ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.49
Committed: Thu May 27 11:05:44 2004 UTC (19 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.48: +6 -1 lines
Log Message:
Override javadoc specs when overriding AbstractQueue implementations

File Contents

# User Rev Content
1 dl 1.38 /*
2     * %W% %E%
3     *
4 jsr166 1.48 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5 dl 1.38 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9 tim 1.1
10     /**
11 dl 1.41 * An unbounded priority {@linkplain Queue queue} based on a priority
12     * heap. This queue orders elements according to an order specified
13     * at construction time, which is specified either according to their
14     * <i>natural order</i> (see {@link Comparable}), or according to a
15     * {@link java.util.Comparator}, depending on which constructor is
16     * used. A priority queue does not permit <tt>null</tt> elements.
17 dl 1.42 * A priority queue relying on natural ordering also does not
18 dl 1.43 * permit insertion of non-comparable objects (doing so may result
19 dl 1.42 * in <tt>ClassCastException</tt>).
20 dl 1.40 *
21 dl 1.41 * <p>The <em>head</em> of this queue is the <em>least</em> element
22     * with respect to the specified ordering. If multiple elements are
23     * tied for least value, the head is one of those elements -- ties are
24 dl 1.42 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
25     * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26     * element at the head of the queue.
27 tim 1.14 *
28 dl 1.41 * <p>A priority queue is unbounded, but has an internal
29     * <i>capacity</i> governing the size of an array used to store the
30 dl 1.40 * elements on the queue. It is always at least as large as the queue
31     * size. As elements are added to a priority queue, its capacity
32     * grows automatically. The details of the growth policy are not
33     * specified.
34 tim 1.2 *
35 dl 1.41 * <p>This class implements all of the <em>optional</em> methods of
36     * the {@link Collection} and {@link Iterator} interfaces. The
37     * Iterator provided in method {@link #iterator()} is <em>not</em>
38 dl 1.29 * guaranteed to traverse the elements of the PriorityQueue in any
39     * particular order. If you need ordered traversal, consider using
40     * <tt>Arrays.sort(pq.toArray())</tt>.
41     *
42     * <p> <strong>Note that this implementation is not synchronized.</strong>
43     * Multiple threads should not access a <tt>PriorityQueue</tt>
44     * instance concurrently if any of the threads modifies the list
45     * structurally. Instead, use the thread-safe {@link
46 dholmes 1.34 * java.util.concurrent.PriorityBlockingQueue} class.
47 dl 1.29 *
48     *
49 dholmes 1.11 * <p>Implementation note: this implementation provides O(log(n)) time
50     * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
51     * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
52     * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
53     * constant time for the retrieval methods (<tt>peek</tt>,
54     * <tt>element</tt>, and <tt>size</tt>).
55 tim 1.2 *
56     * <p>This class is a member of the
57     * <a href="{@docRoot}/../guide/collections/index.html">
58     * Java Collections Framework</a>.
59 dl 1.7 * @since 1.5
60 dl 1.38 * @version %I%, %G%
61 dl 1.7 * @author Josh Bloch
62 dl 1.45 * @param <E> the type of elements held in this collection
63 tim 1.2 */
64     public class PriorityQueue<E> extends AbstractQueue<E>
65 dl 1.47 implements java.io.Serializable {
66 dholmes 1.11
67 dl 1.31 private static final long serialVersionUID = -7720805057305804111L;
68 dl 1.30
69 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
70 tim 1.1
71 tim 1.2 /**
72     * Priority queue represented as a balanced binary heap: the two children
73     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
74     * ordered by comparator, or by the elements' natural ordering, if
75 brian 1.6 * comparator is null: For each node n in the heap and each descendant d
76     * of n, n <= d.
77 tim 1.2 *
78 brian 1.6 * The element with the lowest value is in queue[1], assuming the queue is
79     * nonempty. (A one-based array is used in preference to the traditional
80     * zero-based array to simplify parent and child calculations.)
81 tim 1.2 *
82     * queue.length must be >= 2, even if size == 0.
83     */
84 tim 1.16 private transient Object[] queue;
85 tim 1.1
86 tim 1.2 /**
87     * The number of elements in the priority queue.
