ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.133
Committed: Thu Oct 10 16:53:08 2019 UTC (4 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.132: +1 -0 lines
Log Message:
8231202: Suppress warnings on non-serializable non-transient instance fields in serializable classes

File Contents

# User Rev Content
1 dl 1.38 /*
2 jsr166 1.131 * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 jsr166 1.67 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.38 *
5 jsr166 1.67 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7 dl 1.81 * published by the Free Software Foundation. Oracle designates this
8 jsr166 1.67 * particular file as subject to the "Classpath" exception as provided
9 dl 1.81 * by Oracle in the LICENSE file that accompanied this code.
10 jsr166 1.67 *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21 jsr166 1.71 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24 dl 1.38 */
25    
26     package java.util;
27 jsr166 1.102
28 dl 1.89 import java.util.function.Consumer;
29 jsr166 1.128 import java.util.function.Predicate;
30 jsr166 1.130 // OPENJDK import jdk.internal.access.SharedSecrets;
31 jsr166 1.131 import jdk.internal.util.ArraysSupport;
32 tim 1.1
33     /**
34 jsr166 1.63 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35     * The elements of the priority queue are ordered according to their
36     * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37     * provided at queue construction time, depending on which constructor is
38     * used. A priority queue does not permit {@code null} elements.
39     * A priority queue relying on natural ordering also does not permit
40     * insertion of non-comparable objects (doing so may result in
41     * {@code ClassCastException}).
42 dl 1.40 *
43 dl 1.41 * <p>The <em>head</em> of this queue is the <em>least</em> element
44     * with respect to the specified ordering. If multiple elements are
45     * tied for least value, the head is one of those elements -- ties are
46 jsr166 1.63 * broken arbitrarily. The queue retrieval operations {@code poll},
47     * {@code remove}, {@code peek}, and {@code element} access the
48 dl 1.42 * element at the head of the queue.
49 tim 1.14 *
50 dl 1.41 * <p>A priority queue is unbounded, but has an internal
51     * <i>capacity</i> governing the size of an array used to store the
52 dl 1.40 * elements on the queue. It is always at least as large as the queue
53     * size. As elements are added to a priority queue, its capacity
54     * grows automatically. The details of the growth policy are not
55     * specified.
56 tim 1.2 *
57 dl 1.50 * <p>This class and its iterator implement all of the
58     * <em>optional</em> methods of the {@link Collection} and {@link
59 dl 1.52 * Iterator} interfaces. The Iterator provided in method {@link
60 jsr166 1.111 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61     * are <em>not</em> guaranteed to traverse the elements of
62 dl 1.52 * the priority queue in any particular order. If you need ordered
63 jsr166 1.63 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 dl 1.29 *
65 jsr166 1.82 * <p><strong>Note that this implementation is not synchronized.</strong>
66 jsr166 1.63 * Multiple threads should not access a {@code PriorityQueue}
67     * instance concurrently if any of the threads modifies the queue.
68     * Instead, use the thread-safe {@link
69 dl 1.88 * java.util.concurrent.PriorityBlockingQueue} class.
70 dl 1.29 *
71 jsr166 1.63 * <p>Implementation note: this implementation provides
72 jsr166 1.98 * O(log(n)) time for the enqueuing and dequeuing methods
73 jsr166 1.63 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74     * linear time for the {@code remove(Object)} and {@code contains(Object)}
75     * methods; and constant time for the retrieval methods
76     * ({@code peek}, {@code element}, and {@code size}).
77 tim 1.2 *
78     * <p>This class is a member of the
79 jsr166 1.129 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80 tim 1.2 * Java Collections Framework</a>.
81 jsr166 1.63 *
82 dl 1.7 * @since 1.5
83 jsr166 1.63 * @author Josh Bloch, Doug Lea
84 jsr166 1.101 * @param <E> the type of elements held in this queue
85 tim 1.2 */
86 jsr166 1.124 @SuppressWarnings("unchecked")
87 tim 1.2 public class PriorityQueue<E> extends AbstractQueue<E>
88 dl 1.47 implements java.io.Serializable {
89 dholmes 1.11
90 jsr166 1.132 // OPENJDK @java.io.Serial
91 dl 1.31 private static final long serialVersionUID = -7720805057305804111L;
92 dl 1.30
93 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
94 tim 1.1
95 tim 1.2 /**
96 dl 1.55 * Priority queue represented as a balanced binary heap: the two
97     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
98     * priority queue is ordered by comparator, or by the elements'
99     * natural ordering, if comparator is null: For each node n in the
100     * heap and each descendant d of n, n <= d. The element with the
101     * lowest value is in queue[0], assuming the queue is nonempty.
102 tim 1.2 */
103 dl 1.81 transient Object[] queue; // non-private to simplify nested class access
104 tim 1.1
105 tim 1.2 /**
106     * The number of elements in the priority queue.
107     */
108 jsr166 1.107 int size;
109 tim 1.1
110 tim 1.2 /**
111     * The comparator, or null if priority queue uses elements'
112     * natural ordering.
