ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.131
Committed: Wed May 22 17:36:58 2019 UTC (4 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.130: +6 -23 lines
Log Message:
8223593: Refactor code for reallocating storage

File Contents

# User Rev Content
1 dl 1.38 /*
2 jsr166 1.131 * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.67 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.38 *
5 jsr166 1.67 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 dl 1.81 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.67 * particular file as subject to the "Classpath" exception as provided
9 dl 1.81 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.67 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.71 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.38 */
25    
26     package java.util;
27 jsr166 1.102
28 dl 1.89 import java.util.function.Consumer;
29 jsr166 1.128 import java.util.function.Predicate;
30 jsr166 1.130 // OPENJDK import jdk.internal.access.SharedSecrets;
31 jsr166 1.131 import jdk.internal.util.ArraysSupport;
32 tim 1.1
33     /**
34 jsr166 1.63 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35     * The elements of the priority queue are ordered according to their
36     * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37     * provided at queue construction time, depending on which constructor is
38     * used. A priority queue does not permit {@code null} elements.
39     * A priority queue relying on natural ordering also does not permit
40     * insertion of non-comparable objects (doing so may result in
41     * {@code ClassCastException}).
42 dl 1.40 *
43 dl 1.41 * <p>The <em>head</em> of this queue is the <em>least</em> element
44     * with respect to the specified ordering. If multiple elements are
45     * tied for least value, the head is one of those elements -- ties are
46 jsr166 1.63 * broken arbitrarily. The queue retrieval operations {@code poll},
47     * {@code remove}, {@code peek}, and {@code element} access the
48 dl 1.42 * element at the head of the queue.
49 tim 1.14 *
50 dl 1.41 * <p>A priority queue is unbounded, but has an internal
51     * <i>capacity</i> governing the size of an array used to store the
52 dl 1.40 * elements on the queue. It is always at least as large as the queue
53     * size. As elements are added to a priority queue, its capacity
54     * grows automatically. The details of the growth policy are not
55     * specified.
56 tim 1.2 *
57 dl 1.50 * <p>This class and its iterator implement all of the
58     * <em>optional</em> methods of the {@link Collection} and {@link
59 dl 1.52 * Iterator} interfaces. The Iterator provided in method {@link
60 jsr166 1.111 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61     * are <em>not</em> guaranteed to traverse the elements of
62 dl 1.52 * the priority queue in any particular order. If you need ordered
63 jsr166 1.63 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 dl 1.29 *
65 jsr166 1.82 * <p><strong>Note that this implementation is not synchronized.</strong>
66 jsr166 1.63 * Multiple threads should not access a {@code PriorityQueue}
67     * instance concurrently if any of the threads modifies the queue.
68     * Instead, use the thread-safe {@link
69 dl 1.88 * java.util.concurrent.PriorityBlockingQueue} class.
70 dl 1.29 *
71 jsr166 1.63 * <p>Implementation note: this implementation provides
72 jsr166 1.98 * O(log(n)) time for the enqueuing and dequeuing methods
73 jsr166 1.63 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74     * linear time for the {@code remove(Object)} and {@code contains(Object)}
75     * methods; and constant time for the retrieval methods
76     * ({@code peek}, {@code element}, and {@code size}).
77 tim 1.2 *
78     * <p>This class is a member of the
79 jsr166 1.129 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80 tim 1.2 * Java Collections Framework</a>.
81 jsr166 1.63 *
82 dl 1.7 * @since 1.5
83 jsr166 1.63 * @author Josh Bloch, Doug Lea
84 jsr166 1.101 * @param <E> the type of elements held in this queue
85 tim 1.2 */
86 jsr166 1.124 @SuppressWarnings("unchecked")
87 tim 1.2 public class PriorityQueue<E> extends AbstractQueue<E>
88 dl 1.47 implements java.io.Serializable {
89 dholmes 1.11
90 dl 1.31 private static final long serialVersionUID = -7720805057305804111L;
91 dl 1.30
92 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
93 tim 1.1
94 tim 1.2 /**
95 dl 1.55 * Priority queue represented as a balanced binary heap: the two
96     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
97     * priority queue is ordered by comparator, or by the elements'
98     * natural ordering, if comparator is null: For each node n in the
99     * heap and each descendant d of n, n <= d. The element with the
100     * lowest value is in queue[0], assuming the queue is nonempty.
101 tim 1.2 */
102 dl 1.81 transient Object[] queue; // non-private to simplify nested class access
103 tim 1.1
104 tim 1.2 /**
105     * The number of elements in the priority queue.
106     */
107 jsr166 1.107 int size;
108 tim 1.1
109 tim 1.2 /**
110     * The comparator, or null if priority queue uses elements'
111     * natural ordering.
112     */
113 tim 1.16 private final Comparator<? super E> comparator;
114 tim 1.2
115     /**
116     * The number of times this priority queue has been
117     * <i>structurally modified</i>. See AbstractList for gory details.
