ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.3
Committed: Sun May 18 20:36:01 2003 UTC (20 years, 11 months ago) by tim
Branch: MAIN
Changes since 1.2: +1 -1 lines
Log Message:
Added another type parameter

File Contents

# User Rev Content
1 tim 1.2 package java.util;
2 tim 1.1
3 tim 1.2 /*
4     * Todo
5     *
6     * 1) Make it serializable.
7     */
8 tim 1.1
9     /**
10 tim 1.2 * An unbounded priority queue based on a priority heap. This queue orders
11     * elements according to the order specified at creation time. This order is
12     * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
13     * either according to their <i>natural order</i> (see {@link Comparable}), or
14     * according to a {@link Comparator}, depending on which constructor is used.
15     * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
16     * minimal element with respect to the specified ordering. If multiple
17     * these elements are tied for least value, no guarantees are made as to
18     * which of elements is returned.
19     *
20     * <p>Each priority queue has a <i>capacity</i>. The capacity is the size of
21     * the array used to store the elements on the queue. It is always at least
22     * as large as the queue size. As elements are added to a priority list,
23     * its capacity grows automatically. The details of the growth policy are not
24     * specified.
25     *
26     *<p>Implementation note: this implementation provides O(log(n)) time for
27     * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
28     * methods; linear time for the <tt>remove(Object)</tt> and
29     * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
30     * <tt>element</tt>, and <tt>size</tt> methods.
31     *
32     * <p>This class is a member of the
33     * <a href="{@docRoot}/../guide/collections/index.html">
34     * Java Collections Framework</a>.
35     */
36     public class PriorityQueue<E> extends AbstractQueue<E>
37     implements Queue<E>
38     {
39     private static final int DEFAULT_INITIAL_CAPACITY = 11;
40 tim 1.1
41 tim 1.2 /**
42     * Priority queue represented as a balanced binary heap: the two children
43     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
44     * ordered by comparator, or by the elements' natural ordering, if
45     * comparator is null: For each node n in the heap, and each descendant
46     * of n, d, n <= d.
47     *
48     * The element with the lowest value is in queue[1] (assuming the queue is
49     * nonempty). A one-based array is used in preference to the traditional
50     * zero-based array to simplify parent and child calculations.
51     *
52     * queue.length must be >= 2, even if size == 0.
53     */
54     private E[] queue;
55 tim 1.1
56 tim 1.2 /**
57     * The number of elements in the priority queue.
58     */
59     private int size = 0;
60 tim 1.1
61 tim 1.2 /**
62     * The comparator, or null if priority queue uses elements'
63     * natural ordering.
64     */
65     private final Comparator<E> comparator;
66    
67     /**
68     * The number of times this priority queue has been
69     * <i>structurally modified</i>. See AbstractList for gory details.
70     */
71     private int modCount = 0;
72    
73     /**
74     * Create a new priority queue with the default initial capacity (11)
75     * that orders its elements according to their natural ordering.
76     */
77     public PriorityQueue() {
78     this(DEFAULT_INITIAL_CAPACITY);
79 tim 1.1 }
80 tim 1.2
81     /**
82     * Create a new priority queue with the specified initial capacity
83     * that orders its elements according to their natural ordering.
84     *
85     * @param initialCapacity the initial capacity for this priority queue.
86     */
87     public PriorityQueue(int initialCapacity) {
88     this(initialCapacity, null);
89 tim 1.1 }
90 tim 1.2
91     /**
92     * Create a new priority queue with the specified initial capacity (11)
93     * that orders its elements according to the specified comparator.
94     *
95     * @param initialCapacity the initial capacity for this priority queue.
96     * @param comparator the comparator used to order this priority queue.
97     */
98     public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
99     if (initialCapacity < 1)
100     initialCapacity = 1;
101     queue = new E[initialCapacity + 1];
102     this.comparator = comparator;
103 tim 1.1 }
104    
105 tim 1.2 /**
106     * Create a new priority queue containing the elements in the specified
107     * collection. The priority queue has an initial capacity of 110% of the
108     * size of the specified collection. If the specified collection
109     * implements the {@link Sorted} interface, the priority queue will be
110     * sorted according to the same comparator, or according to its elements'
111     * natural order if the collection is sorted according to its elements'
112     * natural order. If the specified collection does not implement the
113     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114     * its elements' natural order.
115     *
116     * @param initialElements the collection whose elements are to be placed
117     * into this priority queue.
