ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.55
Committed: Sun Nov 27 20:41:02 2005 UTC (18 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.54: +245 -255 lines
Log Message:
Performance improvements

File Contents

# User Rev Content
1 dl 1.38 /*
2 dl 1.52 * @(#)PriorityQueue.java 1.8 05/08/27
3 dl 1.38 *
4 dl 1.52 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 dl 1.38 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9 dl 1.52 import java.util.*; // for javadoc (till 6280605 is fixed)
10 tim 1.1
11     /**
12 dl 1.41 * An unbounded priority {@linkplain Queue queue} based on a priority
13 dl 1.52 * heap. The elements of the priority queue are ordered according to
14     * their {@linkplain Comparable natural ordering}, or by a {@link
15     * Comparator} provided at queue construction time, depending on which
16     * constructor is used. A priority queue does not permit
17     * <tt>null</tt> elements. A priority queue relying on natural
18     * ordering also does not permit insertion of non-comparable objects
19     * (doing so may result in <tt>ClassCastException</tt>).
20 dl 1.40 *
21 dl 1.41 * <p>The <em>head</em> of this queue is the <em>least</em> element
22     * with respect to the specified ordering. If multiple elements are
23     * tied for least value, the head is one of those elements -- ties are
24 dl 1.42 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
25     * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26     * element at the head of the queue.
27 tim 1.14 *
28 dl 1.41 * <p>A priority queue is unbounded, but has an internal
29     * <i>capacity</i> governing the size of an array used to store the
30 dl 1.40 * elements on the queue. It is always at least as large as the queue
31     * size. As elements are added to a priority queue, its capacity
32     * grows automatically. The details of the growth policy are not
33     * specified.
34 tim 1.2 *
35 dl 1.50 * <p>This class and its iterator implement all of the
36     * <em>optional</em> methods of the {@link Collection} and {@link
37 dl 1.52 * Iterator} interfaces. The Iterator provided in method {@link
38     * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39     * the priority queue in any particular order. If you need ordered
40     * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41 dl 1.29 *
42     * <p> <strong>Note that this implementation is not synchronized.</strong>
43     * Multiple threads should not access a <tt>PriorityQueue</tt>
44     * instance concurrently if any of the threads modifies the list
45     * structurally. Instead, use the thread-safe {@link
46 dholmes 1.34 * java.util.concurrent.PriorityBlockingQueue} class.
47 dl 1.29 *
48 dholmes 1.11 * <p>Implementation note: this implementation provides O(log(n)) time
49     * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50     * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51     * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52     * constant time for the retrieval methods (<tt>peek</tt>,
53     * <tt>element</tt>, and <tt>size</tt>).
54 tim 1.2 *
55     * <p>This class is a member of the
56     * <a href="{@docRoot}/../guide/collections/index.html">
57     * Java Collections Framework</a>.
58 dl 1.7 * @since 1.5
59 dl 1.52 * @version 1.8, 08/27/05
60 dl 1.7 * @author Josh Bloch
61 dl 1.45 * @param <E> the type of elements held in this collection
62 tim 1.2 */
63     public class PriorityQueue<E> extends AbstractQueue<E>
64 dl 1.47 implements java.io.Serializable {
65 dholmes 1.11
66 dl 1.31 private static final long serialVersionUID = -7720805057305804111L;
67 dl 1.30
68 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
69 tim 1.1
70 tim 1.2 /**
71 dl 1.55 * Priority queue represented as a balanced binary heap: the two
72     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
73     * priority queue is ordered by comparator, or by the elements'
74     * natural ordering, if comparator is null: For each node n in the
75     * heap and each descendant d of n, n <= d. The element with the
76     * lowest value is in queue[0], assuming the queue is nonempty.
77 tim 1.2 */
78 tim 1.16 private transient Object[] queue;
79 tim 1.1
80 tim 1.2 /**
81     * The number of elements in the priority queue.
82     */
83     private int size = 0;
84 tim 1.1
85 tim 1.2 /**
86     * The comparator, or null if priority queue uses elements'
87     * natural ordering.
88     */
89 tim 1.16 private final Comparator<? super E> comparator;
90 tim 1.2
91     /**
92     * The number of times this priority queue has been
93     * <i>structurally modified</i>. See AbstractList for gory details.
94     */
95 dl 1.5 private transient int modCount = 0;
96 tim 1.2
97     /**
98 dl 1.52 * Creates a <tt>PriorityQueue</tt> with the default initial
99     * capacity (11) that orders its elements according to their
100     * {@linkplain Comparable natural ordering}.
