ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.39
Committed: Sun Sep 7 15:06:19 2003 UTC (20 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.38: +2 -2 lines
Log Message:
Serialization fixes

File Contents

# User Rev Content
1 dl 1.38 /*
2     * %W% %E%
3     *
4     * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
5     * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9 tim 1.1
10     /**
11 dl 1.36 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
12     * This queue orders elements according to an order specified at construction
13     * time, which is specified in the same manner as {@link java.util.TreeSet}
14     * and {@link java.util.TreeMap}: elements are ordered either according to
15     * their <i>natural order</i> (see {@link Comparable}), or according to a
16     * {@link java.util.Comparator}, depending on which constructor is used.
17 tim 1.19 * <p>The <em>head</em> of this queue is the <em>least</em> element with
18 dl 1.36 * respect to the specified ordering. If multiple elements are tied for least
19     * value, the head is one of those elements. A priority queue does not permit
20 dholmes 1.11 * <tt>null</tt> elements.
21 tim 1.14 *
22 dholmes 1.11 * <p>The {@link #remove()} and {@link #poll()} methods remove and
23     * return the head of the queue.
24     *
25     * <p>The {@link #element()} and {@link #peek()} methods return, but do
26     * not delete, the head of the queue.
27 tim 1.2 *
28 dl 1.7 * <p>A priority queue has a <i>capacity</i>. The capacity is the
29     * size of the array used internally to store the elements on the
30 dholmes 1.20 * queue.
31 dholmes 1.18 * It is always at least as large as the queue size. As
32 dl 1.7 * elements are added to a priority queue, its capacity grows
33     * automatically. The details of the growth policy are not specified.
34 tim 1.2 *
35 dl 1.29 * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
36     * guaranteed to traverse the elements of the PriorityQueue in any
37     * particular order. If you need ordered traversal, consider using
38     * <tt>Arrays.sort(pq.toArray())</tt>.
39     *
40     * <p> <strong>Note that this implementation is not synchronized.</strong>
41     * Multiple threads should not access a <tt>PriorityQueue</tt>
42     * instance concurrently if any of the threads modifies the list
43     * structurally. Instead, use the thread-safe {@link
44 dholmes 1.34 * java.util.concurrent.PriorityBlockingQueue} class.
45 dl 1.29 *
46     *
47 dholmes 1.11 * <p>Implementation note: this implementation provides O(log(n)) time
48     * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49     * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
50     * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
51     * constant time for the retrieval methods (<tt>peek</tt>,
52     * <tt>element</tt>, and <tt>size</tt>).
53 tim 1.2 *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../guide/collections/index.html">
56     * Java Collections Framework</a>.
57 dl 1.7 * @since 1.5
58 dl 1.38 * @version %I%, %G%
59 dl 1.7 * @author Josh Bloch
60 tim 1.2 */
61     public class PriorityQueue<E> extends AbstractQueue<E>
62 dl 1.22 implements Queue<E>, java.io.Serializable {
63 dholmes 1.11
64 dl 1.31 private static final long serialVersionUID = -7720805057305804111L;
65 dl 1.30
66 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
67 tim 1.1
68 tim 1.2 /**
69     * Priority queue represented as a balanced binary heap: the two children
70     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
71     * ordered by comparator, or by the elements' natural ordering, if
72 brian 1.6 * comparator is null: For each node n in the heap and each descendant d
73     * of n, n <= d.
74 tim 1.2 *
75 brian 1.6 * The element with the lowest value is in queue[1], assuming the queue is
76     * nonempty. (A one-based array is used in preference to the traditional
77     * zero-based array to simplify parent and child calculations.)
78 tim 1.2 *
79     * queue.length must be >= 2, even if size == 0.
80     */
81 tim 1.16 private transient Object[] queue;
82 tim 1.1
83 tim 1.2 /**
84     * The number of elements in the priority queue.
85     */
86     private int size = 0;
87 tim 1.1
88 tim 1.2 /**
89     * The comparator, or null if priority queue uses elements'
90     * natural ordering.
91     */
92 tim 1.16 private final Comparator<? super E> comparator;
93 tim 1.2
94     /**
95     * The number of times this priority queue has been
96     * <i>structurally modified</i>. See AbstractList for gory details.
