit set implementation
929    
930     private static long[] nBits(int n) {
931     return new long[((n - 1) >> 6) + 1];
932     }
933     private static void setBit(long[] bits, int i) {
934     bits[i >> 6] |= 1L << i;
935     }
936     private static boolean isClear(long[] bits, int i) {
937     return (bits[i >> 6] & (1L << i)) == 0;
938     }
939    
940     /** Implementation of bulk remove methods. */
941     private boolean bulkRemove(Predicate<? super E> filter) {
942     final int expectedModCount = ++modCount;
943     final Object[] es = queue;
944     final int end = size;
945     int i;
946     // Optimize for initial run of survivors
947     for (i = 0; i < end && !filter.test((E) es[i]); i++)
948     ;
949     if (i >= end) {
950     if (modCount != expectedModCount)
951     throw new ConcurrentModificationException();
952     return false;
953     }
954     // Tolerate predicates that reentrantly access the collection for
955     // read (but writers still get CME), so traverse once to find
956     // elements to delete, a second pass to physically expunge.
957     final int beg = i;
958     final long[] deathRow = nBits(end - beg);
959     deathRow[0] = 1L; // set bit 0
960     for (i = beg + 1; i < end; i++)
961     if (filter.test((E) es[i]))
962     setBit(deathRow, i - beg);
963     if (modCount != expectedModCount)
964     throw new ConcurrentModificationException();
965     int w = beg;
966     for (i = beg; i < end; i++)
967     if (isClear(deathRow, i - beg))
968     es[w++] = es[i];
969     for (i = size = w; i < end; i++)
970     es[i] = null;
971     heapify();
972     return true;
973     }
974    
975     /**
976     * @throws NullPointerException {@inheritDoc}
977     */
978 jsr166 1.122 public void forEach(Consumer<? super E> action) {
979     Objects.requireNonNull(action);
980     final int expectedModCount = modCount;
981     final Object[] es = queue;
982     for (int i = 0, n = size; i < n; i++)
983     action.accept((E) es[i]);
984     if (expectedModCount != modCount)
985     throw new ConcurrentModificationException();
986     }
987 tim 1.1 }