101 tim 1.2 */
102     public PriorityQueue() {
103 dholmes 1.11 this(DEFAULT_INITIAL_CAPACITY, null);
104 tim 1.1 }
105 tim 1.2
106     /**
107 dl 1.52 * Creates a <tt>PriorityQueue</tt> with the specified initial
108     * capacity that orders its elements according to their
109     * {@linkplain Comparable natural ordering}.
110 tim 1.2 *
111 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
112 dholmes 1.23 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
113     * than 1
114 tim 1.2 */
115     public PriorityQueue(int initialCapacity) {
116     this(initialCapacity, null);
117 tim 1.1 }
118 tim 1.2
119     /**
120 dholmes 1.21 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
121 tim 1.2 * that orders its elements according to the specified comparator.
122     *
123 dl 1.52 * @param initialCapacity the initial capacity for this priority queue
124     * @param comparator the comparator that will be used to order
125     * this priority queue. If <tt>null</tt>, the <i>natural
126     * ordering</i> of the elements will be used.
127     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
128     * less than 1
129 tim 1.2 */
130 dl 1.52 public PriorityQueue(int initialCapacity,
131 dholmes 1.23 Comparator<? super E> comparator) {
132 dl 1.55 // Note: This restriction of at least one is not actually needed,
133     // but continues for 1.5 compatibility
134 tim 1.2 if (initialCapacity < 1)
135 dholmes 1.15 throw new IllegalArgumentException();
136 dl 1.55 this.queue = new Object[initialCapacity];
137 tim 1.2 this.comparator = comparator;
138 tim 1.1 }
139 dl 1.55
140 dl 1.22 /**
141     * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 dl 1.55 * specified collection. If the specified collection is an
143 tim 1.25 * instance of a {@link java.util.SortedSet} or is another
144 dl 1.52 * <tt>PriorityQueue</tt>, the priority queue will be ordered
145     * according to the same ordering. Otherwise, this priority queue
146     * will be ordered according to the natural ordering of its elements.
147 tim 1.2 *
148 dl 1.52 * @param c the collection whose elements are to be placed
149     * into this priority queue
150 tim 1.2 * @throws ClassCastException if elements of the specified collection
151     * cannot be compared to one another according to the priority
152 dl 1.52 * queue's ordering
153     * @throws NullPointerException if the specified collection or any
154     * of its elements are null
155 tim 1.2 */
156 tim 1.16 public PriorityQueue(Collection<? extends E> c) {
157 dl 1.55 initFromCollection(c);
158     if (c instanceof SortedSet)
159     comparator = (Comparator<? super E>)
160     ((SortedSet<? extends E>)c).comparator();
161     else if (c instanceof PriorityQueue)
162     comparator = (Comparator<? super E>)
163     ((PriorityQueue<? extends E>)c).comparator();
164     else {
165 tim 1.2 comparator = null;
166 dl 1.55 heapify();
167 tim 1.2 }
168 dl 1.22 }
169    
170     /**
171     * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 dl 1.55 * specified priority queue. This priority queue will be
173 dl 1.52 * ordered according to the same ordering as the given priority
174     * queue.
175     *
176     * @param c the priority queue whose elements are to be placed
177     * into this priority queue
178     * @throws ClassCastException if elements of <tt>c</tt> cannot be
179     * compared to one another according to <tt>c</tt>'s
180     * ordering
181     * @throws NullPointerException if the specified priority queue or any
182     * of its elements are null
183 dl 1.22 */
184     public PriorityQueue(PriorityQueue<? extends E> c) {
185     comparator = (Comparator<? super E>)c.comparator();
186 dl 1.55 initFromCollection(c);
187 dl 1.22 }
188 dholmes 1.18
189 dl 1.22 /**
190     * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 dl 1.55 * specified sorted set. This priority queue will be ordered
192 dl 1.52 * according to the same ordering as the given sorted set.
193     *
194     * @param c the sorted set whose elements are to be placed
195     * into this priority queue.
196     * @throws ClassCastException if elements of the specified sorted
197     * set cannot be compared to one another according to the
198     * sorted set's ordering
199     * @throws NullPointerException if the specified sorted set or any
200     * of its elements are null
201 dl 1.22 */
202     public PriorityQueue(SortedSet<? extends E> c) {
203     comparator = (Comparator<? super E>)c.comparator();
204 dl 1.55 initFromCollection(c);
205 tim 1.1 }
206    
207 dl 1.22 /**
208 dl 1.55 * Initialize queue array with elements from the given Collection.
