ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.7
Committed: Tue Jun 24 14:34:30 2003 UTC (20 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.6: +78 -69 lines
Log Message:
Added missing javadoc tags; minor reformatting

File Contents

# User Rev Content
1 tim 1.2 package java.util;
2 tim 1.1
3     /**
4 tim 1.2 * An unbounded priority queue based on a priority heap. This queue orders
5 brian 1.6 * elements according to an order specified at construction time, which is
6     * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
7 tim 1.2 * either according to their <i>natural order</i> (see {@link Comparable}), or
8     * according to a {@link Comparator}, depending on which constructor is used.
9     * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10     * minimal element with respect to the specified ordering. If multiple
11 brian 1.6 * elements are tied for least value, no guarantees are made as to
12     * which of these elements is returned.
13 tim 1.2 *
14 dl 1.7 * <p>A priority queue has a <i>capacity</i>. The capacity is the
15     * size of the array used internally to store the elements on the
16     * queue. It is always at least as large as the queue size. As
17     * elements are added to a priority queue, its capacity grows
18     * automatically. The details of the growth policy are not specified.
19 tim 1.2 *
20 dl 1.7 *<p>Implementation note: this implementation provides O(log(n)) time
21     *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
22     *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
23     *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
24     *constant time for the retrieval methods (<tt>peek</tt>,
25     *<tt>element</tt>, and <tt>size</tt>).
26 tim 1.2 *
27     * <p>This class is a member of the
28     * <a href="{@docRoot}/../guide/collections/index.html">
29     * Java Collections Framework</a>.
30 dl 1.7 * @since 1.5
31     * @author Josh Bloch
32 tim 1.2 */
33     public class PriorityQueue<E> extends AbstractQueue<E>
34 dl 1.7 implements Queue<E> {
35 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
36 tim 1.1
37 tim 1.2 /**
38     * Priority queue represented as a balanced binary heap: the two children
39     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
40     * ordered by comparator, or by the elements' natural ordering, if
41 brian 1.6 * comparator is null: For each node n in the heap and each descendant d
42     * of n, n <= d.
43 tim 1.2 *
44 brian 1.6 * The element with the lowest value is in queue[1], assuming the queue is
45     * nonempty. (A one-based array is used in preference to the traditional
46     * zero-based array to simplify parent and child calculations.)
47 tim 1.2 *
48     * queue.length must be >= 2, even if size == 0.
49     */
50 dl 1.5 private transient E[] queue;
51 tim 1.1
52 tim 1.2 /**
53     * The number of elements in the priority queue.
54     */
55     private int size = 0;
56 tim 1.1
57 tim 1.2 /**
58     * The comparator, or null if priority queue uses elements'
59     * natural ordering.
60     */
61     private final Comparator<E> comparator;
62    
63     /**
64     * The number of times this priority queue has been
65     * <i>structurally modified</i>. See AbstractList for gory details.
66     */
67 dl 1.5 private transient int modCount = 0;
68 tim 1.2
69     /**
70 dl 1.7 * Create a new priority queue with the default initial capacity
71     * (11) that orders its elements according to their natural
72     * ordering (using <tt>Comparable</tt>.)
73 tim 1.2 */
74     public PriorityQueue() {
75     this(DEFAULT_INITIAL_CAPACITY);
76 tim 1.1 }
77 tim 1.2
78     /**
79     * Create a new priority queue with the specified initial capacity
80 dl 1.7 * that orders its elements according to their natural ordering
81     * (using <tt>Comparable</tt>.)
82 tim 1.2 *
83     * @param initialCapacity the initial capacity for this priority queue.
84     */
85     public PriorityQueue(int initialCapacity) {
86     this(initialCapacity, null);
87 tim 1.1 }
88 tim 1.2
89     /**
90     * Create a new priority queue with the specified initial capacity (11)
91     * that orders its elements according to the specified comparator.
92     *
93     * @param initialCapacity the initial capacity for this priority queue.
94     * @param comparator the comparator used to order this priority queue.