113     */
114 jsr166 1.133 @SuppressWarnings("serial") // Conditionally serializable
115 tim 1.16 private final Comparator<? super E> comparator;
116 tim 1.2
117     /**
118     * The number of times this priority queue has been
119     * <i>structurally modified</i>. See AbstractList for gory details.
120     */
121 jsr166 1.106 transient int modCount; // non-private to simplify nested class access
122 tim 1.2
123     /**
124 jsr166 1.63 * Creates a {@code PriorityQueue} with the default initial
125 dl 1.52 * capacity (11) that orders its elements according to their
126     * {@linkplain Comparable natural ordering}.
127 tim 1.2 */
128     public PriorityQueue() {
129 dholmes 1.11 this(DEFAULT_INITIAL_CAPACITY, null);
130 tim 1.1 }
131 tim 1.2
132     /**
133 jsr166 1.63 * Creates a {@code PriorityQueue} with the specified initial
134 dl 1.52 * capacity that orders its elements according to their
135     * {@linkplain Comparable natural ordering}.
136 tim 1.2 *
137 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
138 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
139     * than 1
140 tim 1.2 */
141     public PriorityQueue(int initialCapacity) {
142     this(initialCapacity, null);
143 tim 1.1 }
144 tim 1.2
145     /**
146 jsr166 1.106 * Creates a {@code PriorityQueue} with the default initial capacity and
147     * whose elements are ordered according to the specified comparator.
148     *
149     * @param comparator the comparator that will be used to order this
150     * priority queue. If {@code null}, the {@linkplain Comparable
151     * natural ordering} of the elements will be used.
152     * @since 1.8
153     */
154     public PriorityQueue(Comparator<? super E> comparator) {
155     this(DEFAULT_INITIAL_CAPACITY, comparator);
156     }
157    
158     /**
159 jsr166 1.63 * Creates a {@code PriorityQueue} with the specified initial capacity
160 tim 1.2 * that orders its elements according to the specified comparator.
161     *
162 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
163 jsr166 1.63 * @param comparator the comparator that will be used to order this
164     * priority queue. If {@code null}, the {@linkplain Comparable
165     * natural ordering} of the elements will be used.
166     * @throws IllegalArgumentException if {@code initialCapacity} is
167 dl 1.52 * less than 1
168 tim 1.2 */
169 dl 1.52 public PriorityQueue(int initialCapacity,
170 dholmes 1.23 Comparator<? super E> comparator) {
171 dl 1.55 // Note: This restriction of at least one is not actually needed,
172     // but continues for 1.5 compatibility
173 tim 1.2 if (initialCapacity < 1)
174 dholmes 1.15 throw new IllegalArgumentException();
175 dl 1.55 this.queue = new Object[initialCapacity];
176 tim 1.2 this.comparator = comparator;
177 tim 1.1 }
178 jsr166 1.56
179 dl 1.22 /**
180 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
181     * specified collection. If the specified collection is an instance of
182     * a {@link SortedSet} or is another {@code PriorityQueue}, this
183     * priority queue will be ordered according to the same ordering.
184     * Otherwise, this priority queue will be ordered according to the
185     * {@linkplain Comparable natural ordering} of its elements.
186 tim 1.2 *
187 dl 1.52 * @param c the collection whose elements are to be placed
188     * into this priority queue
189 tim 1.2 * @throws ClassCastException if elements of the specified collection
190     * cannot be compared to one another according to the priority
191 dl 1.52 * queue's ordering
192     * @throws NullPointerException if the specified collection or any
193     * of its elements are null
194 tim 1.2 */
195 tim 1.16 public PriorityQueue(Collection<? extends E> c) {
196 jsr166 1.70 if (c instanceof SortedSet<?>) {
197     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
198     this.comparator = (Comparator<? super E>) ss.comparator();
199     initElementsFromCollection(ss);
200     }
201     else if (c instanceof PriorityQueue<?>) {
202     PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
203     this.comparator = (Comparator<? super E>) pq.comparator();
204     initFromPriorityQueue(pq);
205     }
206 dl 1.55 else {
207 jsr166 1.70 this.comparator = null;
208     initFromCollection(c);
209 tim 1.2 }
210 dl 1.22 }
211    
212     /**
213 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
214 dl 1.55 * specified priority queue. This priority queue will be
215 dl 1.52 * ordered according to the same ordering as the given priority
216     * queue.
217     *
218     * @param c the priority queue whose elements are to be placed
219     * into this priority queue
220 jsr166 1.63 * @throws ClassCastException if elements of {@code c} cannot be
221     * compared to one another according to {@code c}'s
222 dl 1.52 * ordering
223     * @throws NullPointerException if the specified priority queue or any
224     * of its elements are null
225 dl 1.22 */
226     public PriorityQueue(PriorityQueue<? extends E> c) {
227 jsr166 1.70 this.comparator = (Comparator<? super E>) c.comparator();
228     initFromPriorityQueue(c);
229 dl 1.22 }
230 dholmes 1.18
231 dl 1.22 /**
232 jsr166 1.63 * Creates a {@code PriorityQueue} containing the elements in the
233     * specified sorted set. This priority queue will be ordered
234 dl 1.52 * according to the same ordering as the given sorted set.
