ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.44
Committed: Sat Oct 18 12:29:27 2003 UTC (20 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.43: +1 -0 lines
Log Message:
Added docs for type params

File Contents

# User Rev Content
1 dl 1.38 /*
2     * %W% %E%
3     *
4     * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
5     * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9 tim 1.1
10     /**
11 dl 1.41 * An unbounded priority {@linkplain Queue queue} based on a priority
12     * heap. This queue orders elements according to an order specified
13     * at construction time, which is specified either according to their
14     * <i>natural order</i> (see {@link Comparable}), or according to a
15     * {@link java.util.Comparator}, depending on which constructor is
16     * used. A priority queue does not permit <tt>null</tt> elements.
17 dl 1.42 * A priority queue relying on natural ordering also does not
18 dl 1.43 * permit insertion of non-comparable objects (doing so may result
19 dl 1.42 * in <tt>ClassCastException</tt>).
20 dl 1.40 *
21 dl 1.41 * <p>The <em>head</em> of this queue is the <em>least</em> element
22     * with respect to the specified ordering. If multiple elements are
23     * tied for least value, the head is one of those elements -- ties are
24 dl 1.42 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
25     * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26     * element at the head of the queue.
27 tim 1.14 *
28 dl 1.41 * <p>A priority queue is unbounded, but has an internal
29     * <i>capacity</i> governing the size of an array used to store the
30 dl 1.40 * elements on the queue. It is always at least as large as the queue
31     * size. As elements are added to a priority queue, its capacity
32     * grows automatically. The details of the growth policy are not
33     * specified.
34 tim 1.2 *
35 dl 1.41 * <p>This class implements all of the <em>optional</em> methods of
36     * the {@link Collection} and {@link Iterator} interfaces. The
37     * Iterator provided in method {@link #iterator()} is <em>not</em>
38 dl 1.29 * guaranteed to traverse the elements of the PriorityQueue in any
39     * particular order. If you need ordered traversal, consider using
40     * <tt>Arrays.sort(pq.toArray())</tt>.
41     *
42     * <p> <strong>Note that this implementation is not synchronized.</strong>
43     * Multiple threads should not access a <tt>PriorityQueue</tt>
44     * instance concurrently if any of the threads modifies the list
45     * structurally. Instead, use the thread-safe {@link
46 dholmes 1.34 * java.util.concurrent.PriorityBlockingQueue} class.
47 dl 1.29 *
48     *
49 dholmes 1.11 * <p>Implementation note: this implementation provides O(log(n)) time
50     * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
51     * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
52     * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
53     * constant time for the retrieval methods (<tt>peek</tt>,
54     * <tt>element</tt>, and <tt>size</tt>).
55 tim 1.2 *
56     * <p>This class is a member of the
57     * <a href="{@docRoot}/../guide/collections/index.html">
58     * Java Collections Framework</a>.
59 dl 1.7 * @since 1.5
60 dl 1.38 * @version %I%, %G%
61 dl 1.7 * @author Josh Bloch
62 dl 1.44 * @param <E> the base class of all elements held in this collection
63 tim 1.2 */
64     public class PriorityQueue<E> extends AbstractQueue<E>
65 dl 1.22 implements Queue<E>, java.io.Serializable {
66 dholmes 1.11
67 dl 1.31 private static final long serialVersionUID = -7720805057305804111L;
68 dl 1.30
69 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
70 tim 1.1
71 tim 1.2 /**
72     * Priority queue represented as a balanced binary heap: the two children
73     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
74     * ordered by comparator, or by the elements' natural ordering, if
75 brian 1.6 * comparator is null: For each node n in the heap and each descendant d
76     * of n, n <= d.
77 tim 1.2 *
78 brian 1.6 * The element with the lowest value is in queue[1], assuming the queue is
79     * nonempty. (A one-based array is used in preference to the traditional
80     * zero-based array to simplify parent and child calculations.)
81 tim 1.2 *
82     * queue.length must be >= 2, even if size == 0.
83     */
84 tim 1.16 private transient Object[] queue;
85 tim 1.1
86 tim 1.2 /**
87     * The number of elements in the priority queue.