209     * @param c the collection
210 dl 1.22 */
211 dl 1.55 private void initFromCollection(Collection<? extends E> c) {
212     Object[] a = c.toArray();
213     // If c.toArray incorrectly doesn't return Object[], copy it.
214     if (a.getClass() != Object[].class)
215     a = Arrays.copyOf(a, a.length, Object[].class);
216     queue = a;
217     size = a.length;
218     }
219    
220     /**
221     * Increases the capacity of the array.
222     *
223     * @param minCapacity the desired minimum capacity
224     */
225     private void grow(int minCapacity) {
226     if (minCapacity < 0) // overflow
227 dl 1.22 throw new OutOfMemoryError();
228 dl 1.55 int oldCapacity = queue.length;
229     // Double size if small; else grow by 50%
230     int newCapacity = ((oldCapacity < 64)?
231     ((oldCapacity + 1) * 2):
232     ((oldCapacity * 3) / 2));
233     if (newCapacity < minCapacity)
234     newCapacity = minCapacity;
235     queue = Arrays.copyOf(queue, newCapacity);
236 dl 1.22 }
237 dl 1.36
238 tim 1.2 /**
239 dl 1.42 * Inserts the specified element into this priority queue.
240 tim 1.2 *
241 dl 1.52 * @return <tt>true</tt> (as specified by {@link Collection#add})
242     * @throws ClassCastException if the specified element cannot be
243     * compared with elements currently in this priority queue
244     * according to the priority queue's ordering
245     * @throws NullPointerException if the specified element is null
246 tim 1.2 */
247 dl 1.52 public boolean add(E e) {
248     return offer(e);
249     }
250    
251     /**
252     * Inserts the specified element into this priority queue.
253     *
254     * @return <tt>true</tt> (as specified by {@link Queue#offer})
255     * @throws ClassCastException if the specified element cannot be
256     * compared with elements currently in this priority queue
257     * according to the priority queue's ordering
258     * @throws NullPointerException if the specified element is null
259     */
260     public boolean offer(E e) {
261     if (e == null)
262 dholmes 1.11 throw new NullPointerException();
263     modCount++;
264 dl 1.55 int i = size;
265     if (i >= queue.length)
266     grow(i + 1);
267     size = i + 1;
268     if (i == 0)
269     queue[0] = e;
270     else
271     siftUp(i, e);
272 dholmes 1.11 return true;
273     }
274    
275 dl 1.40 public E peek() {
276 tim 1.2 if (size == 0)
277     return null;
278 dl 1.55 return (E) queue[0];
279 tim 1.1 }
280    
281 dl 1.52 private int indexOf(Object o) {
282 dl 1.55 if (o != null) {
283     for (int i = 0; i < size; i++)
284     if (o.equals(queue[i]))
285     return i;
286     }
287 dl 1.52 return -1;
288     }
289    
290     /**
291     * Removes a single instance of the specified element from this queue,
292     * if it is present. More formally, removes an element <tt>e</tt> such
293     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
294     * elements. Returns true if this queue contained the specified element
295     * (or equivalently, if this queue changed as a result of the call).
296     *
297     * @param o element to be removed from this queue, if present
298     * @return <tt>true</tt> if this queue changed as a result of the call
299     */
300     public boolean remove(Object o) {
301     int i = indexOf(o);
302     if (i == -1)
303     return false;
304     else {
305     removeAt(i);
306     return true;
307     }
308     }
309 dholmes 1.11
310 dl 1.55 /**
311     * Version of remove using reference equality, not equals.
312     * Needed by iterator.remove
313     *
314     * @param o element to be removed from this queue, if present
315     * @return <tt>true</tt> if removed.
316     */
317     boolean removeEq(Object o) {
318     for (int i = 0; i < size; i++) {
319     if (o == queue[i]) {
320     removeAt(i);
321     return true;
322     }
323     }
324     return false;
325     }
326    
327 dholmes 1.11 /**
328 dl 1.52 * Returns <tt>true</tt> if this queue contains the specified element.
329     * More formally, returns <tt>true</tt> if and only if this queue contains
330     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
331 dholmes 1.23 *
332 dl 1.52 * @param o object to be checked for containment in this queue
333     * @return <tt>true</tt> if this queue contains the specified element
334 dholmes 1.11 */
335 dl 1.52 public boolean contains(Object o) {
336     return indexOf(o) != -1;
337 tim 1.14 }
338 dholmes 1.11
339 dl 1.49 /**
340 dl 1.52 * Returns an array containing all of the elements in this queue,
341     * The elements are in no particular order.