97     */
98 dl 1.5 private transient int modCount = 0;
99 tim 1.2
100     /**
101 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
102 dl 1.7 * (11) that orders its elements according to their natural
103 tim 1.24 * ordering (using <tt>Comparable</tt>).
104 tim 1.2 */
105     public PriorityQueue() {
106 dholmes 1.11 this(DEFAULT_INITIAL_CAPACITY, null);
107 tim 1.1 }
108 tim 1.2
109     /**
110 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
111 dl 1.7 * that orders its elements according to their natural ordering
112 tim 1.24 * (using <tt>Comparable</tt>).
113 tim 1.2 *
114     * @param initialCapacity the initial capacity for this priority queue.
115 dholmes 1.23 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
116     * than 1
117 tim 1.2 */
118     public PriorityQueue(int initialCapacity) {
119     this(initialCapacity, null);
120 tim 1.1 }
121 tim 1.2
122     /**
123 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
124 tim 1.2 * that orders its elements according to the specified comparator.
125     *
126     * @param initialCapacity the initial capacity for this priority queue.
127     * @param comparator the comparator used to order this priority queue.
128 dholmes 1.11 * If <tt>null</tt> then the order depends on the elements' natural
129     * ordering.
130 dholmes 1.15 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
131     * than 1
132 tim 1.2 */
133 dholmes 1.23 public PriorityQueue(int initialCapacity,
134     Comparator<? super E> comparator) {
135 tim 1.2 if (initialCapacity < 1)
136 dholmes 1.15 throw new IllegalArgumentException();
137 tim 1.16 this.queue = new Object[initialCapacity + 1];
138 tim 1.2 this.comparator = comparator;
139 tim 1.1 }
140    
141 tim 1.2 /**
142 dl 1.22 * Common code to initialize underlying queue array across
143     * constructors below.
144     */
145     private void initializeArray(Collection<? extends E> c) {
146     int sz = c.size();
147     int initialCapacity = (int)Math.min((sz * 110L) / 100,
148     Integer.MAX_VALUE - 1);
149     if (initialCapacity < 1)
150     initialCapacity = 1;
151    
152     this.queue = new Object[initialCapacity + 1];
153     }
154    
155     /**
156     * Initially fill elements of the queue array under the
157     * knowledge that it is sorted or is another PQ, in which
158 dl 1.36 * case we can just place the elements in the order presented.
159 dl 1.22 */
160     private void fillFromSorted(Collection<? extends E> c) {
161     for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
162     queue[++size] = i.next();
163     }
164    
165     /**
166 dl 1.36 * Initially fill elements of the queue array that is not to our knowledge
167     * sorted, so we must rearrange the elements to guarantee the heap
168     * invariant.
169 dl 1.22 */
170     private void fillFromUnsorted(Collection<? extends E> c) {
171     for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
172 dl 1.36 queue[++size] = i.next();
173     heapify();
174 dl 1.22 }
175    
176     /**
177     * Creates a <tt>PriorityQueue</tt> containing the elements in the
178     * specified collection. The priority queue has an initial
179     * capacity of 110% of the size of the specified collection or 1
180     * if the collection is empty. If the specified collection is an
181 tim 1.25 * instance of a {@link java.util.SortedSet} or is another
182 dl 1.22 * <tt>PriorityQueue</tt>, the priority queue will be sorted
183     * according to the same comparator, or according to its elements'
184     * natural order if the collection is sorted according to its
185     * elements' natural order. Otherwise, the priority queue is
186     * ordered according to its elements' natural order.
187 tim 1.2 *
188 dholmes 1.15 * @param c the collection whose elements are to be placed
189 tim 1.2 * into this priority queue.
190     * @throws ClassCastException if elements of the specified collection
191     * cannot be compared to one another according to the priority
192     * queue's ordering.