88     */
89     private int size = 0;
90 tim 1.1
91 tim 1.2 /**
92     * The comparator, or null if priority queue uses elements'
93     * natural ordering.
94     */
95 tim 1.16 private final Comparator<? super E> comparator;
96 tim 1.2
97     /**
98     * The number of times this priority queue has been
99     * <i>structurally modified</i>. See AbstractList for gory details.
100     */
101 dl 1.5 private transient int modCount = 0;
102 tim 1.2
103     /**
104 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
105 dl 1.7 * (11) that orders its elements according to their natural
106 tim 1.24 * ordering (using <tt>Comparable</tt>).
107 tim 1.2 */
108     public PriorityQueue() {
109 dholmes 1.11 this(DEFAULT_INITIAL_CAPACITY, null);
110 tim 1.1 }
111 tim 1.2
112     /**
113 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
114 dl 1.7 * that orders its elements according to their natural ordering
115 tim 1.24 * (using <tt>Comparable</tt>).
116 tim 1.2 *
117     * @param initialCapacity the initial capacity for this priority queue.
118 dholmes 1.23 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
119     * than 1
120 tim 1.2 */
121     public PriorityQueue(int initialCapacity) {
122     this(initialCapacity, null);
123 tim 1.1 }
124 tim 1.2
125     /**
126 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
127 tim 1.2 * that orders its elements according to the specified comparator.
128     *
129     * @param initialCapacity the initial capacity for this priority queue.
130     * @param comparator the comparator used to order this priority queue.
131 dholmes 1.11 * If <tt>null</tt> then the order depends on the elements' natural
132     * ordering.
133 dholmes 1.15 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
134     * than 1
135 tim 1.2 */
136 dholmes 1.23 public PriorityQueue(int initialCapacity,
137     Comparator<? super E> comparator) {
138 tim 1.2 if (initialCapacity < 1)
139 dholmes 1.15 throw new IllegalArgumentException();
140 tim 1.16 this.queue = new Object[initialCapacity + 1];
141 tim 1.2 this.comparator = comparator;
142 tim 1.1 }
143    
144 tim 1.2 /**
145 dl 1.22 * Common code to initialize underlying queue array across
146     * constructors below.
147     */
148     private void initializeArray(Collection<? extends E> c) {
149     int sz = c.size();
150     int initialCapacity = (int)Math.min((sz * 110L) / 100,
151     Integer.MAX_VALUE - 1);
152     if (initialCapacity < 1)
153     initialCapacity = 1;
154    
155     this.queue = new Object[initialCapacity + 1];
156     }
157    
158     /**
159     * Initially fill elements of the queue array under the
160     * knowledge that it is sorted or is another PQ, in which
161 dl 1.36 * case we can just place the elements in the order presented.
162 dl 1.22 */
163     private void fillFromSorted(Collection<? extends E> c) {
164     for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
165     queue[++size] = i.next();
166     }
167    
168     /**
169 dl 1.36 * Initially fill elements of the queue array that is not to our knowledge
170     * sorted, so we must rearrange the elements to guarantee the heap
171     * invariant.
172 dl 1.22 */
173     private void fillFromUnsorted(Collection<? extends E> c) {
174     for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
175 dl 1.36 queue[++size] = i.next();
176     heapify();
177 dl 1.22 }
178    
179     /**
180     * Creates a <tt>PriorityQueue</tt> containing the elements in the
181     * specified collection. The priority queue has an initial
182     * capacity of 110% of the size of the specified collection or 1
183     * if the collection is empty. If the specified collection is an
184 tim 1.25 * instance of a {@link java.util.SortedSet} or is another
185 dl 1.22 * <tt>PriorityQueue</tt>, the priority queue will be sorted
186     * according to the same comparator, or according to its elements'
187     * natural order if the collection is sorted according to its
188     * elements' natural order. Otherwise, the priority queue is
189     * ordered according to its elements' natural order.
190 tim 1.2 *
191 dholmes 1.15 * @param c the collection whose elements are to be placed
192 tim 1.2 * into this priority queue.