235     *
236     * @param c the sorted set whose elements are to be placed
237 jsr166 1.63 * into this priority queue
238 dl 1.52 * @throws ClassCastException if elements of the specified sorted
239     * set cannot be compared to one another according to the
240     * sorted set's ordering
241     * @throws NullPointerException if the specified sorted set or any
242     * of its elements are null
243 dl 1.22 */
244     public PriorityQueue(SortedSet<? extends E> c) {
245 jsr166 1.70 this.comparator = (Comparator<? super E>) c.comparator();
246     initElementsFromCollection(c);
247     }
248    
249 jsr166 1.125 /** Ensures that queue[0] exists, helping peek() and poll(). */
250     private static Object[] ensureNonEmpty(Object[] es) {
251     return (es.length > 0) ? es : new Object[1];
252     }
253    
254 jsr166 1.70 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
255     if (c.getClass() == PriorityQueue.class) {
256 jsr166 1.125 this.queue = ensureNonEmpty(c.toArray());
257 jsr166 1.70 this.size = c.size();
258     } else {
259     initFromCollection(c);
260     }
261     }
262    
263     private void initElementsFromCollection(Collection<? extends E> c) {
264 jsr166 1.124 Object[] es = c.toArray();
265     int len = es.length;
266 jsr166 1.70 // If c.toArray incorrectly doesn't return Object[], copy it.
267 jsr166 1.124 if (es.getClass() != Object[].class)
268     es = Arrays.copyOf(es, len, Object[].class);
269 jsr166 1.70 if (len == 1 || this.comparator != null)
270 jsr166 1.124 for (Object e : es)
271 jsr166 1.106 if (e == null)
272 jsr166 1.70 throw new NullPointerException();
273 jsr166 1.125 this.queue = ensureNonEmpty(es);
274 jsr166 1.124 this.size = len;
275 tim 1.1 }
276    
277 dl 1.22 /**
278 jsr166 1.63 * Initializes queue array with elements from the given Collection.
279     *
280 dl 1.55 * @param c the collection
281 dl 1.22 */
282 dl 1.55 private void initFromCollection(Collection<? extends E> c) {
283 jsr166 1.70 initElementsFromCollection(c);
284     heapify();
285 jsr166 1.56 }
286 dl 1.55
287     /**
288     * Increases the capacity of the array.
289     *
290     * @param minCapacity the desired minimum capacity
291     */
292     private void grow(int minCapacity) {
293 jsr166 1.68 int oldCapacity = queue.length;
294 dl 1.55 // Double size if small; else grow by 50%
295 jsr166 1.131 int newCapacity = ArraysSupport.newLength(oldCapacity,
296     minCapacity - oldCapacity, /* minimum growth */
297     oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
298     /* preferred growth */);
299 dl 1.55 queue = Arrays.copyOf(queue, newCapacity);
300 dl 1.22 }
301 dl 1.36
302 tim 1.2 /**
303 dl 1.42 * Inserts the specified element into this priority queue.
304 tim 1.2 *
305 jsr166 1.63 * @return {@code true} (as specified by {@link Collection#add})
306 dl 1.52 * @throws ClassCastException if the specified element cannot be
307     * compared with elements currently in this priority queue
308     * according to the priority queue's ordering
309     * @throws NullPointerException if the specified element is null
310 tim 1.2 */
311 dl 1.52 public boolean add(E e) {
312     return offer(e);
313     }
314    
315     /**
316     * Inserts the specified element into this priority queue.
317     *
318 jsr166 1.63 * @return {@code true} (as specified by {@link Queue#offer})
319 dl 1.52 * @throws ClassCastException if the specified element cannot be
320     * compared with elements currently in this priority queue
321     * according to the priority queue's ordering
322     * @throws NullPointerException if the specified element is null
323     */
324     public boolean offer(E e) {
325     if (e == null)
326 dholmes 1.11 throw new NullPointerException();
327     modCount++;
328 dl 1.55 int i = size;
329     if (i >= queue.length)
330     grow(i + 1);
331 jsr166 1.109 siftUp(i, e);
332 dl 1.55 size = i + 1;
333 dholmes 1.11 return true;
334     }
335    
336 dl 1.40 public E peek() {
337 jsr166 1.125 return (E) queue[0];
338 tim 1.1 }
339    
340 dl 1.52 private int indexOf(Object o) {
341 jsr166 1.68 if (o != null) {
342 jsr166 1.123 final Object[] es = queue;
343     for (int i = 0, n = size; i < n; i++)
344     if (o.equals(es[i]))
345 dl 1.55 return i;
346     }
347 dl 1.52 return -1;
348     }
349    
350     /**
351     * Removes a single instance of the specified element from this queue,
352 jsr166 1.63 * if it is present. More formally, removes an element {@code e} such
353     * that {@code o.equals(e)}, if this queue contains one or more such
354     * elements. Returns {@code true} if and only if this queue contained
355     * the specified element (or equivalently, if this queue changed as a
356     * result of the call).
