ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.4
Committed: Mon May 19 02:45:07 2003 UTC (20 years, 11 months ago) by tim
Branch: MAIN
Changes since 1.3: +0 -4 lines
Log Message:
Use temp version of Sorted to allow a portion of PQ impl to be uncommented.

File Contents

# User Rev Content
1 tim 1.2 package java.util;
2 tim 1.1
3 tim 1.2 /*
4     * Todo
5     *
6     * 1) Make it serializable.
7     */
8 tim 1.1
9     /**
10 tim 1.2 * An unbounded priority queue based on a priority heap. This queue orders
11     * elements according to the order specified at creation time. This order is
12     * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
13     * either according to their <i>natural order</i> (see {@link Comparable}), or
14     * according to a {@link Comparator}, depending on which constructor is used.
15     * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
16     * minimal element with respect to the specified ordering. If multiple
17     * these elements are tied for least value, no guarantees are made as to
18     * which of elements is returned.
19     *
20     * <p>Each priority queue has a <i>capacity</i>. The capacity is the size of
21     * the array used to store the elements on the queue. It is always at least
22     * as large as the queue size. As elements are added to a priority list,
23     * its capacity grows automatically. The details of the growth policy are not
24     * specified.
25     *
26     *<p>Implementation note: this implementation provides O(log(n)) time for
27     * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
28     * methods; linear time for the <tt>remove(Object)</tt> and
29     * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
30     * <tt>element</tt>, and <tt>size</tt> methods.
31     *
32     * <p>This class is a member of the
33     * <a href="{@docRoot}/../guide/collections/index.html">
34     * Java Collections Framework</a>.
35     */
36     public class PriorityQueue<E> extends AbstractQueue<E>
37     implements Queue<E>
38     {
39     private static final int DEFAULT_INITIAL_CAPACITY = 11;
40 tim 1.1
41 tim 1.2 /**
42     * Priority queue represented as a balanced binary heap: the two children
43     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
44     * ordered by comparator, or by the elements' natural ordering, if
45     * comparator is null: For each node n in the heap, and each descendant
46     * of n, d, n <= d.
47     *
48     * The element with the lowest value is in queue[1] (assuming the queue is
49     * nonempty). A one-based array is used in preference to the traditional
50     * zero-based array to simplify parent and child calculations.
51     *
52     * queue.length must be >= 2, even if size == 0.
53     */
54     private E[] queue;
55 tim 1.1
56 tim 1.2 /**
57     * The number of elements in the priority queue.
58     */
59     private int size = 0;
60 tim 1.1
61 tim 1.2 /**
62     * The comparator, or null if priority queue uses elements'
63     * natural ordering.
64     */
65     private final Comparator<E> comparator;
66    
67     /**
68     * The number of times this priority queue has been
69     * <i>structurally modified</i>. See AbstractList for gory details.
70     */
71     private int modCount = 0;
72    
73     /**
74     * Create a new priority queue with the default initial capacity (11)
75     * that orders its elements according to their natural ordering.
76     */
77     public PriorityQueue() {
78     this(DEFAULT_INITIAL_CAPACITY);
79 tim 1.1 }
80 tim 1.2
81     /**
82     * Create a new priority queue with the specified initial capacity
83     * that orders its elements according to their natural ordering.
84     *
85     * @param initialCapacity the initial capacity for this priority queue.
86     */
87     public PriorityQueue(int initialCapacity) {
88     this(initialCapacity, null);
89 tim 1.1 }
90 tim 1.2
91     /**
92     * Create a new priority queue with the specified initial capacity (11)
93     * that orders its elements according to the specified comparator.
94     *
95     * @param initialCapacity the initial capacity for this priority queue.
96     * @param comparator the comparator used to order this priority queue.
97     */
98     public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
99     if (initialCapacity < 1)
100     initialCapacity = 1;
101     queue = new E[initialCapacity + 1];
102     this.comparator = comparator;
103 tim 1.1 }
104    
105 tim 1.2 /**
106     * Create a new priority queue containing the elements in the specified
107     * collection. The priority queue has an initial capacity of 110% of the
108     * size of the specified collection. If the specified collection
109     * implements the {@link Sorted} interface, the priority queue will be
110     * sorted according to the same comparator, or according to its elements'
111     * natural order if the collection is sorted according to its elements'
112     * natural order. If the specified collection does not implement the
113     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114     * its elements' natural order.
115     *
116     * @param initialElements the collection whose elements are to be placed
117     * into this priority queue.