193     * @throws ClassCastException if elements of the specified collection
194     * cannot be compared to one another according to the priority
195     * queue's ordering.
196 dholmes 1.15 * @throws NullPointerException if <tt>c</tt> or any element within it
197     * is <tt>null</tt>
198 tim 1.2 */
199 tim 1.16 public PriorityQueue(Collection<? extends E> c) {
200 dl 1.22 initializeArray(c);
201 dl 1.27 if (c instanceof SortedSet) {
202 dl 1.28 // @fixme double-cast workaround for compiler
203     SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
204 dl 1.22 comparator = (Comparator<? super E>)s.comparator();
205     fillFromSorted(s);
206 dl 1.27 } else if (c instanceof PriorityQueue) {
207 dl 1.22 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
208     comparator = (Comparator<? super E>)s.comparator();
209     fillFromSorted(s);
210 tim 1.26 } else {
211 tim 1.2 comparator = null;
212 dl 1.22 fillFromUnsorted(c);
213 tim 1.2 }
214 dl 1.22 }
215    
216     /**
217     * Creates a <tt>PriorityQueue</tt> containing the elements in the
218     * specified collection. The priority queue has an initial
219     * capacity of 110% of the size of the specified collection or 1
220     * if the collection is empty. This priority queue will be sorted
221     * according to the same comparator as the given collection, or
222     * according to its elements' natural order if the collection is
223     * sorted according to its elements' natural order.
224     *
225     * @param c the collection whose elements are to be placed
226     * into this priority queue.
227     * @throws ClassCastException if elements of the specified collection
228     * cannot be compared to one another according to the priority
229     * queue's ordering.
230     * @throws NullPointerException if <tt>c</tt> or any element within it
231     * is <tt>null</tt>
232     */
233     public PriorityQueue(PriorityQueue<? extends E> c) {
234     initializeArray(c);
235     comparator = (Comparator<? super E>)c.comparator();
236     fillFromSorted(c);
237     }
238 dholmes 1.18
239 dl 1.22 /**
240     * Creates a <tt>PriorityQueue</tt> containing the elements in the
241     * specified collection. The priority queue has an initial
242     * capacity of 110% of the size of the specified collection or 1
243     * if the collection is empty. This priority queue will be sorted
244     * according to the same comparator as the given collection, or
245     * according to its elements' natural order if the collection is
246     * sorted according to its elements' natural order.
247     *
248     * @param c the collection whose elements are to be placed
249     * into this priority queue.
250     * @throws ClassCastException if elements of the specified collection
251     * cannot be compared to one another according to the priority
252     * queue's ordering.
253     * @throws NullPointerException if <tt>c</tt> or any element within it
254     * is <tt>null</tt>
255     */
256     public PriorityQueue(SortedSet<? extends E> c) {
257     initializeArray(c);
258     comparator = (Comparator<? super E>)c.comparator();
259     fillFromSorted(c);
260 tim 1.1 }
261    
262 dl 1.22 /**
263     * Resize array, if necessary, to be able to hold given index
264     */
265     private void grow(int index) {
266     int newlen = queue.length;
267     if (index < newlen) // don't need to grow
268     return;
269     if (index == Integer.MAX_VALUE)
270     throw new OutOfMemoryError();
271     while (newlen <= index) {
272     if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
273     newlen = Integer.MAX_VALUE;
274     else
275     newlen <<= 2;
276     }
277     Object[] newQueue = new Object[newlen];
278     System.arraycopy(queue, 0, newQueue, 0, queue.length);
279     queue = newQueue;
280     }
281    
282 dl 1.36
283 tim 1.2 /**
284 dl 1.42 * Inserts the specified element into this priority queue.
285 tim 1.2 *
286 dholmes 1.11 * @return <tt>true</tt>
287     * @throws ClassCastException if the specified element cannot be compared
288     * with elements currently in the priority queue according
289     * to the priority queue's ordering.
290 dholmes 1.18 * @throws NullPointerException if the specified element is <tt>null</tt>.