357 dl 1.52 *
358     * @param o element to be removed from this queue, if present
359 jsr166 1.63 * @return {@code true} if this queue changed as a result of the call
360 dl 1.52 */
361     public boolean remove(Object o) {
362 jsr166 1.68 int i = indexOf(o);
363     if (i == -1)
364     return false;
365     else {
366     removeAt(i);
367     return true;
368     }
369 dl 1.52 }
370 dholmes 1.11
371 jsr166 1.56 /**
372 jsr166 1.123 * Identity-based version for use in Itr.remove.
373 jsr166 1.56 *
374 dl 1.55 * @param o element to be removed from this queue, if present
375     */
376 jsr166 1.123 void removeEq(Object o) {
377     final Object[] es = queue;
378     for (int i = 0, n = size; i < n; i++) {
379     if (o == es[i]) {
380 dl 1.55 removeAt(i);
381 jsr166 1.123 break;
382 dl 1.55 }
383     }
384     }
385    
386 dholmes 1.11 /**
387 jsr166 1.63 * Returns {@code true} if this queue contains the specified element.
388     * More formally, returns {@code true} if and only if this queue contains
389     * at least one element {@code e} such that {@code o.equals(e)}.
390 dholmes 1.23 *
391 dl 1.52 * @param o object to be checked for containment in this queue
392 jsr166 1.63 * @return {@code true} if this queue contains the specified element
393 dholmes 1.11 */
394 dl 1.52 public boolean contains(Object o) {
395 jsr166 1.100 return indexOf(o) >= 0;
396 tim 1.14 }
397 dholmes 1.11
398 dl 1.49 /**
399 jsr166 1.63 * Returns an array containing all of the elements in this queue.
400 dl 1.52 * The elements are in no particular order.
401     *
402     * <p>The returned array will be "safe" in that no references to it are
403 jsr166 1.63 * maintained by this queue. (In other words, this method must allocate
404 dl 1.52 * a new array). The caller is thus free to modify the returned array.
405     *
406 jsr166 1.63 * <p>This method acts as bridge between array-based and collection-based
407     * APIs.
408     *
409 jsr166 1.59 * @return an array containing all of the elements in this queue
410 dl 1.49 */
411 dl 1.52 public Object[] toArray() {
412 dl 1.55 return Arrays.copyOf(queue, size);
413 dl 1.52 }
414 tim 1.2
415 dl 1.52 /**
416 jsr166 1.63 * Returns an array containing all of the elements in this queue; the
417     * runtime type of the returned array is that of the specified array.
418     * The returned array elements are in no particular order.
419     * If the queue fits in the specified array, it is returned therein.
420     * Otherwise, a new array is allocated with the runtime type of the
421     * specified array and the size of this queue.
422 dl 1.52 *
423     * <p>If the queue fits in the specified array with room to spare
424     * (i.e., the array has more elements than the queue), the element in
425     * the array immediately following the end of the collection is set to
426 jsr166 1.63 * {@code null}.
427     *
428     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429     * array-based and collection-based APIs. Further, this method allows
430     * precise control over the runtime type of the output array, and may,
431     * under certain circumstances, be used to save allocation costs.
432     *
433 jsr166 1.80 * <p>Suppose {@code x} is a queue known to contain only strings.
434 jsr166 1.63 * The following code can be used to dump the queue into a newly
435 jsr166 1.80 * allocated array of {@code String}:
436 jsr166 1.63 *
437 jsr166 1.104 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
438 jsr166 1.63 *
439 jsr166 1.80 * Note that {@code toArray(new Object[0])} is identical in function to
440     * {@code toArray()}.
441 dl 1.52 *
442     * @param a the array into which the elements of the queue are to
443     * be stored, if it is big enough; otherwise, a new array of the
444     * same runtime type is allocated for this purpose.
445 jsr166 1.63 * @return an array containing all of the elements in this queue
446 dl 1.52 * @throws ArrayStoreException if the runtime type of the specified array
447     * is not a supertype of the runtime type of every element in
448     * this queue
449     * @throws NullPointerException if the specified array is null
450     */
451     public <T> T[] toArray(T[] a) {
452 jsr166 1.85 final int size = this.size;
453 dl 1.52 if (a.length < size)
454     // Make a new array of a's runtime type, but my contents:
455 dl 1.55 return (T[]) Arrays.copyOf(queue, size, a.getClass());
456 jsr166 1.68 System.arraycopy(queue, 0, a, 0, size);
457 dl 1.52 if (a.length > size)
458     a[size] = null;
459     return a;
460 tim 1.1 }
461 tim 1.2
462 dholmes 1.23 /**
463     * Returns an iterator over the elements in this queue. The iterator
464     * does not return the elements in any particular order.
465     *
466 dl 1.52 * @return an iterator over the elements in this queue
467 dholmes 1.23 */
468 tim 1.2 public Iterator<E> iterator() {
469 dl 1.7 return new Itr();
470 tim 1.2 }
471    
472 dl 1.55 private final class Itr implements Iterator<E> {
473 dl 1.7 /**
474     * Index (into queue array) of element to be returned by
475 tim 1.2 * subsequent call to next.