88     */
89     private int size = 0;
90 tim 1.1
91 tim 1.2 /**
92     * The comparator, or null if priority queue uses elements'
93     * natural ordering.
94     */
95 tim 1.16 private final Comparator<? super E> comparator;
96 tim 1.2
97     /**
98     * The number of times this priority queue has been
99     * <i>structurally modified</i>. See AbstractList for gory details.
100     */
101 dl 1.5 private transient int modCount = 0;
102 tim 1.2
103     /**
104 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
105 dl 1.7 * (11) that orders its elements according to their natural
106 tim 1.24 * ordering (using <tt>Comparable</tt>).
107 tim 1.2 */
108     public PriorityQueue() {
109 dholmes 1.11 this(DEFAULT_INITIAL_CAPACITY, null);
110 tim 1.1 }
111 tim 1.2
112     /**
113 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
114 dl 1.7 * that orders its elements according to their natural ordering
115 tim 1.24 * (using <tt>Comparable</tt>).
116 tim 1.2 *
117     * @param initialCapacity the initial capacity for this priority queue.
118 dholmes 1.23 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
119     * than 1
120 tim 1.2 */
121     public PriorityQueue(int initialCapacity) {
122     this(initialCapacity, null);
123 tim 1.1 }
124 tim 1.2
125     /**
126 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
127 tim 1.2 * that orders its elements according to the specified comparator.
128     *
129     * @param initialCapacity the initial capacity for this priority queue.
130     * @param comparator the comparator used to order this priority queue.
131 dholmes 1.11 * If <tt>null</tt> then the order depends on the elements' natural
132     * ordering.
133 dholmes 1.15 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
134     * than 1
135 tim 1.2 */
136 dholmes 1.23 public PriorityQueue(int initialCapacity,
137     Comparator<? super E> comparator) {
138 tim 1.2 if (initialCapacity < 1)
139 dholmes 1.15 throw new IllegalArgumentException();
140 tim 1.16 this.queue = new Object[initialCapacity + 1];
141 tim 1.2 this.comparator = comparator;
142 tim 1.1 }
143    
144 tim 1.2 /**
145 dl 1.22 * Common code to initialize underlying queue array across
146     * constructors below.
147     */
148     private void initializeArray(Collection<? extends E> c) {
149     int sz = c.size();
150     int initialCapacity = (int)Math.min((sz * 110L) / 100,
151     Integer.MAX_VALUE - 1);
152     if (initialCapacity < 1)
153     initialCapacity = 1;
154    
155     this.queue = new Object[initialCapacity + 1];
156     }
157    
158     /**
159     * Initially fill elements of the queue array under the
160     * knowledge that it is sorted or is another PQ, in which
161 dl 1.36 * case we can just place the elements in the order presented.
162 dl 1.22 */
163     private void fillFromSorted(Collection<? extends E> c) {
164     for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
165     queue[++size] = i.next();
166     }
167    
168     /**
169 dl 1.36 * Initially fill elements of the queue array that is not to our knowledge
170     * sorted, so we must rearrange the elements to guarantee the heap
171     * invariant.
172 dl 1.22 */
173     private void fillFromUnsorted(Collection<? extends E> c) {
174     for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
175 dl 1.36 queue[++size] = i.next();
176     heapify();
177 dl 1.22 }
178    
179     /**
180     * Creates a <tt>PriorityQueue</tt> containing the elements in the
181     * specified collection. The priority queue has an initial
182     * capacity of 110% of the size of the specified collection or 1
183     * if the collection is empty. If the specified collection is an
184 tim 1.25 * instance of a {@link java.util.SortedSet} or is another
185 dl 1.22 * <tt>PriorityQueue</tt>, the priority queue will be sorted
186     * according to the same comparator, or according to its elements'
187     * natural order if the collection is sorted according to its
188     * elements' natural order. Otherwise, the priority queue is
189     * ordered according to its elements' natural order.
190 tim 1.2 *
191 dholmes 1.15 * @param c the collection whose elements are to be placed
192 tim 1.2 * into this priority queue.