118     * @throws ClassCastException if elements of the specified collection
119     * cannot be compared to one another according to the priority
120     * queue's ordering.
121     * @throws NullPointerException if the specified collection or an
122     * element of the specified collection is <tt>null</tt>.
123     */
124     public PriorityQueue(Collection<E> initialElements) {
125     int sz = initialElements.size();
126     int initialCapacity = (int)Math.min((sz * 110L) / 100,
127     Integer.MAX_VALUE - 1);
128     if (initialCapacity < 1)
129     initialCapacity = 1;
130     queue = new E[initialCapacity + 1];
131    
132     if (initialElements instanceof Sorted) {
133     comparator = ((Sorted)initialElements).comparator();
134     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
135     queue[++size] = i.next();
136     } else {
137     comparator = null;
138     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139     add(i.next());
140     }
141 tim 1.1 }
142    
143 tim 1.2 // Queue Methods
144    
145     /**
146     * Remove and return the minimal element from this priority queue if
147     * it contains one or more elements, otherwise <tt>null</tt>. The term
148     * <i>minimal</i> is defined according to this priority queue's order.
149     *
150     * @return the minimal element from this priority queue if it contains
151     * one or more elements, otherwise <tt>null</tt>.
152     */
153 tim 1.1 public E poll() {
154 tim 1.2 if (size == 0)
155     return null;
156     return remove(1);
157 tim 1.1 }
158 tim 1.2
159     /**
160     * Return, but do not remove, the minimal element from the priority queue,
161     * or <tt>null</tt> if the queue is empty. The term <i>minimal</i> is
162     * defined according to this priority queue's order. This method returns
163     * the same object reference that would be returned by by the
164     * <tt>poll</tt> method. The two methods differ in that this method
165     * does not remove the element from the priority queue.
166     *
167     * @return the minimal element from this priority queue if it contains
168     * one or more elements, otherwise <tt>null</tt>.
169     */
170 tim 1.1 public E peek() {
171 tim 1.2 return queue[1];
172 tim 1.1 }
173    
174 tim 1.2 // Collection Methods
175    
176     /**
177     * Removes a single instance of the specified element from this priority
178     * queue, if it is present. Returns true if this collection contained the
179     * specified element (or equivalently, if this collection changed as a
180     * result of the call).
181     *
182     * @param o element to be removed from this collection, if present.
183     * @return <tt>true</tt> if this collection changed as a result of the
184     * call
185     * @throws ClassCastException if the specified element cannot be compared
186     * with elements currently in the priority queue according
187     * to the priority queue's ordering.
188     * @throws NullPointerException if the specified element is null.
189     */
190     public boolean remove(Object element) {
191     if (element == null)
192     throw new NullPointerException();
193    
194     if (comparator == null) {
195     for (int i = 1; i <= size; i++) {
196     if (((Comparable)queue[i]).compareTo(element) == 0) {
197     remove(i);
198     return true;
199     }
200     }
201     } else {
202     for (int i = 1; i <= size; i++) {
203     if (comparator.compare(queue[i], (E) element) == 0) {
204     remove(i);
205     return true;
206     }
207     }
208     }
209 tim 1.1 return false;
210     }
211 tim 1.2
212     /**
213     * Returns an iterator over the elements in this priority queue. The
214     * first element returned by this iterator is the same element that
215     * would be returned by a call to <tt>peek</tt>.
216     *
217     * @return an <tt>Iterator</tt> over the elements in this priority queue.
218     */
219     public Iterator<E> iterator() {
220     return new Itr();
221     }
222    
223     private class Itr implements Iterator<E> {
224     /**
225     * Index (into queue array) of element to be returned by
226     * subsequent call to next.
227     */
228     int cursor = 1;
229    
230     /**
231     * Index of element returned by most recent call to next or
232     * previous. Reset to 0 if this element is deleted by a call
233     * to remove.
234     */
235     int lastRet = 0;
236    
237     /**
238     * The modCount value that the iterator believes that the backing
239     * List should have. If this expectation is violated, the iterator
240     * has detected concurrent modification.