193 dholmes 1.15 * @throws NullPointerException if <tt>c</tt> or any element within it
194     * is <tt>null</tt>
195 tim 1.2 */
196 tim 1.16 public PriorityQueue(Collection<? extends E> c) {
197 dl 1.22 initializeArray(c);
198 dl 1.27 if (c instanceof SortedSet) {
199 dl 1.28 // @fixme double-cast workaround for compiler
200     SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
201 dl 1.22 comparator = (Comparator<? super E>)s.comparator();
202     fillFromSorted(s);
203 dl 1.27 } else if (c instanceof PriorityQueue) {
204 dl 1.22 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
205     comparator = (Comparator<? super E>)s.comparator();
206     fillFromSorted(s);
207 tim 1.26 } else {
208 tim 1.2 comparator = null;
209 dl 1.22 fillFromUnsorted(c);
210 tim 1.2 }
211 dl 1.22 }
212    
213     /**
214     * Creates a <tt>PriorityQueue</tt> containing the elements in the
215     * specified collection. The priority queue has an initial
216     * capacity of 110% of the size of the specified collection or 1
217     * if the collection is empty. This priority queue will be sorted
218     * according to the same comparator as the given collection, or
219     * according to its elements' natural order if the collection is
220     * sorted according to its elements' natural order.
221     *
222     * @param c the collection whose elements are to be placed
223     * into this priority queue.
224     * @throws ClassCastException if elements of the specified collection
225     * cannot be compared to one another according to the priority
226     * queue's ordering.
227     * @throws NullPointerException if <tt>c</tt> or any element within it
228     * is <tt>null</tt>
229     */
230     public PriorityQueue(PriorityQueue<? extends E> c) {
231     initializeArray(c);
232     comparator = (Comparator<? super E>)c.comparator();
233     fillFromSorted(c);
234     }
235 dholmes 1.18
236 dl 1.22 /**
237     * Creates a <tt>PriorityQueue</tt> containing the elements in the
238     * specified collection. The priority queue has an initial
239     * capacity of 110% of the size of the specified collection or 1
240     * if the collection is empty. This priority queue will be sorted
241     * according to the same comparator as the given collection, or
242     * according to its elements' natural order if the collection is
243     * sorted according to its elements' natural order.
244     *
245     * @param c the collection whose elements are to be placed
246     * into this priority queue.
247     * @throws ClassCastException if elements of the specified collection
248     * cannot be compared to one another according to the priority
249     * queue's ordering.
250     * @throws NullPointerException if <tt>c</tt> or any element within it
251     * is <tt>null</tt>
252     */
253     public PriorityQueue(SortedSet<? extends E> c) {
254     initializeArray(c);
255     comparator = (Comparator<? super E>)c.comparator();
256     fillFromSorted(c);
257 tim 1.1 }
258    
259 dl 1.22 /**
260     * Resize array, if necessary, to be able to hold given index
261     */
262     private void grow(int index) {
263     int newlen = queue.length;
264     if (index < newlen) // don't need to grow
265     return;
266     if (index == Integer.MAX_VALUE)
267     throw new OutOfMemoryError();
268     while (newlen <= index) {
269     if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
270     newlen = Integer.MAX_VALUE;
271     else
272     newlen <<= 2;
273     }
274     Object[] newQueue = new Object[newlen];
275     System.arraycopy(queue, 0, newQueue, 0, queue.length);
276     queue = newQueue;
277     }
278    
279 dl 1.36
280 tim 1.2 // Queue Methods
281    
282     /**
283 dholmes 1.11 * Add the specified element to this priority queue.
284 tim 1.2 *
285 dholmes 1.11 * @return <tt>true</tt>
286     * @throws ClassCastException if the specified element cannot be compared
287     * with elements currently in the priority queue according
288     * to the priority queue's ordering.
289 dholmes 1.18 * @throws NullPointerException if the specified element is <tt>null</tt>.
290 tim 1.2 */
291 dholmes 1.18 public boolean offer(E o) {
292     if (o == null)
293 dholmes 1.11 throw new NullPointerException();
294     modCount++;
295     ++size;
296    
297     // Grow backing store if necessary
298 dl 1.22 if (size >= queue.length)
299     grow(size);
300 dholmes 1.11
301 dholmes 1.18 queue[size] = o;
302 dholmes 1.11 fixUp(size);
303     return true;
304     }
305    
306 tim 1.1 public E poll() {
307 tim 1.2 if (size == 0)
308     return null;
309 dl 1.36 return remove();
310 tim 1.1 }
311 tim 1.2
312 tim 1.1 public E peek() {
313 tim 1.16 return (E) queue[1];
314 tim 1.1 }
315    
316 dholmes 1.23 // Collection Methods - the first two override to update docs
317 dholmes 1.11
318     /**
319 dholmes 1.23 * Adds the specified element to this queue.