95     */
96     public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
97     if (initialCapacity < 1)
98     initialCapacity = 1;
99     queue = new E[initialCapacity + 1];
100     this.comparator = comparator;
101 tim 1.1 }
102    
103 tim 1.2 /**
104     * Create a new priority queue containing the elements in the specified
105     * collection. The priority queue has an initial capacity of 110% of the
106     * size of the specified collection. If the specified collection
107     * implements the {@link Sorted} interface, the priority queue will be
108     * sorted according to the same comparator, or according to its elements'
109     * natural order if the collection is sorted according to its elements'
110 brian 1.6 * natural order. If the specified collection does not implement
111     * <tt>Sorted</tt>, the priority queue is ordered according to
112 tim 1.2 * its elements' natural order.
113     *
114     * @param initialElements the collection whose elements are to be placed
115     * into this priority queue.
116     * @throws ClassCastException if elements of the specified collection
117     * cannot be compared to one another according to the priority
118     * queue's ordering.
119     * @throws NullPointerException if the specified collection or an
120     * element of the specified collection is <tt>null</tt>.
121     */
122     public PriorityQueue(Collection<E> initialElements) {
123     int sz = initialElements.size();
124     int initialCapacity = (int)Math.min((sz * 110L) / 100,
125     Integer.MAX_VALUE - 1);
126     if (initialCapacity < 1)
127     initialCapacity = 1;
128     queue = new E[initialCapacity + 1];
129    
130 dl 1.5 /* Commented out to compile with generics compiler
131    
132 tim 1.2 if (initialElements instanceof Sorted) {
133     comparator = ((Sorted)initialElements).comparator();
134     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
135     queue[++size] = i.next();
136     } else {
137 dl 1.5 */
138     {
139 tim 1.2 comparator = null;
140     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
141     add(i.next());
142     }
143 tim 1.1 }
144    
145 tim 1.2 // Queue Methods
146    
147     /**
148 dl 1.7 * Remove and return the minimal element from this priority queue
149     * if it contains one or more elements, otherwise return
150     * <tt>null</tt>. The term <i>minimal</i> is defined according to
151     * this priority queue's order.
152 tim 1.2 *
153     * @return the minimal element from this priority queue if it contains
154     * one or more elements, otherwise <tt>null</tt>.
155     */
156 tim 1.1 public E poll() {
157 tim 1.2 if (size == 0)
158     return null;
159     return remove(1);
160 tim 1.1 }
161 tim 1.2
162     /**
163 dl 1.7 * Return, but do not remove, the minimal element from the
164     * priority queue, or return <tt>null</tt> if the queue is empty.
165     * The term <i>minimal</i> is defined according to this priority
166     * queue's order. This method returns the same object reference
167     * that would be returned by by the <tt>poll</tt> method. The two
168     * methods differ in that this method does not remove the element
169     * from the priority queue.
170 tim 1.2 *
171     * @return the minimal element from this priority queue if it contains
172     * one or more elements, otherwise <tt>null</tt>.
173     */
174 tim 1.1 public E peek() {
175 tim 1.2 return queue[1];
176 tim 1.1 }
177    
178 tim 1.2 // Collection Methods
179    
180     /**
181     * Removes a single instance of the specified element from this priority
182     * queue, if it is present. Returns true if this collection contained the
183     * specified element (or equivalently, if this collection changed as a
184     * result of the call).
185     *
186 dl 1.7 * @param element the element to be removed from this collection,
187     * if present.
188 tim 1.2 * @return <tt>true</tt> if this collection changed as a result of the
189     * call
190     * @throws ClassCastException if the specified element cannot be compared
191 dl 1.7 * with elements currently in the priority queue according
192 tim 1.2 * to the priority queue's ordering.
193     * @throws NullPointerException if the specified element is null.