476 dl 1.7 */
477 jsr166 1.99 private int cursor;
478 tim 1.2
479 dl 1.7 /**
480 dl 1.36 * Index of element returned by most recent call to next,
481     * unless that element came from the forgetMeNot list.
482 dl 1.55 * Set to -1 if element is deleted by a call to remove.
483 dl 1.7 */
484 dl 1.55 private int lastRet = -1;
485 dl 1.7
486     /**
487 dl 1.55 * A queue of elements that were moved from the unvisited portion of
488 dl 1.36 * the heap into the visited portion as a result of "unlucky" element
489     * removals during the iteration. (Unlucky element removals are those
490 dl 1.55 * that require a siftup instead of a siftdown.) We must visit all of
491 dl 1.36 * the elements in this list to complete the iteration. We do this
492     * after we've completed the "normal" iteration.
493     *
494     * We expect that most iterations, even those involving removals,
495 jsr166 1.63 * will not need to store elements in this field.
496 dl 1.36 */
497 jsr166 1.99 private ArrayDeque<E> forgetMeNot;
498 dl 1.36
499     /**
500     * Element returned by the most recent call to next iff that
501     * element was drawn from the forgetMeNot list.
502     */
503 jsr166 1.99 private E lastRetElt;
504 dl 1.55
505     /**
506     * The modCount value that the iterator believes that the backing
507 jsr166 1.63 * Queue should have. If this expectation is violated, the iterator
508 dl 1.55 * has detected concurrent modification.
509     */
510     private int expectedModCount = modCount;
511 dl 1.35
512 jsr166 1.117 Itr() {} // prevent access constructor creation
513    
514 dl 1.7 public boolean hasNext() {
515 jsr166 1.56 return cursor < size ||
516 dl 1.55 (forgetMeNot != null && !forgetMeNot.isEmpty());
517 dl 1.7 }
518    
519     public E next() {
520 dl 1.55 if (expectedModCount != modCount)
521     throw new ConcurrentModificationException();
522 jsr166 1.56 if (cursor < size)
523 dl 1.55 return (E) queue[lastRet = cursor++];
524     if (forgetMeNot != null) {
525     lastRet = -1;
526     lastRetElt = forgetMeNot.poll();
527 jsr166 1.56 if (lastRetElt != null)
528 dl 1.55 return lastRetElt;
529 dl 1.36 }
530 dl 1.55 throw new NoSuchElementException();
531 dl 1.7 }
532 tim 1.2
533 dl 1.7 public void remove() {
534 dl 1.55 if (expectedModCount != modCount)
535     throw new ConcurrentModificationException();
536     if (lastRet != -1) {
537 dl 1.36 E moved = PriorityQueue.this.removeAt(lastRet);
538 dl 1.55 lastRet = -1;
539 jsr166 1.56 if (moved == null)
540 dl 1.36 cursor--;
541 dl 1.55 else {
542 dl 1.36 if (forgetMeNot == null)
543 dl 1.89 forgetMeNot = new ArrayDeque<>();
544 dl 1.36 forgetMeNot.add(moved);
545 jsr166 1.56 }
546 jsr166 1.63 } else if (lastRetElt != null) {
547 dl 1.55 PriorityQueue.this.removeEq(lastRetElt);
548 dl 1.36 lastRetElt = null;
549 jsr166 1.63 } else {
550     throw new IllegalStateException();
551 jsr166 1.68 }
552 tim 1.2 expectedModCount = modCount;
553 dl 1.7 }
554 tim 1.2 }
555    
556 tim 1.1 public int size() {
557 tim 1.2 return size;
558 tim 1.1 }
559 tim 1.2
560     /**
561 dl 1.52 * Removes all of the elements from this priority queue.
562 dl 1.49 * The queue will be empty after this call returns.
563 tim 1.2 */
564     public void clear() {
565     modCount++;
566 jsr166 1.123 final Object[] es = queue;
567     for (int i = 0, n = size; i < n; i++)
568     es[i] = null;
569 tim 1.2 size = 0;
570     }
571    
572 dl 1.40 public E poll() {
573 jsr166 1.125 final Object[] es;
574     final E result;
575    
576     if ((result = (E) ((es = queue)[0])) != null) {
577     modCount++;
578     final int n;
579     final E x = (E) es[(n = --size)];
580     es[n] = null;
581     if (n > 0) {
582     final Comparator<? super E> cmp;
583     if ((cmp = comparator) == null)
584     siftDownComparable(0, x, es, n);
585     else
586     siftDownUsingComparator(0, x, es, n, cmp);
587     }
588     }
589 dl 1.36 return result;
590     }
591    
592     /**
593 dl 1.55 * Removes the ith element from queue.