118     */
119 jsr166 1.106 transient int modCount; // non-private to simplify nested class access
120 tim 1.2
121     /**
122 jsr166 1.63 * Creates a {@code PriorityQueue} with the default initial
123 dl 1.52 * capacity (11) that orders its elements according to their
124     * {@linkplain Comparable natural ordering}.
125 tim 1.2 */
126     public PriorityQueue() {
127 dholmes 1.11 this(DEFAULT_INITIAL_CAPACITY, null);
128 tim 1.1 }
129 tim 1.2
130     /**
131 jsr166 1.63 * Creates a {@code PriorityQueue} with the specified initial
132 dl 1.52 * capacity that orders its elements according to their
133     * {@linkplain Comparable natural ordering}.
134 tim 1.2 *
135 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
136 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
137     * than 1
138 tim 1.2 */
139     public PriorityQueue(int initialCapacity) {
140     this(initialCapacity, null);
141 tim 1.1 }
142 tim 1.2
143     /**
144 jsr166 1.106 * Creates a {@code PriorityQueue} with the default initial capacity and
145     * whose elements are ordered according to the specified comparator.
146     *
147     * @param comparator the comparator that will be used to order this
148     * priority queue. If {@code null}, the {@linkplain Comparable
149     * natural ordering} of the elements will be used.
150     * @since 1.8
151     */
152     public PriorityQueue(Comparator<? super E> comparator) {
153     this(DEFAULT_INITIAL_CAPACITY, comparator);
154     }
155    
156     /**
157 jsr166 1.63 * Creates a {@code PriorityQueue} with the specified initial capacity
158 tim 1.2 * that orders its elements according to the specified comparator.
159     *
160 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
161 jsr166 1.63 * @param comparator the comparator that will be used to order this
162     * priority queue. If {@code null}, the {@linkplain Comparable
163     * natural ordering} of the elements will be used.
164     * @throws IllegalArgumentException if {@code initialCapacity} is
165 dl 1.52 * less than 1
166 tim 1.2 */
167 dl 1.52 public PriorityQueue(int initialCapacity,
168 dholmes 1.23 Comparator<? super E> comparator) {
169 dl 1.55 // Note: This restriction of at least one is not actually needed,
170     // but continues for 1.5 compatibility
171 tim 1.2 if (initialCapacity < 1)
172 dholmes 1.15 throw new IllegalArgumentException();
173 dl 1.55 this.queue = new Object[initialCapacity];
174 tim 1.2 this.comparator = comparator;
175 tim 1.1 }
176 jsr166 1.56
177 dl 1.22 /**
178 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
179     * specified collection. If the specified collection is an instance of
180     * a {@link SortedSet} or is another {@code PriorityQueue}, this
181     * priority queue will be ordered according to the same ordering.
182     * Otherwise, this priority queue will be ordered according to the
183     * {@linkplain Comparable natural ordering} of its elements.
184 tim 1.2 *
185 dl 1.52 * @param c the collection whose elements are to be placed
186     * into this priority queue
187 tim 1.2 * @throws ClassCastException if elements of the specified collection
188     * cannot be compared to one another according to the priority
189 dl 1.52 * queue's ordering
190     * @throws NullPointerException if the specified collection or any
191     * of its elements are null
192 tim 1.2 */
193 tim 1.16 public PriorityQueue(Collection<? extends E> c) {
194 jsr166 1.70 if (c instanceof SortedSet<?>) {
195     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
196     this.comparator = (Comparator<? super E>) ss.comparator();
197     initElementsFromCollection(ss);
198     }
199     else if (c instanceof PriorityQueue<?>) {
200     PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
201     this.comparator = (Comparator<? super E>) pq.comparator();
202     initFromPriorityQueue(pq);
203     }
204 dl 1.55 else {
205 jsr166 1.70 this.comparator = null;
206     initFromCollection(c);
207 tim 1.2 }
208 dl 1.22 }
209    
210     /**
211 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
212 dl 1.55 * specified priority queue. This priority queue will be
213 dl 1.52 * ordered according to the same ordering as the given priority
214     * queue.
215     *
216     * @param c the priority queue whose elements are to be placed
217     * into this priority queue
218 jsr166 1.63 * @throws ClassCastException if elements of {@code c} cannot be
219     * compared to one another according to {@code c}'s
220 dl 1.52 * ordering
221     * @throws NullPointerException if the specified priority queue or any
222     * of its elements are null
223 dl 1.22 */
224     public PriorityQueue(PriorityQueue<? extends E> c) {
225 jsr166 1.70 this.comparator = (Comparator<? super E>) c.comparator();
226     initFromPriorityQueue(c);
227 dl 1.22 }
228 dholmes 1.18
229 dl 1.22 /**
230 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
231     * specified sorted set. This priority queue will be ordered
232 dl 1.52 * according to the same ordering as the given sorted set.