320     * @return <tt>true</tt> (as per the general contract of
321     * <tt>Collection.add</tt>).
322     *
323     * @throws NullPointerException {@inheritDoc}
324 dholmes 1.15 * @throws ClassCastException if the specified element cannot be compared
325     * with elements currently in the priority queue according
326     * to the priority queue's ordering.
327 dholmes 1.11 */
328 dholmes 1.18 public boolean add(E o) {
329     return super.add(o);
330 dholmes 1.11 }
331    
332 dholmes 1.23
333 tim 1.14 /**
334 dholmes 1.23 * Adds all of the elements in the specified collection to this queue.
335     * The behavior of this operation is undefined if
336     * the specified collection is modified while the operation is in
337     * progress. (This implies that the behavior of this call is undefined if
338     * the specified collection is this queue, and this queue is nonempty.)
339     * <p>
340     * This implementation iterates over the specified collection, and adds
341     * each object returned by the iterator to this collection, in turn.
342     * @throws NullPointerException {@inheritDoc}
343 dholmes 1.15 * @throws ClassCastException if any element cannot be compared
344     * with elements currently in the priority queue according
345     * to the priority queue's ordering.
346 tim 1.14 */
347     public boolean addAll(Collection<? extends E> c) {
348     return super.addAll(c);
349     }
350 dholmes 1.11
351 dholmes 1.23
352 dl 1.36 /**
353 dholmes 1.23 * Removes a single instance of the specified element from this
354     * queue, if it is present. More formally,
355     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
356     * o.equals(e))</tt>, if the queue contains one or more such
357     * elements. Returns <tt>true</tt> if the queue contained the
358     * specified element (or equivalently, if the queue changed as a
359     * result of the call).
360     *
361     * <p>This implementation iterates over the queue looking for the
362     * specified element. If it finds the element, it removes the element
363     * from the queue using the iterator's remove method.<p>
364     *
365     */
366 dl 1.12 public boolean remove(Object o) {
367 dholmes 1.11 if (o == null)
368 dholmes 1.15 return false;
369 tim 1.2
370     if (comparator == null) {
371     for (int i = 1; i <= size; i++) {
372 tim 1.16 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
373 dl 1.36 removeAt(i);
374 tim 1.2 return true;
375     }
376     }
377     } else {
378     for (int i = 1; i <= size; i++) {
379 tim 1.16 if (comparator.compare((E)queue[i], (E)o) == 0) {
380 dl 1.36 removeAt(i);
381 tim 1.2 return true;
382     }
383     }
384     }
385 tim 1.1 return false;
386     }
387 tim 1.2
388 dholmes 1.23 /**
389     * Returns an iterator over the elements in this queue. The iterator
390     * does not return the elements in any particular order.
391     *
392     * @return an iterator over the elements in this queue.
393     */
394 tim 1.2 public Iterator<E> iterator() {
395 dl 1.7 return new Itr();
396 tim 1.2 }
397    
398     private class Itr implements Iterator<E> {
399 dl 1.35
400 dl 1.7 /**
401     * Index (into queue array) of element to be returned by
402 tim 1.2 * subsequent call to next.
403 dl 1.7 */
404     private int cursor = 1;
405 tim 1.2
406 dl 1.7 /**
407 dl 1.36 * Index of element returned by most recent call to next,
408     * unless that element came from the forgetMeNot list.
409     * Reset to 0 if element is deleted by a call to remove.
410 dl 1.7 */
411     private int lastRet = 0;
412    
413     /**
414     * The modCount value that the iterator believes that the backing
415     * List should have. If this expectation is violated, the iterator
416     * has detected concurrent modification.
417     */
418     private int expectedModCount = modCount;
419 tim 1.2
420 dl 1.36 /**
421     * A list of elements that were moved from the unvisited portion of
422     * the heap into the visited portion as a result of "unlucky" element
423     * removals during the iteration. (Unlucky element removals are those
424     * that require a fixup instead of a fixdown.) We must visit all of
425     * the elements in this list to complete the iteration. We do this
426     * after we've completed the "normal" iteration.
427     *
428     * We expect that most iterations, even those involving removals,
429     * will not use need to store elements in this field.
430     */
431     private ArrayList<E> forgetMeNot = null;
432    
433     /**
434     * Element returned by the most recent call to next iff that
435     * element was drawn from the forgetMeNot list.