193     * @throws ClassCastException if elements of the specified collection
194     * cannot be compared to one another according to the priority
195     * queue's ordering.
196 dholmes 1.15 * @throws NullPointerException if <tt>c</tt> or any element within it
197     * is <tt>null</tt>
198 tim 1.2 */
199 tim 1.16 public PriorityQueue(Collection<? extends E> c) {
200 dl 1.22 initializeArray(c);
201 dl 1.27 if (c instanceof SortedSet) {
202 dl 1.46 SortedSet<? extends E> s = (SortedSet<? extends E>)c;
203 dl 1.22 comparator = (Comparator<? super E>)s.comparator();
204     fillFromSorted(s);
205 dl 1.27 } else if (c instanceof PriorityQueue) {
206 dl 1.22 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
207     comparator = (Comparator<? super E>)s.comparator();
208     fillFromSorted(s);
209 tim 1.26 } else {
210 tim 1.2 comparator = null;
211 dl 1.22 fillFromUnsorted(c);
212 tim 1.2 }
213 dl 1.22 }
214    
215     /**
216     * Creates a <tt>PriorityQueue</tt> containing the elements in the
217     * specified collection. The priority queue has an initial
218     * capacity of 110% of the size of the specified collection or 1
219     * if the collection is empty. This priority queue will be sorted
220     * according to the same comparator as the given collection, or
221     * according to its elements' natural order if the collection is
222     * sorted according to its elements' natural order.
223     *
224     * @param c the collection whose elements are to be placed
225     * into this priority queue.
226     * @throws ClassCastException if elements of the specified collection
227     * cannot be compared to one another according to the priority
228     * queue's ordering.
229     * @throws NullPointerException if <tt>c</tt> or any element within it
230     * is <tt>null</tt>
231     */
232     public PriorityQueue(PriorityQueue<? extends E> c) {
233     initializeArray(c);
234     comparator = (Comparator<? super E>)c.comparator();
235     fillFromSorted(c);
236     }
237 dholmes 1.18
238 dl 1.22 /**
239     * Creates a <tt>PriorityQueue</tt> containing the elements in the
240     * specified collection. The priority queue has an initial
241     * capacity of 110% of the size of the specified collection or 1
242     * if the collection is empty. This priority queue will be sorted
243     * according to the same comparator as the given collection, or
244     * according to its elements' natural order if the collection is
245     * sorted according to its elements' natural order.
246     *
247     * @param c the collection whose elements are to be placed
248     * into this priority queue.
249     * @throws ClassCastException if elements of the specified collection
250     * cannot be compared to one another according to the priority
251     * queue's ordering.
252     * @throws NullPointerException if <tt>c</tt> or any element within it
253     * is <tt>null</tt>
254     */
255     public PriorityQueue(SortedSet<? extends E> c) {
256     initializeArray(c);
257     comparator = (Comparator<? super E>)c.comparator();
258     fillFromSorted(c);
259 tim 1.1 }
260    
261 dl 1.22 /**
262     * Resize array, if necessary, to be able to hold given index
263     */
264     private void grow(int index) {
265     int newlen = queue.length;
266     if (index < newlen) // don't need to grow
267     return;
268     if (index == Integer.MAX_VALUE)
269     throw new OutOfMemoryError();
270     while (newlen <= index) {
271     if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
272     newlen = Integer.MAX_VALUE;
273     else
274     newlen <<= 2;
275     }
276     Object[] newQueue = new Object[newlen];
277     System.arraycopy(queue, 0, newQueue, 0, queue.length);
278     queue = newQueue;
279     }
280    
281 dl 1.36
282 tim 1.2 /**
283 dl 1.42 * Inserts the specified element into this priority queue.
284 tim 1.2 *
285 dholmes 1.11 * @return <tt>true</tt>
286     * @throws ClassCastException if the specified element cannot be compared
287     * with elements currently in the priority queue according
288     * to the priority queue's ordering.
289 dholmes 1.18 * @throws NullPointerException if the specified element is <tt>null</tt>.