233     *
234     * @param c the sorted set whose elements are to be placed
235 jsr166 1.63 * into this priority queue
236 dl 1.52 * @throws ClassCastException if elements of the specified sorted
237     * set cannot be compared to one another according to the
238     * sorted set's ordering
239     * @throws NullPointerException if the specified sorted set or any
240     * of its elements are null
241 dl 1.22 */
242     public PriorityQueue(SortedSet<? extends E> c) {
243 jsr166 1.70 this.comparator = (Comparator<? super E>) c.comparator();
244     initElementsFromCollection(c);
245     }
246    
247 jsr166 1.125 /** Ensures that queue[0] exists, helping peek() and poll(). */
248     private static Object[] ensureNonEmpty(Object[] es) {
249     return (es.length > 0) ? es : new Object[1];
250     }
251    
252 jsr166 1.70 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
253     if (c.getClass() == PriorityQueue.class) {
254 jsr166 1.125 this.queue = ensureNonEmpty(c.toArray());
255 jsr166 1.70 this.size = c.size();
256     } else {
257     initFromCollection(c);
258     }
259     }
260    
261     private void initElementsFromCollection(Collection<? extends E> c) {
262 jsr166 1.124 Object[] es = c.toArray();
263     int len = es.length;
264 jsr166 1.70 // If c.toArray incorrectly doesn't return Object[], copy it.
265 jsr166 1.124 if (es.getClass() != Object[].class)
266     es = Arrays.copyOf(es, len, Object[].class);
267 jsr166 1.70 if (len == 1 || this.comparator != null)
268 jsr166 1.124 for (Object e : es)
269 jsr166 1.106 if (e == null)
270 jsr166 1.70 throw new NullPointerException();
271 jsr166 1.125 this.queue = ensureNonEmpty(es);
272 jsr166 1.124 this.size = len;
273 tim 1.1 }
274    
275 dl 1.22 /**
276 jsr166 1.63 * Initializes queue array with elements from the given Collection.
277     *
278 dl 1.55 * @param c the collection
279 dl 1.22 */
280 dl 1.55 private void initFromCollection(Collection<? extends E> c) {
281 jsr166 1.70 initElementsFromCollection(c);
282     heapify();
283 jsr166 1.56 }
284 dl 1.55
285     /**
286     * Increases the capacity of the array.
287     *
288     * @param minCapacity the desired minimum capacity
289     */
290     private void grow(int minCapacity) {
291 jsr166 1.68 int oldCapacity = queue.length;
292 dl 1.55 // Double size if small; else grow by 50%
293 jsr166 1.131 int newCapacity = ArraysSupport.newLength(oldCapacity,
294     minCapacity - oldCapacity, /* minimum growth */
295     oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
296     /* preferred growth */);
297 dl 1.55 queue = Arrays.copyOf(queue, newCapacity);
298 dl 1.22 }
299 dl 1.36
300 tim 1.2 /**
301 dl 1.42 * Inserts the specified element into this priority queue.
302 tim 1.2 *
303 jsr166 1.63 * @return {@code true} (as specified by {@link Collection#add})
304 dl 1.52 * @throws ClassCastException if the specified element cannot be
305     * compared with elements currently in this priority queue
306     * according to the priority queue's ordering
307     * @throws NullPointerException if the specified element is null
308 tim 1.2 */
309 dl 1.52 public boolean add(E e) {
310     return offer(e);
311     }
312    
313     /**
314     * Inserts the specified element into this priority queue.
315     *
316 jsr166 1.63 * @return {@code true} (as specified by {@link Queue#offer})
317 dl 1.52 * @throws ClassCastException if the specified element cannot be
318     * compared with elements currently in this priority queue
319     * according to the priority queue's ordering
320     * @throws NullPointerException if the specified element is null
321     */
322     public boolean offer(E e) {
323     if (e == null)
324 dholmes 1.11 throw new NullPointerException();
325     modCount++;
326 dl 1.55 int i = size;
327     if (i >= queue.length)
328     grow(i + 1);
329 jsr166 1.109 siftUp(i, e);
330 dl 1.55 size = i + 1;
331 dholmes 1.11 return true;
332     }
333    
334 dl 1.40 public E peek() {
335 jsr166 1.125 return (E) queue[0];
336 tim 1.1 }
337    
338 dl 1.52 private int indexOf(Object o) {
339 jsr166 1.68 if (o != null) {
340 jsr166 1.123 final Object[] es = queue;
341     for (int i = 0, n = size; i < n; i++)
342     if (o.equals(es[i]))
343 dl 1.55 return i;
344     }
345 dl 1.52 return -1;
346     }
347    
348     /**
349     * Removes a single instance of the specified element from this queue,
350 jsr166 1.63 * if it is present. More formally, removes an element {@code e} such
351     * that {@code o.equals(e)}, if this queue contains one or more such
352     * elements. Returns {@code true} if and only if this queue contained
353     * the specified element (or equivalently, if this queue changed as a
354     * result of the call).