194     */
195     public boolean remove(Object element) {
196     if (element == null)
197     throw new NullPointerException();
198    
199     if (comparator == null) {
200     for (int i = 1; i <= size; i++) {
201     if (((Comparable)queue[i]).compareTo(element) == 0) {
202     remove(i);
203     return true;
204     }
205     }
206     } else {
207     for (int i = 1; i <= size; i++) {
208     if (comparator.compare(queue[i], (E) element) == 0) {
209     remove(i);
210     return true;
211     }
212     }
213     }
214 tim 1.1 return false;
215     }
216 tim 1.2
217     /**
218     * Returns an iterator over the elements in this priority queue. The
219 brian 1.6 * elements of the priority queue will be returned by this iterator in the
220     * order specified by the queue, which is to say the order they would be
221     * returned by repeated calls to <tt>poll</tt>.
222 dl 1.5 *
223 tim 1.2 * @return an <tt>Iterator</tt> over the elements in this priority queue.
224     */
225     public Iterator<E> iterator() {
226 dl 1.7 return new Itr();
227 tim 1.2 }
228    
229     private class Itr implements Iterator<E> {
230 dl 1.7 /**
231     * Index (into queue array) of element to be returned by
232 tim 1.2 * subsequent call to next.
233 dl 1.7 */
234     private int cursor = 1;
235 tim 1.2
236 dl 1.7 /**
237     * Index of element returned by most recent call to next or
238     * previous. Reset to 0 if this element is deleted by a call
239     * to remove.
240     */
241     private int lastRet = 0;
242    
243     /**
244     * The modCount value that the iterator believes that the backing
245     * List should have. If this expectation is violated, the iterator
246     * has detected concurrent modification.
247     */
248     private int expectedModCount = modCount;
249 tim 1.2
250 dl 1.7 public boolean hasNext() {
251     return cursor <= size;
252     }
253    
254     public E next() {
255 tim 1.2 checkForComodification();
256     if (cursor > size)
257 dl 1.7 throw new NoSuchElementException();
258 tim 1.2 E result = queue[cursor];
259     lastRet = cursor++;
260     return result;
261 dl 1.7 }
262 tim 1.2
263 dl 1.7 public void remove() {
264     if (lastRet == 0)
265     throw new IllegalStateException();
266 tim 1.2 checkForComodification();
267    
268     PriorityQueue.this.remove(lastRet);
269     if (lastRet < cursor)
270     cursor--;
271     lastRet = 0;
272     expectedModCount = modCount;
273 dl 1.7 }
274 tim 1.2
275 dl 1.7 final void checkForComodification() {
276     if (modCount != expectedModCount)
277     throw new ConcurrentModificationException();
278     }
279 tim 1.2 }
280    
281     /**
282     * Returns the number of elements in this priority queue.
283 dl 1.5 *
284 tim 1.2 * @return the number of elements in this priority queue.
285     */
286 tim 1.1 public int size() {
287 tim 1.2 return size;
288 tim 1.1 }
289 tim 1.2
290     /**
291     * Add the specified element to this priority queue.
292     *
293     * @param element the element to add.
294     * @return true
295     * @throws ClassCastException if the specified element cannot be compared
296 dl 1.7 * with elements currently in the priority queue according
297 tim 1.2 * to the priority queue's ordering.
298     * @throws NullPointerException if the specified element is null.
299     */
300     public boolean offer(E element) {
301     if (element == null)
302     throw new NullPointerException();
303     modCount++;
304    
305     // Grow backing store if necessary
306     if (++size == queue.length) {
307     E[] newQueue = new E[2 * queue.length];
308     System.arraycopy(queue, 0, newQueue, 0, size);
309     queue = newQueue;
310     }
311    
312     queue[size] = element;
313     fixUp(size);
314     return true;
315 tim 1.1 }
316    
317 tim 1.2 /**
318     * Remove all elements from the priority queue.
319     */
320     public void clear() {
321     modCount++;
322    
323     // Null out element references to prevent memory leak
324     for (int i=1; i<=size; i++)
325     queue[i] = null;
326    
327     size = 0;
328     }
329    
330     /**
331     * Removes and returns the ith element from queue. Recall
332     * that queue is one-based, so 1 <= i <= size.
333     *
334     * XXX: Could further special-case i==size, but is it worth it?