118     * @throws ClassCastException if elements of the specified collection
119     * cannot be compared to one another according to the priority
120     * queue's ordering.
121     * @throws NullPointerException if the specified collection or an
122     * element of the specified collection is <tt>null</tt>.
123     */
124     public PriorityQueue(Collection<E> initialElements) {
125     int sz = initialElements.size();
126     int initialCapacity = (int)Math.min((sz * 110L) / 100,
127     Integer.MAX_VALUE - 1);
128     if (initialCapacity < 1)
129     initialCapacity = 1;
130     queue = new E[initialCapacity + 1];
131    
132     /* Commented out to compile with generics compiler
133    
134     if (initialElements instanceof Sorted) {
135     comparator = ((Sorted)initialElements).comparator();
136     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137     queue[++size] = i.next();
138     } else {
139     */
140     {
141     comparator = null;
142     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
143     add(i.next());
144     }
145 tim 1.1 }
146    
147 tim 1.2 // Queue Methods
148    
149     /**
150     * Remove and return the minimal element from this priority queue if
151     * it contains one or more elements, otherwise <tt>null</tt>. The term
152     * <i>minimal</i> is defined according to this priority queue's order.
153     *
154     * @return the minimal element from this priority queue if it contains
155     * one or more elements, otherwise <tt>null</tt>.
156     */
157 tim 1.1 public E poll() {
158 tim 1.2 if (size == 0)
159     return null;
160     return remove(1);
161 tim 1.1 }
162 tim 1.2
163     /**
164     * Return, but do not remove, the minimal element from the priority queue,
165     * or <tt>null</tt> if the queue is empty. The term <i>minimal</i> is
166     * defined according to this priority queue's order. This method returns
167     * the same object reference that would be returned by by the
168     * <tt>poll</tt> method. The two methods differ in that this method
169     * does not remove the element from the priority queue.
170     *
171     * @return the minimal element from this priority queue if it contains
172     * one or more elements, otherwise <tt>null</tt>.
173     */
174 tim 1.1 public E peek() {
175 tim 1.2 return queue[1];
176 tim 1.1 }
177    
178 tim 1.2 // Collection Methods
179    
180     /**
181     * Removes a single instance of the specified element from this priority
182     * queue, if it is present. Returns true if this collection contained the
183     * specified element (or equivalently, if this collection changed as a
184     * result of the call).
185     *
186     * @param o element to be removed from this collection, if present.
187     * @return <tt>true</tt> if this collection changed as a result of the
188     * call
189     * @throws ClassCastException if the specified element cannot be compared
190     * with elements currently in the priority queue according
191     * to the priority queue's ordering.
192     * @throws NullPointerException if the specified element is null.
193     */
194     public boolean remove(Object element) {
195     if (element == null)
196     throw new NullPointerException();
197    
198     if (comparator == null) {
199     for (int i = 1; i <= size; i++) {
200     if (((Comparable)queue[i]).compareTo(element) == 0) {
201     remove(i);
202     return true;
203     }
204     }
205     } else {
206     for (int i = 1; i <= size; i++) {
207     if (comparator.compare(queue[i], (E) element) == 0) {
208     remove(i);
209     return true;
210     }
211     }
212     }
213 tim 1.1 return false;
214     }
215 tim 1.2
216     /**
217     * Returns an iterator over the elements in this priority queue. The
218     * first element returned by this iterator is the same element that
219     * would be returned by a call to <tt>peek</tt>.
220     *
221     * @return an <tt>Iterator</tt> over the elements in this priority queue.
222     */
223     public Iterator<E> iterator() {
224     return new Itr();
225     }
226    
227     private class Itr implements Iterator<E> {
228     /**
229     * Index (into queue array) of element to be returned by
230     * subsequent call to next.
231     */
232     int cursor = 1;
233    
234     /**
235     * Index of element returned by most recent call to next or
236     * previous. Reset to 0 if this element is deleted by a call
237     * to remove.
238     */
239     int lastRet = 0;
240    
241     /**
242     * The modCount value that the iterator believes that the backing
243     * List should have. If this expectation is violated, the iterator
244     * has detected concurrent modification.