594 tim 1.2 *
595 dl 1.55 * Normally this method leaves the elements at up to i-1,
596     * inclusive, untouched. Under these circumstances, it returns
597     * null. Occasionally, in order to maintain the heap invariant,
598     * it must swap a later element of the list with one earlier than
599     * i. Under these circumstances, this method returns the element
600     * that was previously at the end of the list and is now at some
601     * position before i. This fact is used by iterator.remove so as to
602 jsr166 1.63 * avoid missing traversing elements.
603 tim 1.2 */
604 jsr166 1.107 E removeAt(int i) {
605 jsr166 1.74 // assert i >= 0 && i < size;
606 jsr166 1.126 final Object[] es = queue;
607 tim 1.2 modCount++;
608 dl 1.55 int s = --size;
609     if (s == i) // removed last element
610 jsr166 1.126 es[i] = null;
611 dl 1.55 else {
612 jsr166 1.127 E moved = (E) es[s];
613 jsr166 1.126 es[s] = null;
614 dl 1.55 siftDown(i, moved);
615 jsr166 1.126 if (es[i] == moved) {
616 dl 1.55 siftUp(i, moved);
617 jsr166 1.126 if (es[i] != moved)
618 dl 1.36 return moved;
619     }
620 dl 1.35 }
621 dl 1.36 return null;
622 tim 1.1 }
623    
624 tim 1.2 /**
625 dl 1.55 * Inserts item x at position k, maintaining heap invariant by
626     * promoting x up the tree until it is greater than or equal to
627     * its parent, or is the root.
628     *
629 jsr166 1.116 * To simplify and speed up coercions and comparisons, the
630 dl 1.55 * Comparable and Comparator versions are separated into different
631     * methods that are otherwise identical. (Similarly for siftDown.)
632 jsr166 1.56 *
633 dl 1.55 * @param k the position to fill
634     * @param x the item to insert
635     */
636     private void siftUp(int k, E x) {
637 jsr166 1.56 if (comparator != null)
638 jsr166 1.124 siftUpUsingComparator(k, x, queue, comparator);
639 dl 1.55 else
640 jsr166 1.124 siftUpComparable(k, x, queue);
641 dl 1.55 }
642    
643 jsr166 1.124 private static <T> void siftUpComparable(int k, T x, Object[] es) {
644     Comparable<? super T> key = (Comparable<? super T>) x;
645 dl 1.55 while (k > 0) {
646     int parent = (k - 1) >>> 1;
647 jsr166 1.124 Object e = es[parent];
648     if (key.compareTo((T) e) >= 0)
649 dl 1.55 break;
650 jsr166 1.124 es[k] = e;
651 dl 1.55 k = parent;
652     }
653 jsr166 1.124 es[k] = key;
654 dl 1.55 }
655    
656 jsr166 1.124 private static <T> void siftUpUsingComparator(
657     int k, T x, Object[] es, Comparator<? super T> cmp) {
658 dl 1.55 while (k > 0) {
659     int parent = (k - 1) >>> 1;
660 jsr166 1.124 Object e = es[parent];
661     if (cmp.compare(x, (T) e) >= 0)
662 dl 1.55 break;
663 jsr166 1.124 es[k] = e;
664 dl 1.55 k = parent;
665     }
666 jsr166 1.124 es[k] = x;
667 dl 1.55 }
668    
669     /**
670     * Inserts item x at position k, maintaining heap invariant by
671     * demoting x down the tree repeatedly until it is less than or
672     * equal to its children or is a leaf.
673     *
674     * @param k the position to fill
675     * @param x the item to insert
676     */
677     private void siftDown(int k, E x) {
678 jsr166 1.56 if (comparator != null)
679 jsr166 1.124 siftDownUsingComparator(k, x, queue, size, comparator);
680 dl 1.55 else
681 jsr166 1.124 siftDownComparable(k, x, queue, size);
682 dl 1.55 }
683    
684 jsr166 1.124 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
685     // assert n > 0;
686     Comparable<? super T> key = (Comparable<? super T>)x;
687     int half = n >>> 1; // loop while a non-leaf
688 dl 1.55 while (k < half) {
689     int child = (k << 1) + 1; // assume left child is least
690 jsr166 1.124 Object c = es[child];
691 dl 1.55 int right = child + 1;
692 jsr166 1.124 if (right < n &&
693     ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
694     c = es[child = right];
695     if (key.compareTo((T) c) <= 0)
696 dl 1.55 break;
697 jsr166 1.124 es[k] = c;
698 dl 1.55 k = child;
699     }
700 jsr166 1.124 es[k] = key;
701 dl 1.55 }
702    
703 jsr166 1.124 private static <T> void siftDownUsingComparator(
704     int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
705     // assert n > 0;
706     int half = n >>> 1;
707 dl 1.55 while (k < half) {
708     int child = (k << 1) + 1;
709 jsr166 1.124 Object c = es[child];
710 dl 1.55 int right = child + 1;
711 jsr166 1.124 if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
712     c = es[child = right];
713     if (cmp.compare(x, (T) c) <= 0)
714 dl 1.55 break;
715 jsr166 1.124 es[k] = c;
716 dl 1.55 k = child;
717 tim 1.2 }
718 jsr166 1.124 es[k] = x;
719 dl 1.36 }
720 dl 1.35
721 dl 1.36 /**
722     * Establishes the heap invariant (described above) in the entire tree,
723     * assuming nothing about the order of the elements prior to the call.