290 tim 1.2 */
291 dholmes 1.18 public boolean offer(E o) {
292     if (o == null)
293 dholmes 1.11 throw new NullPointerException();
294     modCount++;
295     ++size;
296    
297     // Grow backing store if necessary
298 dl 1.22 if (size >= queue.length)
299     grow(size);
300 dholmes 1.11
301 dholmes 1.18 queue[size] = o;
302 dholmes 1.11 fixUp(size);
303     return true;
304     }
305    
306 dl 1.40 public E peek() {
307 tim 1.2 if (size == 0)
308     return null;
309 tim 1.16 return (E) queue[1];
310 tim 1.1 }
311    
312 dholmes 1.23 // Collection Methods - the first two override to update docs
313 dholmes 1.11
314     /**
315 dholmes 1.23 * Adds the specified element to this queue.
316     * @return <tt>true</tt> (as per the general contract of
317     * <tt>Collection.add</tt>).
318     *
319 dl 1.40 * @throws NullPointerException if the specified element is <tt>null</tt>.
320 dholmes 1.15 * @throws ClassCastException if the specified element cannot be compared
321     * with elements currently in the priority queue according
322     * to the priority queue's ordering.
323 dholmes 1.11 */
324 dholmes 1.18 public boolean add(E o) {
325 dl 1.41 return offer(o);
326 tim 1.14 }
327 dholmes 1.11
328 dl 1.49 /**
329     * Removes a single instance of the specified element from this
330     * collection, if it is present.
331     */
332 dl 1.12 public boolean remove(Object o) {
333 dholmes 1.11 if (o == null)
334 dholmes 1.15 return false;
335 tim 1.2
336     if (comparator == null) {
337     for (int i = 1; i <= size; i++) {
338 tim 1.16 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
339 dl 1.36 removeAt(i);
340 tim 1.2 return true;
341     }
342     }
343     } else {
344     for (int i = 1; i <= size; i++) {
345 tim 1.16 if (comparator.compare((E)queue[i], (E)o) == 0) {
346 dl 1.36 removeAt(i);
347 tim 1.2 return true;
348     }
349     }
350     }
351 tim 1.1 return false;
352     }
353 tim 1.2
354 dholmes 1.23 /**
355     * Returns an iterator over the elements in this queue. The iterator
356     * does not return the elements in any particular order.
357     *
358     * @return an iterator over the elements in this queue.
359     */
360 tim 1.2 public Iterator<E> iterator() {
361 dl 1.7 return new Itr();
362 tim 1.2 }
363    
364     private class Itr implements Iterator<E> {
365 dl 1.35
366 dl 1.7 /**
367     * Index (into queue array) of element to be returned by
368 tim 1.2 * subsequent call to next.
369 dl 1.7 */
370     private int cursor = 1;
371 tim 1.2
372 dl 1.7 /**
373 dl 1.36 * Index of element returned by most recent call to next,
374     * unless that element came from the forgetMeNot list.
375     * Reset to 0 if element is deleted by a call to remove.
376 dl 1.7 */
377     private int lastRet = 0;
378    
379     /**
380     * The modCount value that the iterator believes that the backing
381     * List should have. If this expectation is violated, the iterator
382     * has detected concurrent modification.
383     */
384     private int expectedModCount = modCount;
385 tim 1.2
386 dl 1.36 /**
387     * A list of elements that were moved from the unvisited portion of
388     * the heap into the visited portion as a result of "unlucky" element
389     * removals during the iteration. (Unlucky element removals are those
390     * that require a fixup instead of a fixdown.) We must visit all of
391     * the elements in this list to complete the iteration. We do this
392     * after we've completed the "normal" iteration.
393     *
394     * We expect that most iterations, even those involving removals,
395     * will not use need to store elements in this field.
396     */
397     private ArrayList<E> forgetMeNot = null;
398    
399     /**
400     * Element returned by the most recent call to next iff that
401     * element was drawn from the forgetMeNot list.