291 tim 1.2 */
292 dholmes 1.18 public boolean offer(E o) {
293     if (o == null)
294 dholmes 1.11 throw new NullPointerException();
295     modCount++;
296     ++size;
297    
298     // Grow backing store if necessary
299 dl 1.22 if (size >= queue.length)
300     grow(size);
301 dholmes 1.11
302 dholmes 1.18 queue[size] = o;
303 dholmes 1.11 fixUp(size);
304     return true;
305     }
306    
307 dl 1.40 public E peek() {
308 tim 1.2 if (size == 0)
309     return null;
310 tim 1.16 return (E) queue[1];
311 tim 1.1 }
312    
313 dholmes 1.23 // Collection Methods - the first two override to update docs
314 dholmes 1.11
315     /**
316 dholmes 1.23 * Adds the specified element to this queue.
317     * @return <tt>true</tt> (as per the general contract of
318     * <tt>Collection.add</tt>).
319     *
320 dl 1.40 * @throws NullPointerException if the specified element is <tt>null</tt>.
321 dholmes 1.15 * @throws ClassCastException if the specified element cannot be compared
322     * with elements currently in the priority queue according
323     * to the priority queue's ordering.
324 dholmes 1.11 */
325 dholmes 1.18 public boolean add(E o) {
326 dl 1.41 return offer(o);
327 tim 1.14 }
328 dholmes 1.11
329 dl 1.12 public boolean remove(Object o) {
330 dholmes 1.11 if (o == null)
331 dholmes 1.15 return false;
332 tim 1.2
333     if (comparator == null) {
334     for (int i = 1; i <= size; i++) {
335 tim 1.16 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
336 dl 1.36 removeAt(i);
337 tim 1.2 return true;
338     }
339     }
340     } else {
341     for (int i = 1; i <= size; i++) {
342 tim 1.16 if (comparator.compare((E)queue[i], (E)o) == 0) {
343 dl 1.36 removeAt(i);
344 tim 1.2 return true;
345     }
346     }
347     }
348 tim 1.1 return false;
349     }
350 tim 1.2
351 dholmes 1.23 /**
352     * Returns an iterator over the elements in this queue. The iterator
353     * does not return the elements in any particular order.
354     *
355     * @return an iterator over the elements in this queue.
356     */
357 tim 1.2 public Iterator<E> iterator() {
358 dl 1.7 return new Itr();
359 tim 1.2 }
360    
361     private class Itr implements Iterator<E> {
362 dl 1.35
363 dl 1.7 /**
364     * Index (into queue array) of element to be returned by
365 tim 1.2 * subsequent call to next.
366 dl 1.7 */
367     private int cursor = 1;
368 tim 1.2
369 dl 1.7 /**
370 dl 1.36 * Index of element returned by most recent call to next,
371     * unless that element came from the forgetMeNot list.
372     * Reset to 0 if element is deleted by a call to remove.
373 dl 1.7 */
374     private int lastRet = 0;
375    
376     /**
377     * The modCount value that the iterator believes that the backing
378     * List should have. If this expectation is violated, the iterator
379     * has detected concurrent modification.
380     */
381     private int expectedModCount = modCount;
382 tim 1.2
383 dl 1.36 /**
384     * A list of elements that were moved from the unvisited portion of
385     * the heap into the visited portion as a result of "unlucky" element
386     * removals during the iteration. (Unlucky element removals are those
387     * that require a fixup instead of a fixdown.) We must visit all of
388     * the elements in this list to complete the iteration. We do this
389     * after we've completed the "normal" iteration.
390     *
391     * We expect that most iterations, even those involving removals,
392     * will not use need to store elements in this field.
393     */
394     private ArrayList<E> forgetMeNot = null;
395    
396     /**
397     * Element returned by the most recent call to next iff that
398     * element was drawn from the forgetMeNot list.