724 jsr166 1.112 * This classic algorithm due to Floyd (1964) is known to be O(size).
725 dl 1.36 */
726     private void heapify() {
727 jsr166 1.114 final Object[] es = queue;
728 jsr166 1.124 int n = size, i = (n >>> 1) - 1;
729 jsr166 1.125 final Comparator<? super E> cmp;
730     if ((cmp = comparator) == null)
731 jsr166 1.118 for (; i >= 0; i--)
732 jsr166 1.124 siftDownComparable(i, (E) es[i], es, n);
733 jsr166 1.114 else
734 jsr166 1.118 for (; i >= 0; i--)
735 jsr166 1.124 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
736 tim 1.2 }
737    
738 dholmes 1.23 /**
739 dl 1.52 * Returns the comparator used to order the elements in this
740 jsr166 1.63 * queue, or {@code null} if this queue is sorted according to
741 dl 1.52 * the {@linkplain Comparable natural ordering} of its elements.
742     *
743     * @return the comparator used to order this queue, or
744 jsr166 1.63 * {@code null} if this queue is sorted according to the
745     * natural ordering of its elements
746 dholmes 1.23 */
747 tim 1.16 public Comparator<? super E> comparator() {
748 tim 1.2 return comparator;
749     }
750 dl 1.5
751     /**
752 jsr166 1.77 * Saves this queue to a stream (that is, serializes it).
753 dl 1.5 *
754 jsr166 1.110 * @param s the stream
755     * @throws java.io.IOException if an I/O error occurs
756 dl 1.5 * @serialData The length of the array backing the instance is
757 jsr166 1.63 * emitted (int), followed by all of its elements
758     * (each an {@code Object}) in the proper order.
759 dl 1.5 */
760 jsr166 1.132 // OPENJDK @java.io.Serial
761 dl 1.22 private void writeObject(java.io.ObjectOutputStream s)
762 jsr166 1.75 throws java.io.IOException {
763 dl 1.7 // Write out element count, and any hidden stuff
764     s.defaultWriteObject();
765 dl 1.5
766 jsr166 1.63 // Write out array length, for compatibility with 1.5 version
767     s.writeInt(Math.max(2, size + 1));
768 dl 1.5
769 jsr166 1.64 // Write out all elements in the "proper order".
770 jsr166 1.123 final Object[] es = queue;
771     for (int i = 0, n = size; i < n; i++)
772     s.writeObject(es[i]);
773 dl 1.5 }
774    
775     /**
776 dl 1.81 * Reconstitutes the {@code PriorityQueue} instance from a stream
777     * (that is, deserializes it).
778     *
779     * @param s the stream
780 jsr166 1.97 * @throws ClassNotFoundException if the class of a serialized object
781     * could not be found
782     * @throws java.io.IOException if an I/O error occurs
783 dl 1.5 */
784 jsr166 1.132 // OPENJDK @java.io.Serial
785 dl 1.22 private void readObject(java.io.ObjectInputStream s)
786 dl 1.5 throws java.io.IOException, ClassNotFoundException {
787 dl 1.7 // Read in size, and any hidden stuff
788     s.defaultReadObject();
789 dl 1.5
790 jsr166 1.63 // Read in (and discard) array length
791     s.readInt();
792    
793 jsr166 1.130 jsr166.Platform.checkArray(s, Object[].class, size);
794 jsr166 1.125 final Object[] es = queue = new Object[Math.max(size, 1)];
795 dl 1.5
796 jsr166 1.64 // Read in all elements.
797 jsr166 1.123 for (int i = 0, n = size; i < n; i++)
798     es[i] = s.readObject();
799 jsr166 1.64
800 jsr166 1.68 // Elements are guaranteed to be in "proper order", but the
801     // spec has never explained what that might be.
802     heapify();
803 dl 1.5 }
804 dl 1.81
805 jsr166 1.106 /**
806     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
807     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
808 jsr166 1.111 * queue. The spliterator does not traverse elements in any particular order
809     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
810 jsr166 1.106 *
811     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
812     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
813     * Overriding implementations should document the reporting of additional
814     * characteristic values.