402     */
403     private Object lastRetElt = null;
404 dl 1.35
405 dl 1.7 public boolean hasNext() {
406 dl 1.36 return cursor <= size || forgetMeNot != null;
407 dl 1.7 }
408    
409     public E next() {
410 tim 1.2 checkForComodification();
411 dl 1.36 E result;
412     if (cursor <= size) {
413     result = (E) queue[cursor];
414     lastRet = cursor++;
415     }
416     else if (forgetMeNot == null)
417 dl 1.7 throw new NoSuchElementException();
418 dl 1.36 else {
419     int remaining = forgetMeNot.size();
420     result = forgetMeNot.remove(remaining - 1);
421     if (remaining == 1)
422     forgetMeNot = null;
423     lastRet = 0;
424     lastRetElt = result;
425     }
426 tim 1.2 return result;
427 dl 1.7 }
428 tim 1.2
429 dl 1.7 public void remove() {
430 tim 1.2 checkForComodification();
431    
432 dl 1.36 if (lastRet != 0) {
433     E moved = PriorityQueue.this.removeAt(lastRet);
434     lastRet = 0;
435     if (moved == null) {
436     cursor--;
437     } else {
438     if (forgetMeNot == null)
439 dl 1.37 forgetMeNot = new ArrayList<E>();
440 dl 1.36 forgetMeNot.add(moved);
441     }
442     } else if (lastRetElt != null) {
443     PriorityQueue.this.remove(lastRetElt);
444     lastRetElt = null;
445     } else {
446     throw new IllegalStateException();
447 dl 1.35 }
448    
449 tim 1.2 expectedModCount = modCount;
450 dl 1.7 }
451 tim 1.2
452 dl 1.7 final void checkForComodification() {
453     if (modCount != expectedModCount)
454     throw new ConcurrentModificationException();
455     }
456 tim 1.2 }
457    
458 tim 1.1 public int size() {
459 tim 1.2 return size;
460 tim 1.1 }
461 tim 1.2
462     /**
463 dl 1.49 * Removes all elements from the priority queue.
464     * The queue will be empty after this call returns.
465 tim 1.2 */
466     public void clear() {
467     modCount++;
468    
469     // Null out element references to prevent memory leak
470     for (int i=1; i<=size; i++)
471     queue[i] = null;
472    
473     size = 0;
474     }
475    
476 dl 1.40 public E poll() {
477 dl 1.36 if (size == 0)
478 dl 1.40 return null;
479 dl 1.36 modCount++;
480    
481     E result = (E) queue[1];
482     queue[1] = queue[size];
483     queue[size--] = null; // Drop extra ref to prevent memory leak
484     if (size > 1)
485     fixDown(1);
486    
487     return result;
488     }
489    
490     /**
491     * Removes and returns the ith element from queue. (Recall that queue
492     * is one-based, so 1 <= i <= size.)
493 tim 1.2 *
494 dl 1.36 * Normally this method leaves the elements at positions from 1 up to i-1,
495     * inclusive, untouched. Under these circumstances, it returns null.
496     * Occasionally, in order to maintain the heap invariant, it must move
497     * the last element of the list to some index in the range [2, i-1],
498     * and move the element previously at position (i/2) to position i.
499     * Under these circumstances, this method returns the element that was
500     * previously at the end of the list and is now at some position between
501     * 2 and i-1 inclusive.
502 tim 1.2 */
503 dl 1.36 private E removeAt(int i) {
504     assert i > 0 && i <= size;
505 tim 1.2 modCount++;
506    
507 dl 1.36 E moved = (E) queue[size];
508     queue[i] = moved;
509 tim 1.2 queue[size--] = null; // Drop extra ref to prevent memory leak
510 dl 1.35 if (i <= size) {
511 tim 1.2 fixDown(i);
512 dl 1.36 if (queue[i] == moved) {
513     fixUp(i);
514     if (queue[i] != moved)
515     return moved;
516     }
517 dl 1.35 }
518 dl 1.36 return null;
519 tim 1.1 }
520    
521 tim 1.2 /**
522     * Establishes the heap invariant (described above) assuming the heap
523     * satisfies the invariant except possibly for the leaf-node indexed by k
524     * (which may have a nextExecutionTime less than its parent's).
525     *
526     * This method functions by "promoting" queue[k] up the hierarchy
527     * (by swapping it with its parent) repeatedly until queue[k]
528     * is greater than or equal to its parent.