342     *
343     * <p>The returned array will be "safe" in that no references to it are
344     * maintained by this list. (In other words, this method must allocate
345     * a new array). The caller is thus free to modify the returned array.
346     *
347     * @return an array containing all of the elements in this queue.
348 dl 1.49 */
349 dl 1.52 public Object[] toArray() {
350 dl 1.55 return Arrays.copyOf(queue, size);
351 dl 1.52 }
352 tim 1.2
353 dl 1.52 /**
354     * Returns an array containing all of the elements in this queue.
355     * The elements are in no particular order. The runtime type of
356     * the returned array is that of the specified array. If the queue
357     * fits in the specified array, it is returned therein.
358     * Otherwise, a new array is allocated with the runtime type of
359     * the specified array and the size of this queue.
360     *
361     * <p>If the queue fits in the specified array with room to spare
362     * (i.e., the array has more elements than the queue), the element in
363     * the array immediately following the end of the collection is set to
364     * <tt>null</tt>. (This is useful in determining the length of the
365     * queue <i>only</i> if the caller knows that the queue does not contain
366     * any null elements.)
367     *
368     * @param a the array into which the elements of the queue are to
369     * be stored, if it is big enough; otherwise, a new array of the
370     * same runtime type is allocated for this purpose.
371     * @return an array containing the elements of the queue
372     * @throws ArrayStoreException if the runtime type of the specified array
373     * is not a supertype of the runtime type of every element in
374     * this queue
375     * @throws NullPointerException if the specified array is null
376     */
377     public <T> T[] toArray(T[] a) {
378     if (a.length < size)
379     // Make a new array of a's runtime type, but my contents:
380 dl 1.55 return (T[]) Arrays.copyOf(queue, size, a.getClass());
381     System.arraycopy(queue, 0, a, 0, size);
382 dl 1.52 if (a.length > size)
383     a[size] = null;
384     return a;
385 tim 1.1 }
386 tim 1.2
387 dholmes 1.23 /**
388     * Returns an iterator over the elements in this queue. The iterator
389     * does not return the elements in any particular order.
390     *
391 dl 1.52 * @return an iterator over the elements in this queue
392 dholmes 1.23 */
393 tim 1.2 public Iterator<E> iterator() {
394 dl 1.7 return new Itr();
395 tim 1.2 }
396    
397 dl 1.55 private final class Itr implements Iterator<E> {
398 dl 1.7 /**
399     * Index (into queue array) of element to be returned by
400 tim 1.2 * subsequent call to next.
401 dl 1.7 */
402 dl 1.55 private int cursor = 0;
403 tim 1.2
404 dl 1.7 /**
405 dl 1.36 * Index of element returned by most recent call to next,
406     * unless that element came from the forgetMeNot list.
407 dl 1.55 * Set to -1 if element is deleted by a call to remove.
408 dl 1.7 */
409 dl 1.55 private int lastRet = -1;
410 dl 1.7
411     /**
412 dl 1.55 * A queue of elements that were moved from the unvisited portion of
413 dl 1.36 * the heap into the visited portion as a result of "unlucky" element
414     * removals during the iteration. (Unlucky element removals are those
415 dl 1.55 * that require a siftup instead of a siftdown.) We must visit all of
416 dl 1.36 * the elements in this list to complete the iteration. We do this
417     * after we've completed the "normal" iteration.
418     *
419     * We expect that most iterations, even those involving removals,
420     * will not use need to store elements in this field.
421     */
422 dl 1.55 private ArrayDeque<E> forgetMeNot = null;
423 dl 1.36
424     /**
425     * Element returned by the most recent call to next iff that
426     * element was drawn from the forgetMeNot list.
427     */
428 dl 1.55 private E lastRetElt = null;
429    
430     /**
431     * The modCount value that the iterator believes that the backing
432     * List should have. If this expectation is violated, the iterator
433     * has detected concurrent modification.