815     *
816     * @return a {@code Spliterator} over the elements in this queue
817     * @since 1.8
818     */
819     public final Spliterator<E> spliterator() {
820 jsr166 1.113 return new PriorityQueueSpliterator(0, -1, 0);
821 dl 1.81 }
822    
823 jsr166 1.113 final class PriorityQueueSpliterator implements Spliterator<E> {
824 dl 1.89 private int index; // current index, modified on advance/split
825     private int fence; // -1 until first use
826     private int expectedModCount; // initialized when fence set
827 dl 1.81
828 jsr166 1.108 /** Creates new spliterator covering the given range. */
829 jsr166 1.113 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 dl 1.89 this.index = origin;
831     this.fence = fence;
832 dl 1.81 this.expectedModCount = expectedModCount;
833     }
834    
835 dl 1.89 private int getFence() { // initialize fence to size on first use
836     int hi;
837     if ((hi = fence) < 0) {
838 jsr166 1.113 expectedModCount = modCount;
839     hi = fence = size;
840 dl 1.89 }
841     return hi;
842     }
843 jsr166 1.90
844 jsr166 1.113 public PriorityQueueSpliterator trySplit() {
845 dl 1.89 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 dl 1.81 return (lo >= mid) ? null :
847 jsr166 1.113 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 dl 1.81 }
849    
850 dl 1.95 public void forEachRemaining(Consumer<? super E> action) {
851 dl 1.89 if (action == null)
852 dl 1.81 throw new NullPointerException();
853 jsr166 1.115 if (fence < 0) { fence = size; expectedModCount = modCount; }
854 jsr166 1.124 final Object[] es = queue;
855 jsr166 1.115 int i, hi; E e;
856     for (i = index, index = hi = fence; i < hi; i++) {
857 jsr166 1.124 if ((e = (E) es[i]) == null)
858 jsr166 1.115 break; // must be CME
859     action.accept(e);
860 dl 1.81 }
861 jsr166 1.115 if (modCount != expectedModCount)
862     throw new ConcurrentModificationException();
863 dl 1.81 }
864    
865 dl 1.89 public boolean tryAdvance(Consumer<? super E> action) {
866 jsr166 1.106 if (action == null)
867     throw new NullPointerException();
868 jsr166 1.115 if (fence < 0) { fence = size; expectedModCount = modCount; }
869     int i;
870     if ((i = index) < fence) {
871     index = i + 1;
872     E e;
873     if ((e = (E) queue[i]) == null
874     || modCount != expectedModCount)
875 dl 1.89 throw new ConcurrentModificationException();
876     action.accept(e);
877 dl 1.81 return true;
878     }
879     return false;
880     }
881    
882 jsr166 1.90 public long estimateSize() {
883 jsr166 1.113 return getFence() - index;
884 dl 1.89 }
885    
886     public int characteristics() {
887     return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
888     }
889 dl 1.81 }
890 jsr166 1.122
891     /**
892     * @throws NullPointerException {@inheritDoc}
893     */
894 jsr166 1.128 public boolean removeIf(Predicate<? super E> filter) {
895     Objects.requireNonNull(filter);
896     return bulkRemove(filter);
897     }
898    
899     /**
900     * @throws NullPointerException {@inheritDoc}
901     */
902     public boolean removeAll(Collection<?> c) {
903     Objects.requireNonNull(c);
904     return bulkRemove(e -> c.contains(e));
905     }
906    
907     /**
908     * @throws NullPointerException {@inheritDoc}
909     */
910     public boolean retainAll(Collection<?> c) {
911     Objects.requireNonNull(c);
912     return bulkRemove(e -> !c.contains(e));
913     }
914    
915     // A tiny bit set implementation
916    
917     private static long[] nBits(int n) {
918     return new long[((n - 1) >> 6) + 1];
919     }
920     private static void setBit(long[] bits, int i) {
921     bits[i >> 6] |= 1L << i;
922     }
923     private static boolean isClear(long[] bits, int i) {
924     return (bits[i >> 6] & (1L << i)) == 0;
925     }
926    
927     /** Implementation of bulk remove methods. */
928     private boolean bulkRemove(Predicate<? super E> filter) {
929     final int expectedModCount = ++modCount;
930     final Object[] es = queue;
931     final int end = size;
932     int i;
933     // Optimize for initial run of survivors
934     for (i = 0; i < end && !filter.test((E) es[i]); i++)
935     ;
936     if (i >= end) {
937     if (modCount != expectedModCount)
938     throw new ConcurrentModificationException();
939     return false;
940     }
941     // Tolerate predicates that reentrantly access the collection for
942     // read (but writers still get CME), so traverse once to find
943     // elements to delete, a second pass to physically expunge.
944     final int beg = i;
945     final long[] deathRow = nBits(end - beg);
946     deathRow[0] = 1L; // set bit 0
947     for (i = beg + 1; i < end; i++)
948     if (filter.test((E) es[i]))
949     setBit(deathRow, i - beg);
950     if (modCount != expectedModCount)
951     throw new ConcurrentModificationException();
952     int w = beg;
953     for (i = beg; i < end; i++)
954     if (isClear(deathRow, i - beg))
955     es[w++] = es[i];
956     for (i = size = w; i < end; i++)
957     es[i] = null;
958     heapify();
959     return true;
960     }
961    
962     /**
963     * @throws NullPointerException {@inheritDoc}
964     */
965 jsr166 1.122 public void forEach(Consumer<? super E> action) {
966     Objects.requireNonNull(action);
967     final int expectedModCount = modCount;
968     final Object[] es = queue;
969     for (int i = 0, n = size; i < n; i++)
970     action.accept((E) es[i]);
971     if (expectedModCount != modCount)
972     throw new ConcurrentModificationException();
973     }
974 tim 1.1 }