529     */
530     private void fixUp(int k) {
531     if (comparator == null) {
532     while (k > 1) {
533     int j = k >> 1;
534 tim 1.16 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
535 tim 1.2 break;
536 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
537 tim 1.2 k = j;
538     }
539     } else {
540     while (k > 1) {
541 dl 1.35 int j = k >>> 1;
542 tim 1.16 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
543 tim 1.2 break;
544 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
545 tim 1.2 k = j;
546     }
547     }
548     }
549    
550     /**
551     * Establishes the heap invariant (described above) in the subtree
552     * rooted at k, which is assumed to satisfy the heap invariant except
553     * possibly for node k itself (which may be greater than its children).
554     *
555     * This method functions by "demoting" queue[k] down the hierarchy
556     * (by swapping it with its smaller child) repeatedly until queue[k]
557     * is less than or equal to its children.
558     */
559     private void fixDown(int k) {
560     int j;
561     if (comparator == null) {
562 dl 1.33 while ((j = k << 1) <= size && (j > 0)) {
563 dl 1.35 if (j<size &&
564     ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
565 tim 1.2 j++; // j indexes smallest kid
566 dl 1.35
567 tim 1.16 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
568 tim 1.2 break;
569 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
570 tim 1.2 k = j;
571     }
572     } else {
573 dl 1.33 while ((j = k << 1) <= size && (j > 0)) {
574 dl 1.35 if (j<size &&
575     comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
576 tim 1.2 j++; // j indexes smallest kid
577 tim 1.16 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
578 tim 1.2 break;
579 tim 1.16 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
580 tim 1.2 k = j;
581     }
582     }
583 dl 1.36 }
584 dl 1.35
585 dl 1.36 /**
586     * Establishes the heap invariant (described above) in the entire tree,
587     * assuming nothing about the order of the elements prior to the call.
588     */
589     private void heapify() {
590     for (int i = size/2; i >= 1; i--)
591     fixDown(i);
592 tim 1.2 }
593    
594 dholmes 1.23 /**
595     * Returns the comparator used to order this collection, or <tt>null</tt>
596     * if this collection is sorted according to its elements natural ordering
597 tim 1.24 * (using <tt>Comparable</tt>).
598 dholmes 1.23 *
599     * @return the comparator used to order this collection, or <tt>null</tt>
600     * if this collection is sorted according to its elements natural ordering.
601     */
602 tim 1.16 public Comparator<? super E> comparator() {
603 tim 1.2 return comparator;
604     }
605 dl 1.5
606     /**
607     * Save the state of the instance to a stream (that
608     * is, serialize it).
609     *
610     * @serialData The length of the array backing the instance is
611     * emitted (int), followed by all of its elements (each an
612     * <tt>Object</tt>) in the proper order.
613 dl 1.7 * @param s the stream
614 dl 1.5 */
615 dl 1.22 private void writeObject(java.io.ObjectOutputStream s)
616 dl 1.5 throws java.io.IOException{
617 dl 1.7 // Write out element count, and any hidden stuff
618     s.defaultWriteObject();
619 dl 1.5
620     // Write out array length
621     s.writeInt(queue.length);
622    
623 dl 1.7 // Write out all elements in the proper order.
624 dl 1.39 for (int i=1; i<=size; i++)
625 dl 1.5 s.writeObject(queue[i]);
626     }
627    
628     /**
629     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
630     * deserialize it).
631 dl 1.7 * @param s the stream
632 dl 1.5 */
633 dl 1.22 private void readObject(java.io.ObjectInputStream s)
634 dl 1.5 throws java.io.IOException, ClassNotFoundException {
635 dl 1.7 // Read in size, and any hidden stuff
636     s.defaultReadObject();
637 dl 1.5
638     // Read in array length and allocate array
639     int arrayLength = s.readInt();
640 tim 1.16 queue = new Object[arrayLength];
641 dl 1.5
642 dl 1.7 // Read in all elements in the proper order.
643 dl 1.39 for (int i=1; i<=size; i++)
644 dl 1.37 queue[i] = (E) s.readObject();
645 dl 1.5 }
646    
647 tim 1.1 }