434     */
435     private int expectedModCount = modCount;
436 dl 1.35
437 dl 1.7 public boolean hasNext() {
438 dl 1.55 return cursor < size ||
439     (forgetMeNot != null && !forgetMeNot.isEmpty());
440 dl 1.7 }
441    
442     public E next() {
443 dl 1.55 if (expectedModCount != modCount)
444     throw new ConcurrentModificationException();
445     if (cursor < size)
446     return (E) queue[lastRet = cursor++];
447     if (forgetMeNot != null) {
448     lastRet = -1;
449     lastRetElt = forgetMeNot.poll();
450     if (lastRetElt != null)
451     return lastRetElt;
452 dl 1.36 }
453 dl 1.55 throw new NoSuchElementException();
454 dl 1.7 }
455 tim 1.2
456 dl 1.7 public void remove() {
457 dl 1.55 if (expectedModCount != modCount)
458     throw new ConcurrentModificationException();
459     if (lastRet == -1 && lastRetElt == null)
460     throw new IllegalStateException();
461     if (lastRet != -1) {
462 dl 1.36 E moved = PriorityQueue.this.removeAt(lastRet);
463 dl 1.55 lastRet = -1;
464     if (moved == null)
465 dl 1.36 cursor--;
466 dl 1.55 else {
467 dl 1.36 if (forgetMeNot == null)
468 dl 1.55 forgetMeNot = new ArrayDeque<E>();
469 dl 1.36 forgetMeNot.add(moved);
470 dl 1.55 }
471     } else {
472     PriorityQueue.this.removeEq(lastRetElt);
473 dl 1.36 lastRetElt = null;
474 dl 1.55 }
475 tim 1.2 expectedModCount = modCount;
476 dl 1.7 }
477 tim 1.2
478     }
479    
480 tim 1.1 public int size() {
481 tim 1.2 return size;
482 tim 1.1 }
483 tim 1.2
484     /**
485 dl 1.52 * Removes all of the elements from this priority queue.
486 dl 1.49 * The queue will be empty after this call returns.
487 tim 1.2 */
488     public void clear() {
489     modCount++;
490 dl 1.55 for (int i = 0; i < size; i++)
491 tim 1.2 queue[i] = null;
492     size = 0;
493     }
494    
495 dl 1.40 public E poll() {
496 dl 1.36 if (size == 0)
497 dl 1.40 return null;
498 dl 1.55 int s = --size;
499 dl 1.36 modCount++;
500 dl 1.55 E result = (E)queue[0];
501     E x = (E)queue[s];
502     queue[s] = null;
503     if (s != 0)
504     siftDown(0, x);
505 dl 1.36 return result;
506     }
507    
508     /**
509 dl 1.55 * Removes the ith element from queue.
510 tim 1.2 *
511 dl 1.55 * Normally this method leaves the elements at up to i-1,
512     * inclusive, untouched. Under these circumstances, it returns
513     * null. Occasionally, in order to maintain the heap invariant,
514     * it must swap a later element of the list with one earlier than
515     * i. Under these circumstances, this method returns the element
516     * that was previously at the end of the list and is now at some
517     * position before i. This fact is used by iterator.remove so as to
518     * avoid missing traverseing elements.
519 tim 1.2 */
520 dl 1.52 private E removeAt(int i) {
521 dl 1.55 assert i >= 0 && i < size;
522 tim 1.2 modCount++;
523 dl 1.55 int s = --size;
524     if (s == i) // removed last element
525     queue[i] = null;
526     else {
527     E moved = (E) queue[s];
528     queue[s] = null;
529     siftDown(i, moved);
530 dl 1.36 if (queue[i] == moved) {
531 dl 1.55 siftUp(i, moved);
532 dl 1.36 if (queue[i] != moved)
533     return moved;
534     }
535 dl 1.35 }
536 dl 1.36 return null;
537 tim 1.1 }
538    
539 tim 1.2 /**
540 dl 1.55 * Inserts item x at position k, maintaining heap invariant by
541     * promoting x up the tree until it is greater than or equal to
542     * its parent, or is the root.
543     *
544     * To simplify and speed up coercions and comparisons. the
545     * Comparable and Comparator versions are separated into different
546     * methods that are otherwise identical. (Similarly for siftDown.)
547     *
548     * @param k the position to fill
549     * @param x the item to insert
550     */
551     private void siftUp(int k, E x) {
552     if (comparator != null)
553     siftUpUsingComparator(k, x);
554     else
555     siftUpComparable(k, x);
556     }
557    
558     private void siftUpComparable(int k, E x) {
559     Comparable<? super E> key = (Comparable<? super E>) x;
560     while (k > 0) {
561     int parent = (k - 1) >>> 1;
562     Object e = queue[parent];
563     if (key.compareTo((E)e) >= 0)
564     break;
565     queue[k] = e;
566     k = parent;
567     }
568     queue[k] = key;
569     }
570    
571     private void siftUpUsingComparator(int k, E x) {
572     while (k > 0) {
573     int parent = (k - 1) >>> 1;
574     Object e = queue[parent];
575     if (comparator.compare(x, (E)e) >= 0)
576     break;
577     queue[k] = e;
578     k = parent;
579     }
580     queue[k] = x;
581     }
582    
583     /**
584     * Inserts item x at position k, maintaining heap invariant by
585     * demoting x down the tree repeatedly until it is less than or
586     * equal to its children or is a leaf.