436     */
437     private Object lastRetElt = null;
438 dl 1.35
439 dl 1.7 public boolean hasNext() {
440 dl 1.36 return cursor <= size || forgetMeNot != null;
441 dl 1.7 }
442    
443     public E next() {
444 tim 1.2 checkForComodification();
445 dl 1.36 E result;
446     if (cursor <= size) {
447     result = (E) queue[cursor];
448     lastRet = cursor++;
449     }
450     else if (forgetMeNot == null)
451 dl 1.7 throw new NoSuchElementException();
452 dl 1.36 else {
453     int remaining = forgetMeNot.size();
454     result = forgetMeNot.remove(remaining - 1);
455     if (remaining == 1)
456     forgetMeNot = null;
457     lastRet = 0;
458     lastRetElt = result;
459     }
460 tim 1.2 return result;
461 dl 1.7 }
462 tim 1.2
463 dl 1.7 public void remove() {
464 tim 1.2 checkForComodification();
465    
466 dl 1.36 if (lastRet != 0) {
467     E moved = PriorityQueue.this.removeAt(lastRet);
468     lastRet = 0;
469     if (moved == null) {
470     cursor--;
471     } else {
472     if (forgetMeNot == null)
473 dl 1.37 forgetMeNot = new ArrayList<E>();
474 dl 1.36 forgetMeNot.add(moved);
475     }
476     } else if (lastRetElt != null) {
477     PriorityQueue.this.remove(lastRetElt);
478     lastRetElt = null;
479     } else {
480     throw new IllegalStateException();
481 dl 1.35 }
482    
483 tim 1.2 expectedModCount = modCount;
484 dl 1.7 }
485 tim 1.2
486 dl 1.7 final void checkForComodification() {
487     if (modCount != expectedModCount)
488     throw new ConcurrentModificationException();
489     }
490 tim 1.2 }
491    
492 tim 1.1 public int size() {
493 tim 1.2 return size;
494 tim 1.1 }
495 tim 1.2
496     /**
497     * Remove all elements from the priority queue.
498     */
499     public void clear() {
500     modCount++;
501    
502     // Null out element references to prevent memory leak
503     for (int i=1; i<=size; i++)
504     queue[i] = null;
505    
506     size = 0;
507     }
508    
509     /**
510 dl 1.36 * Removes and returns the first element from queue.
511     */
512     public E remove() {
513     if (size == 0)
514     throw new NoSuchElementException();
515     modCount++;
516    
517     E result = (E) queue[1];
518     queue[1] = queue[size];
519     queue[size--] = null; // Drop extra ref to prevent memory leak
520     if (size > 1)
521     fixDown(1);
522    
523     return result;
524     }
525    
526     /**
527     * Removes and returns the ith element from queue. (Recall that queue
528     * is one-based, so 1 <= i <= size.)
529 tim 1.2 *
530 dl 1.36 * Normally this method leaves the elements at positions from 1 up to i-1,
531     * inclusive, untouched. Under these circumstances, it returns null.
532     * Occasionally, in order to maintain the heap invariant, it must move
533     * the last element of the list to some index in the range [2, i-1],
534     * and move the element previously at position (i/2) to position i.
535     * Under these circumstances, this method returns the element that was
536     * previously at the end of the list and is now at some position between
537     * 2 and i-1 inclusive.
538 tim 1.2 */
539 dl 1.36 private E removeAt(int i) {
540     assert i > 0 && i <= size;
541 tim 1.2 modCount++;
542    
543 dl 1.36 E moved = (E) queue[size];
544     queue[i] = moved;
545 tim 1.2 queue[size--] = null; // Drop extra ref to prevent memory leak
546 dl 1.35 if (i <= size) {
547 tim 1.2 fixDown(i);
548 dl 1.36 if (queue[i] == moved) {
549     fixUp(i);
550     if (queue[i] != moved)
551     return moved;
552     }
553 dl 1.35 }
554 dl 1.36 return null;
555 tim 1.1 }
556    
557 tim 1.2 /**
558     * Establishes the heap invariant (described above) assuming the heap
559     * satisfies the invariant except possibly for the leaf-node indexed by k
560     * (which may have a nextExecutionTime less than its parent's).