355 dl 1.52 *
356     * @param o element to be removed from this queue, if present
357 jsr166 1.63 * @return {@code true} if this queue changed as a result of the call
358 dl 1.52 */
359     public boolean remove(Object o) {
360 jsr166 1.68 int i = indexOf(o);
361     if (i == -1)
362     return false;
363     else {
364     removeAt(i);
365     return true;
366     }
367 dl 1.52 }
368 dholmes 1.11
369 jsr166 1.56 /**
370 jsr166 1.123 * Identity-based version for use in Itr.remove.
371 jsr166 1.56 *
372 dl 1.55 * @param o element to be removed from this queue, if present
373     */
374 jsr166 1.123 void removeEq(Object o) {
375     final Object[] es = queue;
376     for (int i = 0, n = size; i < n; i++) {
377     if (o == es[i]) {
378 dl 1.55 removeAt(i);
379 jsr166 1.123 break;
380 dl 1.55 }
381     }
382     }
383    
384 dholmes 1.11 /**
385 jsr166 1.63 * Returns {@code true} if this queue contains the specified element.
386     * More formally, returns {@code true} if and only if this queue contains
387     * at least one element {@code e} such that {@code o.equals(e)}.
388 dholmes 1.23 *
389 dl 1.52 * @param o object to be checked for containment in this queue
390 jsr166 1.63 * @return {@code true} if this queue contains the specified element
391 dholmes 1.11 */
392 dl 1.52 public boolean contains(Object o) {
393 jsr166 1.100 return indexOf(o) >= 0;
394 tim 1.14 }
395 dholmes 1.11
396 dl 1.49 /**
397 jsr166 1.63 * Returns an array containing all of the elements in this queue.
398 dl 1.52 * The elements are in no particular order.
399     *
400     * <p>The returned array will be "safe" in that no references to it are
401 jsr166 1.63 * maintained by this queue. (In other words, this method must allocate
402 dl 1.52 * a new array). The caller is thus free to modify the returned array.
403     *
404 jsr166 1.63 * <p>This method acts as bridge between array-based and collection-based
405     * APIs.
406     *
407 jsr166 1.59 * @return an array containing all of the elements in this queue
408 dl 1.49 */
409 dl 1.52 public Object[] toArray() {
410 dl 1.55 return Arrays.copyOf(queue, size);
411 dl 1.52 }
412 tim 1.2
413 dl 1.52 /**
414 jsr166 1.63 * Returns an array containing all of the elements in this queue; the
415     * runtime type of the returned array is that of the specified array.
416     * The returned array elements are in no particular order.
417     * If the queue fits in the specified array, it is returned therein.
418     * Otherwise, a new array is allocated with the runtime type of the
419     * specified array and the size of this queue.
420 dl 1.52 *
421     * <p>If the queue fits in the specified array with room to spare
422     * (i.e., the array has more elements than the queue), the element in
423     * the array immediately following the end of the collection is set to
424 jsr166 1.63 * {@code null}.
425     *
426     * <p>Like the {@link #toArray()} method, this method acts as bridge between
427     * array-based and collection-based APIs. Further, this method allows
428     * precise control over the runtime type of the output array, and may,
429     * under certain circumstances, be used to save allocation costs.
430     *
431 jsr166 1.80 * <p>Suppose {@code x} is a queue known to contain only strings.
432 jsr166 1.63 * The following code can be used to dump the queue into a newly
433 jsr166 1.80 * allocated array of {@code String}:
434 jsr166 1.63 *
435 jsr166 1.104 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436 jsr166 1.63 *
437 jsr166 1.80 * Note that {@code toArray(new Object[0])} is identical in function to
438     * {@code toArray()}.
439 dl 1.52 *
440     * @param a the array into which the elements of the queue are to
441     * be stored, if it is big enough; otherwise, a new array of the
442     * same runtime type is allocated for this purpose.
443 jsr166 1.63 * @return an array containing all of the elements in this queue
444 dl 1.52 * @throws ArrayStoreException if the runtime type of the specified array
445     * is not a supertype of the runtime type of every element in
446     * this queue
447     * @throws NullPointerException if the specified array is null
448     */
449     public <T> T[] toArray(T[] a) {
450 jsr166 1.85 final int size = this.size;
451 dl 1.52 if (a.length < size)
452     // Make a new array of a's runtime type, but my contents:
453 dl 1.55 return (T[]) Arrays.copyOf(queue, size, a.getClass());
454 jsr166 1.68 System.arraycopy(queue, 0, a, 0, size);
455 dl 1.52 if (a.length > size)
456     a[size] = null;
457     return a;
458 tim 1.1 }
459 tim 1.2
460 dholmes 1.23 /**
461     * Returns an iterator over the elements in this queue. The iterator
462     * does not return the elements in any particular order.
463     *
464 dl 1.52 * @return an iterator over the elements in this queue
465 dholmes 1.23 */
466 tim 1.2 public Iterator<E> iterator() {
467 dl 1.7 return new Itr();
468 tim 1.2 }
469    
470 dl 1.55 private final class Itr implements Iterator<E> {
471 dl 1.7 /**
472     * Index (into queue array) of element to be returned by
473 tim 1.2 * subsequent call to next.