587     *
588     * @param k the position to fill
589     * @param x the item to insert
590     */
591     private void siftDown(int k, E x) {
592     if (comparator != null)
593     siftDownUsingComparator(k, x);
594     else
595     siftDownComparable(k, x);
596     }
597    
598     private void siftDownComparable(int k, E x) {
599     Comparable<? super E> key = (Comparable<? super E>)x;
600     int half = size >>> 1; // loop while a non-leaf
601     while (k < half) {
602     int child = (k << 1) + 1; // assume left child is least
603     Object c = queue[child];
604     int right = child + 1;
605     if (right < size &&
606     ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
607     c = queue[child = right];
608     if (key.compareTo((E)c) <= 0)
609     break;
610     queue[k] = c;
611     k = child;
612     }
613     queue[k] = key;
614     }
615    
616     private void siftDownUsingComparator(int k, E x) {
617     int half = size >>> 1;
618     while (k < half) {
619     int child = (k << 1) + 1;
620     Object c = queue[child];
621     int right = child + 1;
622     if (right < size &&
623     comparator.compare((E)c, (E)queue[right]) > 0)
624     c = queue[child = right];
625     if (comparator.compare(x, (E)c) <= 0)
626     break;
627     queue[k] = c;
628     k = child;
629 tim 1.2 }
630 dl 1.55 queue[k] = x;
631 dl 1.36 }
632 dl 1.35
633 dl 1.36 /**
634     * Establishes the heap invariant (described above) in the entire tree,
635     * assuming nothing about the order of the elements prior to the call.
636     */
637     private void heapify() {
638 dl 1.55 for (int i = (size >>> 1) - 1; i >= 0; i--)
639     siftDown(i, (E)queue[i]);
640 tim 1.2 }
641    
642 dholmes 1.23 /**
643 dl 1.52 * Returns the comparator used to order the elements in this
644     * queue, or <tt>null</tt> if this queue is sorted according to
645     * the {@linkplain Comparable natural ordering} of its elements.
646     *
647     * @return the comparator used to order this queue, or
648     * <tt>null</tt> if this queue is sorted according to the
649     * natural ordering of its elements.
650 dholmes 1.23 */
651 tim 1.16 public Comparator<? super E> comparator() {
652 tim 1.2 return comparator;
653     }
654 dl 1.5
655     /**
656     * Save the state of the instance to a stream (that
657     * is, serialize it).
658     *
659     * @serialData The length of the array backing the instance is
660     * emitted (int), followed by all of its elements (each an
661     * <tt>Object</tt>) in the proper order.
662 dl 1.7 * @param s the stream
663 dl 1.5 */
664 dl 1.22 private void writeObject(java.io.ObjectOutputStream s)
665 dl 1.5 throws java.io.IOException{
666 dl 1.7 // Write out element count, and any hidden stuff
667     s.defaultWriteObject();
668 dl 1.5
669     // Write out array length
670 dl 1.55 // For compatibility with 1.5 version, must be at least 2.
671     s.writeInt(Math.max(2, queue.length));
672 dl 1.5
673 dl 1.7 // Write out all elements in the proper order.
674 dl 1.55 for (int i=0; i<size; i++)
675 dl 1.5 s.writeObject(queue[i]);
676     }
677    
678     /**
679 dl 1.52 * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
680     * (that is, deserialize it).
681 dl 1.7 * @param s the stream
682 dl 1.5 */
683 dl 1.22 private void readObject(java.io.ObjectInputStream s)
684 dl 1.5 throws java.io.IOException, ClassNotFoundException {
685 dl 1.7 // Read in size, and any hidden stuff
686     s.defaultReadObject();
687 dl 1.5
688     // Read in array length and allocate array
689     int arrayLength = s.readInt();
690 tim 1.16 queue = new Object[arrayLength];
691 dl 1.5
692 dl 1.7 // Read in all elements in the proper order.
693 dl 1.55 for (int i=0; i<size; i++)
694 dl 1.37 queue[i] = (E) s.readObject();
695 dl 1.5 }
696    
697 tim 1.1 }