335     * XXX: Could special-case i==0, but is it worth it?
336     */
337     private E remove(int i) {
338     assert i <= size;
339     modCount++;
340    
341     E result = queue[i];
342     queue[i] = queue[size];
343     queue[size--] = null; // Drop extra ref to prevent memory leak
344     if (i <= size)
345     fixDown(i);
346     return result;
347 tim 1.1 }
348    
349 tim 1.2 /**
350     * Establishes the heap invariant (described above) assuming the heap
351     * satisfies the invariant except possibly for the leaf-node indexed by k
352     * (which may have a nextExecutionTime less than its parent's).
353     *
354     * This method functions by "promoting" queue[k] up the hierarchy
355     * (by swapping it with its parent) repeatedly until queue[k]
356     * is greater than or equal to its parent.
357     */
358     private void fixUp(int k) {
359     if (comparator == null) {
360     while (k > 1) {
361     int j = k >> 1;
362     if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
363     break;
364     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
365     k = j;
366     }
367     } else {
368     while (k > 1) {
369     int j = k >> 1;
370     if (comparator.compare(queue[j], queue[k]) <= 0)
371     break;
372     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
373     k = j;
374     }
375     }
376     }
377    
378     /**
379     * Establishes the heap invariant (described above) in the subtree
380     * rooted at k, which is assumed to satisfy the heap invariant except
381     * possibly for node k itself (which may be greater than its children).
382     *
383     * This method functions by "demoting" queue[k] down the hierarchy
384     * (by swapping it with its smaller child) repeatedly until queue[k]
385     * is less than or equal to its children.
386     */
387     private void fixDown(int k) {
388     int j;
389     if (comparator == null) {
390     while ((j = k << 1) <= size) {
391     if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
392     j++; // j indexes smallest kid
393     if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
394     break;
395     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
396     k = j;
397     }
398     } else {
399     while ((j = k << 1) <= size) {
400     if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
401     j++; // j indexes smallest kid
402     if (comparator.compare(queue[k], queue[j]) <= 0)
403     break;
404     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
405     k = j;
406     }
407     }
408     }
409    
410     /**
411     * Returns the comparator associated with this priority queue, or
412     * <tt>null</tt> if it uses its elements' natural ordering.
413     *
414     * @return the comparator associated with this priority queue, or
415 dl 1.7 * <tt>null</tt> if it uses its elements' natural ordering.
416 tim 1.2 */
417 dl 1.5 Comparator comparator() {
418 tim 1.2 return comparator;
419     }
420 dl 1.5
421     /**
422     * Save the state of the instance to a stream (that
423     * is, serialize it).
424     *
425     * @serialData The length of the array backing the instance is
426     * emitted (int), followed by all of its elements (each an
427     * <tt>Object</tt>) in the proper order.
428 dl 1.7 * @param s the stream
429 dl 1.5 */
430     private synchronized void writeObject(java.io.ObjectOutputStream s)
431     throws java.io.IOException{
432 dl 1.7 // Write out element count, and any hidden stuff
433     s.defaultWriteObject();
434 dl 1.5
435     // Write out array length
436     s.writeInt(queue.length);
437    
438 dl 1.7 // Write out all elements in the proper order.
439     for (int i=0; i<size; i++)
440 dl 1.5 s.writeObject(queue[i]);
441     }
442    
443     /**
444     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
445     * deserialize it).
446 dl 1.7 * @param s the stream
447 dl 1.5 */
448     private synchronized void readObject(java.io.ObjectInputStream s)
449     throws java.io.IOException, ClassNotFoundException {
450 dl 1.7 // Read in size, and any hidden stuff
451     s.defaultReadObject();
452 dl 1.5
453     // Read in array length and allocate array
454     int arrayLength = s.readInt();
455     queue = new E[arrayLength];
456    
457 dl 1.7 // Read in all elements in the proper order.
458     for (int i=0; i<size; i++)
459 dl 1.5 queue[i] = (E)s.readObject();
460     }
461    
462 tim 1.1 }