474 dl 1.7 */
475 jsr166 1.99 private int cursor;
476 tim 1.2
477 dl 1.7 /**
478 dl 1.36 * Index of element returned by most recent call to next,
479     * unless that element came from the forgetMeNot list.
480 dl 1.55 * Set to -1 if element is deleted by a call to remove.
481 dl 1.7 */
482 dl 1.55 private int lastRet = -1;
483 dl 1.7
484     /**
485 dl 1.55 * A queue of elements that were moved from the unvisited portion of
486 dl 1.36 * the heap into the visited portion as a result of "unlucky" element
487     * removals during the iteration. (Unlucky element removals are those
488 dl 1.55 * that require a siftup instead of a siftdown.) We must visit all of
489 dl 1.36 * the elements in this list to complete the iteration. We do this
490     * after we've completed the "normal" iteration.
491     *
492     * We expect that most iterations, even those involving removals,
493 jsr166 1.63 * will not need to store elements in this field.
494 dl 1.36 */
495 jsr166 1.99 private ArrayDeque<E> forgetMeNot;
496 dl 1.36
497     /**
498     * Element returned by the most recent call to next iff that
499     * element was drawn from the forgetMeNot list.
500     */
501 jsr166 1.99 private E lastRetElt;
502 dl 1.55
503     /**
504     * The modCount value that the iterator believes that the backing
505 jsr166 1.63 * Queue should have. If this expectation is violated, the iterator
506 dl 1.55 * has detected concurrent modification.
507     */
508     private int expectedModCount = modCount;
509 dl 1.35
510 jsr166 1.117 Itr() {} // prevent access constructor creation
511    
512 dl 1.7 public boolean hasNext() {
513 jsr166 1.56 return cursor < size ||
514 dl 1.55 (forgetMeNot != null && !forgetMeNot.isEmpty());
515 dl 1.7 }
516    
517     public E next() {
518 dl 1.55 if (expectedModCount != modCount)
519     throw new ConcurrentModificationException();
520 jsr166 1.56 if (cursor < size)
521 dl 1.55 return (E) queue[lastRet = cursor++];
522     if (forgetMeNot != null) {
523     lastRet = -1;
524     lastRetElt = forgetMeNot.poll();
525 jsr166 1.56 if (lastRetElt != null)
526 dl 1.55 return lastRetElt;
527 dl 1.36 }
528 dl 1.55 throw new NoSuchElementException();
529 dl 1.7 }
530 tim 1.2
531 dl 1.7 public void remove() {
532 dl 1.55 if (expectedModCount != modCount)
533     throw new ConcurrentModificationException();
534     if (lastRet != -1) {
535 dl 1.36 E moved = PriorityQueue.this.removeAt(lastRet);
536 dl 1.55 lastRet = -1;
537 jsr166 1.56 if (moved == null)
538 dl 1.36 cursor--;
539 dl 1.55 else {
540 dl 1.36 if (forgetMeNot == null)
541 dl 1.89 forgetMeNot = new ArrayDeque<>();
542 dl 1.36 forgetMeNot.add(moved);
543 jsr166 1.56 }
544 jsr166 1.63 } else if (lastRetElt != null) {
545 dl 1.55 PriorityQueue.this.removeEq(lastRetElt);
546 dl 1.36 lastRetElt = null;
547 jsr166 1.63 } else {
548     throw new IllegalStateException();
549 jsr166 1.68 }
550 tim 1.2 expectedModCount = modCount;
551 dl 1.7 }
552 tim 1.2 }
553    
554 tim 1.1 public int size() {
555 tim 1.2 return size;
556 tim 1.1 }
557 tim 1.2
558     /**
559 dl 1.52 * Removes all of the elements from this priority queue.
560 dl 1.49 * The queue will be empty after this call returns.
561 tim 1.2 */
562     public void clear() {
563     modCount++;
564 jsr166 1.123 final Object[] es = queue;
565     for (int i = 0, n = size; i < n; i++)
566     es[i] = null;
567 tim 1.2 size = 0;
568     }
569    
570 dl 1.40 public E poll() {
571 jsr166 1.125 final Object[] es;
572     final E result;
573    
574     if ((result = (E) ((es = queue)[0])) != null) {
575     modCount++;
576     final int n;
577     final E x = (E) es[(n = --size)];
578     es[n] = null;
579     if (n > 0) {
580     final Comparator<? super E> cmp;
581     if ((cmp = comparator) == null)
582     siftDownComparable(0, x, es, n);
583     else
584     siftDownUsingComparator(0, x, es, n, cmp);
585     }
586     }
587 dl 1.36 return result;
588     }
589    
590     /**
591 dl 1.55 * Removes the ith element from queue.
592 tim 1.2 *
593 dl 1.55 * Normally this method leaves the elements at up to i-1,
594     * inclusive, untouched. Under these circumstances, it returns
595     * null. Occasionally, in order to maintain the heap invariant,
596     * it must swap a later element of the list with one earlier than
597     * i. Under these circumstances, this method returns the element
598     * that was previously at the end of the list and is now at some
599     * position before i. This fact is used by iterator.remove so as to
600 jsr166 1.63 * avoid missing traversing elements.