561     *
562     * This method functions by "promoting" queue[k] up the hierarchy
563     * (by swapping it with its parent) repeatedly until queue[k]
564     * is greater than or equal to its parent.
565     */
566     private void fixUp(int k) {
567     if (comparator == null) {
568     while (k > 1) {
569     int j = k >> 1;
570 tim 1.16 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
571 tim 1.2 break;
572 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
573 tim 1.2 k = j;
574     }
575     } else {
576     while (k > 1) {
577 dl 1.35 int j = k >>> 1;
578 tim 1.16 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
579 tim 1.2 break;
580 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
581 tim 1.2 k = j;
582     }
583     }
584     }
585    
586     /**
587     * Establishes the heap invariant (described above) in the subtree
588     * rooted at k, which is assumed to satisfy the heap invariant except
589     * possibly for node k itself (which may be greater than its children).
590     *
591     * This method functions by "demoting" queue[k] down the hierarchy
592     * (by swapping it with its smaller child) repeatedly until queue[k]
593     * is less than or equal to its children.
594     */
595     private void fixDown(int k) {
596     int j;
597     if (comparator == null) {
598 dl 1.33 while ((j = k << 1) <= size && (j > 0)) {
599 dl 1.35 if (j<size &&
600     ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
601 tim 1.2 j++; // j indexes smallest kid
602 dl 1.35
603 tim 1.16 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
604 tim 1.2 break;
605 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
606 tim 1.2 k = j;
607     }
608     } else {
609 dl 1.33 while ((j = k << 1) <= size && (j > 0)) {
610 dl 1.35 if (j<size &&
611     comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
612 tim 1.2 j++; // j indexes smallest kid
613 tim 1.16 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
614 tim 1.2 break;
615 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
616 tim 1.2 k = j;
617     }
618     }
619 dl 1.36 }
620 dl 1.35
621 dl 1.36 /**
622     * Establishes the heap invariant (described above) in the entire tree,
623     * assuming nothing about the order of the elements prior to the call.
624     */
625     private void heapify() {
626     for (int i = size/2; i >= 1; i--)
627     fixDown(i);
628 tim 1.2 }
629    
630 dholmes 1.23 /**
631     * Returns the comparator used to order this collection, or <tt>null</tt>
632     * if this collection is sorted according to its elements natural ordering
633 tim 1.24 * (using <tt>Comparable</tt>).
634 dholmes 1.23 *
635     * @return the comparator used to order this collection, or <tt>null</tt>
636     * if this collection is sorted according to its elements natural ordering.
637     */
638 tim 1.16 public Comparator<? super E> comparator() {
639 tim 1.2 return comparator;
640     }
641 dl 1.5
642     /**
643     * Save the state of the instance to a stream (that
644     * is, serialize it).
645     *
646     * @serialData The length of the array backing the instance is
647     * emitted (int), followed by all of its elements (each an
648     * <tt>Object</tt>) in the proper order.
649 dl 1.7 * @param s the stream
650 dl 1.5 */
651 dl 1.22 private void writeObject(java.io.ObjectOutputStream s)
652 dl 1.5 throws java.io.IOException{
653 dl 1.7 // Write out element count, and any hidden stuff
654     s.defaultWriteObject();
655 dl 1.5
656     // Write out array length
657     s.writeInt(queue.length);
658    
659 dl 1.7 // Write out all elements in the proper order.
660 dl 1.39 for (int i=1; i<=size; i++)
661 dl 1.5 s.writeObject(queue[i]);
662     }
663    
664     /**
665     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
666     * deserialize it).
667 dl 1.7 * @param s the stream
668 dl 1.5 */
669 dl 1.22 private void readObject(java.io.ObjectInputStream s)
670 dl 1.5 throws java.io.IOException, ClassNotFoundException {
671 dl 1.7 // Read in size, and any hidden stuff
672     s.defaultReadObject();
673 dl 1.5
674     // Read in array length and allocate array
675     int arrayLength = s.readInt();
676 tim 1.16 queue = new Object[arrayLength];
677 dl 1.5
678 dl 1.7 // Read in all elements in the proper order.
679 dl 1.39 for (int i=1; i<=size; i++)
680 dl 1.37 queue[i] = (E) s.readObject();
681 dl 1.5 }
682    
683 tim 1.1 }