245     */
246     int expectedModCount = modCount;
247    
248     public boolean hasNext() {
249     return cursor <= size;
250     }
251    
252     public E next() {
253     checkForComodification();
254     if (cursor > size)
255     throw new NoSuchElementException();
256     E result = queue[cursor];
257     lastRet = cursor++;
258     return result;
259     }
260    
261     public void remove() {
262     if (lastRet == 0)
263     throw new IllegalStateException();
264     checkForComodification();
265    
266     PriorityQueue.this.remove(lastRet);
267     if (lastRet < cursor)
268     cursor--;
269     lastRet = 0;
270     expectedModCount = modCount;
271     }
272    
273     final void checkForComodification() {
274     if (modCount != expectedModCount)
275     throw new ConcurrentModificationException();
276     }
277     }
278    
279     /**
280     * Returns the number of elements in this priority queue.
281     *
282     * @return the number of elements in this priority queue.
283     */
284 tim 1.1 public int size() {
285 tim 1.2 return size;
286 tim 1.1 }
287 tim 1.2
288     /**
289     * Add the specified element to this priority queue.
290     *
291     * @param element the element to add.
292     * @return true
293     * @throws ClassCastException if the specified element cannot be compared
294     * with elements currently in the priority queue according
295     * to the priority queue's ordering.
296     * @throws NullPointerException if the specified element is null.
297     */
298     public boolean offer(E element) {
299     if (element == null)
300     throw new NullPointerException();
301     modCount++;
302    
303     // Grow backing store if necessary
304     if (++size == queue.length) {
305     E[] newQueue = new E[2 * queue.length];
306     System.arraycopy(queue, 0, newQueue, 0, size);
307     queue = newQueue;
308     }
309    
310     queue[size] = element;
311     fixUp(size);
312     return true;
313 tim 1.1 }
314    
315 tim 1.2 /**
316     * Remove all elements from the priority queue.
317     */
318     public void clear() {
319     modCount++;
320    
321     // Null out element references to prevent memory leak
322     for (int i=1; i<=size; i++)
323     queue[i] = null;
324    
325     size = 0;
326     }
327    
328     /**
329     * Removes and returns the ith element from queue. Recall
330     * that queue is one-based, so 1 <= i <= size.
331     *
332     * XXX: Could further special-case i==size, but is it worth it?
333     * XXX: Could special-case i==0, but is it worth it?
334     */
335     private E remove(int i) {
336     assert i <= size;
337     modCount++;
338    
339     E result = queue[i];
340     queue[i] = queue[size];
341     queue[size--] = null; // Drop extra ref to prevent memory leak
342     if (i <= size)
343     fixDown(i);
344     return result;
345 tim 1.1 }
346    
347 tim 1.2 /**
348     * Establishes the heap invariant (described above) assuming the heap
349     * satisfies the invariant except possibly for the leaf-node indexed by k
350     * (which may have a nextExecutionTime less than its parent's).
351     *
352     * This method functions by "promoting" queue[k] up the hierarchy
353     * (by swapping it with its parent) repeatedly until queue[k]
354     * is greater than or equal to its parent.
355     */
356     private void fixUp(int k) {
357     if (comparator == null) {
358     while (k > 1) {
359     int j = k >> 1;
360     if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
361     break;
362     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
363     k = j;
364     }
365     } else {
366     while (k > 1) {
367     int j = k >> 1;
368     if (comparator.compare(queue[j], queue[k]) <= 0)
369     break;
370     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
371     k = j;
372     }
373     }
374     }
375    
376     /**
377     * Establishes the heap invariant (described above) in the subtree
378     * rooted at k, which is assumed to satisfy the heap invariant except
379     * possibly for node k itself (which may be greater than its children).
380     *
381     * This method functions by "demoting" queue[k] down the hierarchy
382     * (by swapping it with its smaller child) repeatedly until queue[k]
383     * is less than or equal to its children.
384     */
385     private void fixDown(int k) {
386     int j;
387     if (comparator == null) {
388     while ((j = k << 1) <= size) {
389     if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
390     j++; // j indexes smallest kid
391     if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
392     break;
393     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
394     k = j;
395     }
396     } else {
397     while ((j = k << 1) <= size) {
398     if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
399     j++; // j indexes smallest kid
400     if (comparator.compare(queue[k], queue[j]) <= 0)
401     break;
402     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
403     k = j;
404     }
405     }
406     }
407    
408     /**
409     * Returns the comparator associated with this priority queue, or
410     * <tt>null</tt> if it uses its elements' natural ordering.
411     *
412     * @return the comparator associated with this priority queue, or
413     * <tt>null</tt> if it uses its elements' natural ordering.
414     */
415 tim 1.3 Comparator<E> comparator() {
416 tim 1.2 return comparator;
417     }
418 tim 1.1 }