601 tim 1.2 */
602 jsr166 1.107 E removeAt(int i) {
603 jsr166 1.74 // assert i >= 0 && i < size;
604 jsr166 1.126 final Object[] es = queue;
605 tim 1.2 modCount++;
606 dl 1.55 int s = --size;
607     if (s == i) // removed last element
608 jsr166 1.126 es[i] = null;
609 dl 1.55 else {
610 jsr166 1.127 E moved = (E) es[s];
611 jsr166 1.126 es[s] = null;
612 dl 1.55 siftDown(i, moved);
613 jsr166 1.126 if (es[i] == moved) {
614 dl 1.55 siftUp(i, moved);
615 jsr166 1.126 if (es[i] != moved)
616 dl 1.36 return moved;
617     }
618 dl 1.35 }
619 dl 1.36 return null;
620 tim 1.1 }
621    
622 tim 1.2 /**
623 dl 1.55 * Inserts item x at position k, maintaining heap invariant by
624     * promoting x up the tree until it is greater than or equal to
625     * its parent, or is the root.
626     *
627 jsr166 1.116 * To simplify and speed up coercions and comparisons, the
628 dl 1.55 * Comparable and Comparator versions are separated into different
629     * methods that are otherwise identical. (Similarly for siftDown.)
630 jsr166 1.56 *
631 dl 1.55 * @param k the position to fill
632     * @param x the item to insert
633     */
634     private void siftUp(int k, E x) {
635 jsr166 1.56 if (comparator != null)
636 jsr166 1.124 siftUpUsingComparator(k, x, queue, comparator);
637 dl 1.55 else
638 jsr166 1.124 siftUpComparable(k, x, queue);
639 dl 1.55 }
640    
641 jsr166 1.124 private static <T> void siftUpComparable(int k, T x, Object[] es) {
642     Comparable<? super T> key = (Comparable<? super T>) x;
643 dl 1.55 while (k > 0) {
644     int parent = (k - 1) >>> 1;
645 jsr166 1.124 Object e = es[parent];
646     if (key.compareTo((T) e) >= 0)
647 dl 1.55 break;
648 jsr166 1.124 es[k] = e;
649 dl 1.55 k = parent;
650     }
651 jsr166 1.124 es[k] = key;
652 dl 1.55 }
653    
654 jsr166 1.124 private static <T> void siftUpUsingComparator(
655     int k, T x, Object[] es, Comparator<? super T> cmp) {
656 dl 1.55 while (k > 0) {
657     int parent = (k - 1) >>> 1;
658 jsr166 1.124 Object e = es[parent];
659     if (cmp.compare(x, (T) e) >= 0)
660 dl 1.55 break;
661 jsr166 1.124 es[k] = e;
662 dl 1.55 k = parent;
663     }
664 jsr166 1.124 es[k] = x;
665 dl 1.55 }
666    
667     /**
668     * Inserts item x at position k, maintaining heap invariant by
669     * demoting x down the tree repeatedly until it is less than or
670     * equal to its children or is a leaf.
671     *
672     * @param k the position to fill
673     * @param x the item to insert
674     */
675     private void siftDown(int k, E x) {
676 jsr166 1.56 if (comparator != null)
677 jsr166 1.124 siftDownUsingComparator(k, x, queue, size, comparator);
678 dl 1.55 else
679 jsr166 1.124 siftDownComparable(k, x, queue, size);
680 dl 1.55 }
681    
682 jsr166 1.124 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
683     // assert n > 0;
684     Comparable<? super T> key = (Comparable<? super T>)x;
685     int half = n >>> 1; // loop while a non-leaf
686 dl 1.55 while (k < half) {
687     int child = (k << 1) + 1; // assume left child is least
688 jsr166 1.124 Object c = es[child];
689 dl 1.55 int right = child + 1;
690 jsr166 1.124 if (right < n &&
691     ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
692     c = es[child = right];
693     if (key.compareTo((T) c) <= 0)
694 dl 1.55 break;
695 jsr166 1.124 es[k] = c;
696 dl 1.55 k = child;
697     }
698 jsr166 1.124 es[k] = key;
699 dl 1.55 }
700    
701 jsr166 1.124 private static <T> void siftDownUsingComparator(
702     int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
703     // assert n > 0;
704     int half = n >>> 1;
705 dl 1.55 while (k < half) {
706     int child = (k << 1) + 1;
707 jsr166 1.124 Object c = es[child];
708 dl 1.55 int right = child + 1;
709 jsr166 1.124 if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
710     c = es[child = right];
711     if (cmp.compare(x, (T) c) <= 0)
712 dl 1.55 break;
713 jsr166 1.124 es[k] = c;
714 dl 1.55 k = child;
715 tim 1.2 }
716 jsr166 1.124 es[k] = x;
717 dl 1.36 }
718 dl 1.35
719 dl 1.36 /**
720     * Establishes the heap invariant (described above) in the entire tree,
721     * assuming nothing about the order of the elements prior to the call.