241     */
242     int expectedModCount = modCount;
243    
244     public boolean hasNext() {
245     return cursor <= size;
246     }
247    
248     public E next() {
249     checkForComodification();
250     if (cursor > size)
251     throw new NoSuchElementException();
252     E result = queue[cursor];
253     lastRet = cursor++;
254     return result;
255     }
256    
257     public void remove() {
258     if (lastRet == 0)
259     throw new IllegalStateException();
260     checkForComodification();
261    
262     PriorityQueue.this.remove(lastRet);
263     if (lastRet < cursor)
264     cursor--;
265     lastRet = 0;
266     expectedModCount = modCount;
267     }
268    
269     final void checkForComodification() {
270     if (modCount != expectedModCount)
271     throw new ConcurrentModificationException();
272     }
273     }
274    
275     /**
276     * Returns the number of elements in this priority queue.
277     *
278     * @return the number of elements in this priority queue.
279     */
280 tim 1.1 public int size() {
281 tim 1.2 return size;
282 tim 1.1 }
283 tim 1.2
284     /**
285     * Add the specified element to this priority queue.
286     *
287     * @param element the element to add.
288     * @return true
289     * @throws ClassCastException if the specified element cannot be compared
290     * with elements currently in the priority queue according
291     * to the priority queue's ordering.
292     * @throws NullPointerException if the specified element is null.
293     */
294     public boolean offer(E element) {
295     if (element == null)
296     throw new NullPointerException();
297     modCount++;
298    
299     // Grow backing store if necessary
300     if (++size == queue.length) {
301     E[] newQueue = new E[2 * queue.length];
302     System.arraycopy(queue, 0, newQueue, 0, size);
303     queue = newQueue;
304     }
305    
306     queue[size] = element;
307     fixUp(size);
308     return true;
309 tim 1.1 }
310    
311 tim 1.2 /**
312     * Remove all elements from the priority queue.
313     */
314     public void clear() {
315     modCount++;
316    
317     // Null out element references to prevent memory leak
318     for (int i=1; i<=size; i++)
319     queue[i] = null;
320    
321     size = 0;
322     }
323    
324     /**
325     * Removes and returns the ith element from queue. Recall
326     * that queue is one-based, so 1 <= i <= size.
327     *
328     * XXX: Could further special-case i==size, but is it worth it?
329     * XXX: Could special-case i==0, but is it worth it?
330     */
331     private E remove(int i) {
332     assert i <= size;
333     modCount++;
334    
335     E result = queue[i];
336     queue[i] = queue[size];
337     queue[size--] = null; // Drop extra ref to prevent memory leak
338     if (i <= size)
339     fixDown(i);
340     return result;
341 tim 1.1 }
342    
343 tim 1.2 /**
344     * Establishes the heap invariant (described above) assuming the heap
345     * satisfies the invariant except possibly for the leaf-node indexed by k
346     * (which may have a nextExecutionTime less than its parent's).
347     *
348     * This method functions by "promoting" queue[k] up the hierarchy
349     * (by swapping it with its parent) repeatedly until queue[k]
350     * is greater than or equal to its parent.
351     */
352     private void fixUp(int k) {
353     if (comparator == null) {
354     while (k > 1) {
355     int j = k >> 1;
356     if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
357     break;
358     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
359     k = j;
360     }
361     } else {
362     while (k > 1) {
363     int j = k >> 1;
364     if (comparator.compare(queue[j], queue[k]) <= 0)
365     break;
366     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
367     k = j;
368     }
369     }
370     }
371    
372     /**
373     * Establishes the heap invariant (described above) in the subtree
374     * rooted at k, which is assumed to satisfy the heap invariant except
375     * possibly for node k itself (which may be greater than its children).
376     *
377     * This method functions by "demoting" queue[k] down the hierarchy
378     * (by swapping it with its smaller child) repeatedly until queue[k]
379     * is less than or equal to its children.
380     */
381     private void fixDown(int k) {
382     int j;
383     if (comparator == null) {
384     while ((j = k << 1) <= size) {
385     if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
386     j++; // j indexes smallest kid
387     if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
388     break;
389     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
390     k = j;
391     }
392     } else {
393     while ((j = k << 1) <= size) {
394     if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
395     j++; // j indexes smallest kid
396     if (comparator.compare(queue[k], queue[j]) <= 0)
397     break;
398     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
399     k = j;
400     }
401     }
402     }
403    
404     /**
405     * Returns the comparator associated with this priority queue, or
406     * <tt>null</tt> if it uses its elements' natural ordering.
407     *
408     * @return the comparator associated with this priority queue, or
409     * <tt>null</tt> if it uses its elements' natural ordering.
410     */
411 tim 1.3 Comparator<E> comparator() {
412 tim 1.2 return comparator;
413     }
414 tim 1.1 }