399     */
400     private Object lastRetElt = null;
401 dl 1.35
402 dl 1.7 public boolean hasNext() {
403 dl 1.36 return cursor <= size || forgetMeNot != null;
404 dl 1.7 }
405    
406     public E next() {
407 tim 1.2 checkForComodification();
408 dl 1.36 E result;
409     if (cursor <= size) {
410     result = (E) queue[cursor];
411     lastRet = cursor++;
412     }
413     else if (forgetMeNot == null)
414 dl 1.7 throw new NoSuchElementException();
415 dl 1.36 else {
416     int remaining = forgetMeNot.size();
417     result = forgetMeNot.remove(remaining - 1);
418     if (remaining == 1)
419     forgetMeNot = null;
420     lastRet = 0;
421     lastRetElt = result;
422     }
423 tim 1.2 return result;
424 dl 1.7 }
425 tim 1.2
426 dl 1.7 public void remove() {
427 tim 1.2 checkForComodification();
428    
429 dl 1.36 if (lastRet != 0) {
430     E moved = PriorityQueue.this.removeAt(lastRet);
431     lastRet = 0;
432     if (moved == null) {
433     cursor--;
434     } else {
435     if (forgetMeNot == null)
436 dl 1.37 forgetMeNot = new ArrayList<E>();
437 dl 1.36 forgetMeNot.add(moved);
438     }
439     } else if (lastRetElt != null) {
440     PriorityQueue.this.remove(lastRetElt);
441     lastRetElt = null;
442     } else {
443     throw new IllegalStateException();
444 dl 1.35 }
445    
446 tim 1.2 expectedModCount = modCount;
447 dl 1.7 }
448 tim 1.2
449 dl 1.7 final void checkForComodification() {
450     if (modCount != expectedModCount)
451     throw new ConcurrentModificationException();
452     }
453 tim 1.2 }
454    
455 tim 1.1 public int size() {
456 tim 1.2 return size;
457 tim 1.1 }
458 tim 1.2
459     /**
460     * Remove all elements from the priority queue.
461     */
462     public void clear() {
463     modCount++;
464    
465     // Null out element references to prevent memory leak
466     for (int i=1; i<=size; i++)
467     queue[i] = null;
468    
469     size = 0;
470     }
471    
472 dl 1.40 public E poll() {
473 dl 1.36 if (size == 0)
474 dl 1.40 return null;
475 dl 1.36 modCount++;
476    
477     E result = (E) queue[1];
478     queue[1] = queue[size];
479     queue[size--] = null; // Drop extra ref to prevent memory leak
480     if (size > 1)
481     fixDown(1);
482    
483     return result;
484     }
485    
486     /**
487     * Removes and returns the ith element from queue. (Recall that queue
488     * is one-based, so 1 <= i <= size.)
489 tim 1.2 *
490 dl 1.36 * Normally this method leaves the elements at positions from 1 up to i-1,
491     * inclusive, untouched. Under these circumstances, it returns null.
492     * Occasionally, in order to maintain the heap invariant, it must move
493     * the last element of the list to some index in the range [2, i-1],
494     * and move the element previously at position (i/2) to position i.
495     * Under these circumstances, this method returns the element that was
496     * previously at the end of the list and is now at some position between
497     * 2 and i-1 inclusive.
498 tim 1.2 */
499 dl 1.36 private E removeAt(int i) {
500     assert i > 0 && i <= size;
501 tim 1.2 modCount++;
502    
503 dl 1.36 E moved = (E) queue[size];
504     queue[i] = moved;
505 tim 1.2 queue[size--] = null; // Drop extra ref to prevent memory leak
506 dl 1.35 if (i <= size) {
507 tim 1.2 fixDown(i);
508 dl 1.36 if (queue[i] == moved) {
509     fixUp(i);
510     if (queue[i] != moved)
511     return moved;
512     }
513 dl 1.35 }
514 dl 1.36 return null;
515 tim 1.1 }
516    
517 tim 1.2 /**
518     * Establishes the heap invariant (described above) assuming the heap
519     * satisfies the invariant except possibly for the leaf-node indexed by k
520     * (which may have a nextExecutionTime less than its parent's).
521     *
522     * This method functions by "promoting" queue[k] up the hierarchy
523     * (by swapping it with its parent) repeatedly until queue[k]
524     * is greater than or equal to its parent.