722 jsr166 1.112 * This classic algorithm due to Floyd (1964) is known to be O(size).
723 dl 1.36 */
724     private void heapify() {
725 jsr166 1.114 final Object[] es = queue;
726 jsr166 1.124 int n = size, i = (n >>> 1) - 1;
727 jsr166 1.125 final Comparator<? super E> cmp;
728     if ((cmp = comparator) == null)
729 jsr166 1.118 for (; i >= 0; i--)
730 jsr166 1.124 siftDownComparable(i, (E) es[i], es, n);
731 jsr166 1.114 else
732 jsr166 1.118 for (; i >= 0; i--)
733 jsr166 1.124 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
734 tim 1.2 }
735    
736 dholmes 1.23 /**
737 dl 1.52 * Returns the comparator used to order the elements in this
738 jsr166 1.63 * queue, or {@code null} if this queue is sorted according to
739 dl 1.52 * the {@linkplain Comparable natural ordering} of its elements.
740     *
741     * @return the comparator used to order this queue, or
742 jsr166 1.63 * {@code null} if this queue is sorted according to the
743     * natural ordering of its elements
744 dholmes 1.23 */
745 tim 1.16 public Comparator<? super E> comparator() {
746 tim 1.2 return comparator;
747     }
748 dl 1.5
749     /**
750 jsr166 1.77 * Saves this queue to a stream (that is, serializes it).
751 dl 1.5 *
752 jsr166 1.110 * @param s the stream
753     * @throws java.io.IOException if an I/O error occurs
754 dl 1.5 * @serialData The length of the array backing the instance is
755 jsr166 1.63 * emitted (int), followed by all of its elements
756     * (each an {@code Object}) in the proper order.
757 dl 1.5 */
758 dl 1.22 private void writeObject(java.io.ObjectOutputStream s)
759 jsr166 1.75 throws java.io.IOException {
760 dl 1.7 // Write out element count, and any hidden stuff
761     s.defaultWriteObject();
762 dl 1.5
763 jsr166 1.63 // Write out array length, for compatibility with 1.5 version
764     s.writeInt(Math.max(2, size + 1));
765 dl 1.5
766 jsr166 1.64 // Write out all elements in the "proper order".
767 jsr166 1.123 final Object[] es = queue;
768     for (int i = 0, n = size; i < n; i++)
769     s.writeObject(es[i]);
770 dl 1.5 }
771    
772     /**
773 dl 1.81 * Reconstitutes the {@code PriorityQueue} instance from a stream
774     * (that is, deserializes it).
775     *
776     * @param s the stream
777 jsr166 1.97 * @throws ClassNotFoundException if the class of a serialized object
778     * could not be found
779     * @throws java.io.IOException if an I/O error occurs
780 dl 1.5 */
781 dl 1.22 private void readObject(java.io.ObjectInputStream s)
782 dl 1.5 throws java.io.IOException, ClassNotFoundException {
783 dl 1.7 // Read in size, and any hidden stuff
784     s.defaultReadObject();
785 dl 1.5
786 jsr166 1.63 // Read in (and discard) array length
787     s.readInt();
788    
789 jsr166 1.130 jsr166.Platform.checkArray(s, Object[].class, size);
790 jsr166 1.125 final Object[] es = queue = new Object[Math.max(size, 1)];
791 dl 1.5
792 jsr166 1.64 // Read in all elements.
793 jsr166 1.123 for (int i = 0, n = size; i < n; i++)
794     es[i] = s.readObject();
795 jsr166 1.64
796 jsr166 1.68 // Elements are guaranteed to be in "proper order", but the
797     // spec has never explained what that might be.
798     heapify();
799 dl 1.5 }
800 dl 1.81
801 jsr166 1.106 /**
802     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 jsr166 1.111 * queue. The spliterator does not traverse elements in any particular order
805     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 jsr166 1.106 *
807     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809     * Overriding implementations should document the reporting of additional
810     * characteristic values.