525     */
526     private void fixUp(int k) {
527     if (comparator == null) {
528     while (k > 1) {
529     int j = k >> 1;
530 tim 1.16 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
531 tim 1.2 break;
532 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
533 tim 1.2 k = j;
534     }
535     } else {
536     while (k > 1) {
537 dl 1.35 int j = k >>> 1;
538 tim 1.16 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
539 tim 1.2 break;
540 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
541 tim 1.2 k = j;
542     }
543     }
544     }
545    
546     /**
547     * Establishes the heap invariant (described above) in the subtree
548     * rooted at k, which is assumed to satisfy the heap invariant except
549     * possibly for node k itself (which may be greater than its children).
550     *
551     * This method functions by "demoting" queue[k] down the hierarchy
552     * (by swapping it with its smaller child) repeatedly until queue[k]
553     * is less than or equal to its children.
554     */
555     private void fixDown(int k) {
556     int j;
557     if (comparator == null) {
558 dl 1.33 while ((j = k << 1) <= size && (j > 0)) {
559 dl 1.35 if (j<size &&
560     ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
561 tim 1.2 j++; // j indexes smallest kid
562 dl 1.35
563 tim 1.16 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
564 tim 1.2 break;
565 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
566 tim 1.2 k = j;
567     }
568     } else {
569 dl 1.33 while ((j = k << 1) <= size && (j > 0)) {
570 dl 1.35 if (j<size &&
571     comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
572 tim 1.2 j++; // j indexes smallest kid
573 tim 1.16 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
574 tim 1.2 break;
575 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
576 tim 1.2 k = j;
577     }
578     }
579 dl 1.36 }
580 dl 1.35
581 dl 1.36 /**
582     * Establishes the heap invariant (described above) in the entire tree,
583     * assuming nothing about the order of the elements prior to the call.
584     */
585     private void heapify() {
586     for (int i = size/2; i >= 1; i--)
587     fixDown(i);
588 tim 1.2 }
589    
590 dholmes 1.23 /**
591     * Returns the comparator used to order this collection, or <tt>null</tt>
592     * if this collection is sorted according to its elements natural ordering
593 tim 1.24 * (using <tt>Comparable</tt>).
594 dholmes 1.23 *
595     * @return the comparator used to order this collection, or <tt>null</tt>
596     * if this collection is sorted according to its elements natural ordering.
597     */
598 tim 1.16 public Comparator<? super E> comparator() {
599 tim 1.2 return comparator;
600     }
601 dl 1.5
602     /**
603     * Save the state of the instance to a stream (that
604     * is, serialize it).
605     *
606     * @serialData The length of the array backing the instance is
607     * emitted (int), followed by all of its elements (each an
608     * <tt>Object</tt>) in the proper order.
609 dl 1.7 * @param s the stream
610 dl 1.5 */
611 dl 1.22 private void writeObject(java.io.ObjectOutputStream s)
612 dl 1.5 throws java.io.IOException{
613 dl 1.7 // Write out element count, and any hidden stuff
614     s.defaultWriteObject();
615 dl 1.5
616     // Write out array length
617     s.writeInt(queue.length);
618    
619 dl 1.7 // Write out all elements in the proper order.
620 dl 1.39 for (int i=1; i<=size; i++)
621 dl 1.5 s.writeObject(queue[i]);
622     }
623    
624     /**
625     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
626     * deserialize it).
627 dl 1.7 * @param s the stream
628 dl 1.5 */
629 dl 1.22 private void readObject(java.io.ObjectInputStream s)
630 dl 1.5 throws java.io.IOException, ClassNotFoundException {
631 dl 1.7 // Read in size, and any hidden stuff
632     s.defaultReadObject();
633 dl 1.5
634     // Read in array length and allocate array
635     int arrayLength = s.readInt();
636 tim 1.16 queue = new Object[arrayLength];
637 dl 1.5
638 dl 1.7 // Read in all elements in the proper order.
639 dl 1.39 for (int i=1; i<=size; i++)
640 dl 1.37 queue[i] = (E) s.readObject();
641 dl 1.5 }
642    
643 tim 1.1 }