811     *
812     * @return a {@code Spliterator} over the elements in this queue
813     * @since 1.8
814     */
815     public final Spliterator<E> spliterator() {
816 jsr166 1.113 return new PriorityQueueSpliterator(0, -1, 0);
817 dl 1.81 }
818    
819 jsr166 1.113 final class PriorityQueueSpliterator implements Spliterator<E> {
820 dl 1.89 private int index; // current index, modified on advance/split
821     private int fence; // -1 until first use
822     private int expectedModCount; // initialized when fence set
823 dl 1.81
824 jsr166 1.108 /** Creates new spliterator covering the given range. */
825 jsr166 1.113 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
826 dl 1.89 this.index = origin;
827     this.fence = fence;
828 dl 1.81 this.expectedModCount = expectedModCount;
829     }
830    
831 dl 1.89 private int getFence() { // initialize fence to size on first use
832     int hi;
833     if ((hi = fence) < 0) {
834 jsr166 1.113 expectedModCount = modCount;
835     hi = fence = size;
836 dl 1.89 }
837     return hi;
838     }
839 jsr166 1.90
840 jsr166 1.113 public PriorityQueueSpliterator trySplit() {
841 dl 1.89 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
842 dl 1.81 return (lo >= mid) ? null :
843 jsr166 1.113 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
844 dl 1.81 }
845    
846 dl 1.95 public void forEachRemaining(Consumer<? super E> action) {
847 dl 1.89 if (action == null)
848 dl 1.81 throw new NullPointerException();
849 jsr166 1.115 if (fence < 0) { fence = size; expectedModCount = modCount; }
850 jsr166 1.124 final Object[] es = queue;
851 jsr166 1.115 int i, hi; E e;
852     for (i = index, index = hi = fence; i < hi; i++) {
853 jsr166 1.124 if ((e = (E) es[i]) == null)
854 jsr166 1.115 break; // must be CME
855     action.accept(e);
856 dl 1.81 }
857 jsr166 1.115 if (modCount != expectedModCount)
858     throw new ConcurrentModificationException();
859 dl 1.81 }
860    
861 dl 1.89 public boolean tryAdvance(Consumer<? super E> action) {
862 jsr166 1.106 if (action == null)
863     throw new NullPointerException();
864 jsr166 1.115 if (fence < 0) { fence = size; expectedModCount = modCount; }
865     int i;
866     if ((i = index) < fence) {
867     index = i + 1;
868     E e;
869     if ((e = (E) queue[i]) == null
870     || modCount != expectedModCount)
871 dl 1.89 throw new ConcurrentModificationException();
872     action.accept(e);
873 dl 1.81 return true;
874     }
875     return false;
876     }
877    
878 jsr166 1.90 public long estimateSize() {
879 jsr166 1.113 return getFence() - index;
880 dl 1.89 }
881    
882     public int characteristics() {
883     return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884     }
885 dl 1.81 }
886 jsr166 1.122
887     /**
888     * @throws NullPointerException {@inheritDoc}
889     */
890 jsr166 1.128 public boolean removeIf(Predicate<? super E> filter) {
891     Objects.requireNonNull(filter);
892     return bulkRemove(filter);
893     }
894    
895     /**
896     * @throws NullPointerException {@inheritDoc}
897     */
898     public boolean removeAll(Collection<?> c) {
899     Objects.requireNonNull(c);
900     return bulkRemove(e -> c.contains(e));
901     }
902    
903     /**
904     * @throws NullPointerException {@inheritDoc}
905     */
906     public boolean retainAll(Collection<?> c) {
907     Objects.requireNonNull(c);
908     return bulkRemove(e -> !c.contains(e));
909     }
910    
911     // A tiny bit set implementation
912    
913     private static long[] nBits(int n) {
914     return new long[((n - 1) >> 6) + 1];
915     }
916     private static void setBit(long[] bits, int i) {
917     bits[i >> 6] |= 1L << i;
918     }
919     private static boolean isClear(long[] bits, int i) {
920     return (bits[i >> 6] & (1L << i)) == 0;
921     }
922    
923     /** Implementation of bulk remove methods. */
924     private boolean bulkRemove(Predicate<? super E> filter) {
925     final int expectedModCount = ++modCount;
926     final Object[] es = queue;
927     final int end = size;
928     int i;
929     // Optimize for initial run of survivors
930     for (i = 0; i < end && !filter.test((E) es[i]); i++)
931     ;
932     if (i >= end) {
933     if (modCount != expectedModCount)
934     throw new ConcurrentModificationException();
935     return false;
936     }
937     // Tolerate predicates that reentrantly access the collection for
938     // read (but writers still get CME), so traverse once to find
939     // elements to delete, a second pass to physically expunge.
940     final int beg = i;
941     final long[] deathRow = nBits(end - beg);
942     deathRow[0] = 1L; // set bit 0
943     for (i = beg + 1; i < end; i++)
944     if (filter.test((E) es[i]))
945     setBit(deathRow, i - beg);
946     if (modCount != expectedModCount)
947     throw new ConcurrentModificationException();
948     int w = beg;
949     for (i = beg; i < end; i++)
950     if (isClear(deathRow, i - beg))
951     es[w++] = es[i];
952     for (i = size = w; i < end; i++)
953     es[i] = null;
954     heapify();
955     return true;
956     }
957    
958     /**
959     * @throws NullPointerException {@inheritDoc}
960     */
961 jsr166 1.122 public void forEach(Consumer<? super E> action) {
962     Objects.requireNonNull(action);
963     final int expectedModCount = modCount;
964     final Object[] es = queue;
965     for (int i = 0, n = size; i < n; i++)
966     action.accept((E) es[i]);
967     if (expectedModCount != modCount)
968     throw new ConcurrentModificationException();
969     }
970 tim 1.1 }