ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.8
Committed: Tue Jul 1 16:29:45 2003 UTC (20 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.7: +3 -5 lines
Log Message:
Misc minor tunings

File Contents

# User Rev Content
1 tim 1.2 package java.util;
2 tim 1.1
3     /**
4 tim 1.2 * An unbounded priority queue based on a priority heap. This queue orders
5 brian 1.6 * elements according to an order specified at construction time, which is
6     * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
7 tim 1.2 * either according to their <i>natural order</i> (see {@link Comparable}), or
8     * according to a {@link Comparator}, depending on which constructor is used.
9     * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10     * minimal element with respect to the specified ordering. If multiple
11 brian 1.6 * elements are tied for least value, no guarantees are made as to
12     * which of these elements is returned.
13 tim 1.2 *
14 dl 1.7 * <p>A priority queue has a <i>capacity</i>. The capacity is the
15     * size of the array used internally to store the elements on the
16     * queue. It is always at least as large as the queue size. As
17     * elements are added to a priority queue, its capacity grows
18     * automatically. The details of the growth policy are not specified.
19 tim 1.2 *
20 dl 1.7 *<p>Implementation note: this implementation provides O(log(n)) time
21     *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
22     *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
23     *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
24     *constant time for the retrieval methods (<tt>peek</tt>,
25     *<tt>element</tt>, and <tt>size</tt>).
26 tim 1.2 *
27     * <p>This class is a member of the
28     * <a href="{@docRoot}/../guide/collections/index.html">
29     * Java Collections Framework</a>.
30 dl 1.7 * @since 1.5
31     * @author Josh Bloch
32 tim 1.2 */
33     public class PriorityQueue<E> extends AbstractQueue<E>
34 dl 1.8 implements Queue<E>,
35     java.io.Serializable {
36 tim 1.2 private static final int DEFAULT_INITIAL_CAPACITY = 11;
37 tim 1.1
38 tim 1.2 /**
39     * Priority queue represented as a balanced binary heap: the two children
40     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
41     * ordered by comparator, or by the elements' natural ordering, if
42 brian 1.6 * comparator is null: For each node n in the heap and each descendant d
43     * of n, n <= d.
44 tim 1.2 *
45 brian 1.6 * The element with the lowest value is in queue[1], assuming the queue is
46     * nonempty. (A one-based array is used in preference to the traditional
47     * zero-based array to simplify parent and child calculations.)
48 tim 1.2 *
49     * queue.length must be >= 2, even if size == 0.
50     */
51 dl 1.5 private transient E[] queue;
52 tim 1.1
53 tim 1.2 /**
54     * The number of elements in the priority queue.
55     */
56     private int size = 0;
57 tim 1.1
58 tim 1.2 /**
59     * The comparator, or null if priority queue uses elements'
60     * natural ordering.
61     */
62     private final Comparator<E> comparator;
63    
64     /**
65     * The number of times this priority queue has been
66     * <i>structurally modified</i>. See AbstractList for gory details.
67     */
68 dl 1.5 private transient int modCount = 0;
69 tim 1.2
70     /**
71 dl 1.7 * Create a new priority queue with the default initial capacity
72     * (11) that orders its elements according to their natural
73     * ordering (using <tt>Comparable</tt>.)
74 tim 1.2 */
75     public PriorityQueue() {
76     this(DEFAULT_INITIAL_CAPACITY);
77 tim 1.1 }
78 tim 1.2
79     /**
80     * Create a new priority queue with the specified initial capacity
81 dl 1.7 * that orders its elements according to their natural ordering
82     * (using <tt>Comparable</tt>.)
83 tim 1.2 *
84     * @param initialCapacity the initial capacity for this priority queue.
85     */
86     public PriorityQueue(int initialCapacity) {
87     this(initialCapacity, null);
88 tim 1.1 }
89 tim 1.2
90     /**
91     * Create a new priority queue with the specified initial capacity (11)
92     * that orders its elements according to the specified comparator.
93     *
94     * @param initialCapacity the initial capacity for this priority queue.
95     * @param comparator the comparator used to order this priority queue.
96     */
97     public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
98     if (initialCapacity < 1)
99     initialCapacity = 1;
100     queue = new E[initialCapacity + 1];
101     this.comparator = comparator;
102 tim 1.1 }
103    
104 tim 1.2 /**
105     * Create a new priority queue containing the elements in the specified
106     * collection. The priority queue has an initial capacity of 110% of the
107     * size of the specified collection. If the specified collection
108     * implements the {@link Sorted} interface, the priority queue will be
109     * sorted according to the same comparator, or according to its elements'
110     * natural order if the collection is sorted according to its elements'
111 brian 1.6 * natural order. If the specified collection does not implement
112     * <tt>Sorted</tt>, the priority queue is ordered according to
113 tim 1.2 * its elements' natural order.
114     *
115     * @param initialElements the collection whose elements are to be placed
116     * into this priority queue.
117     * @throws ClassCastException if elements of the specified collection
118     * cannot be compared to one another according to the priority
119     * queue's ordering.
120     * @throws NullPointerException if the specified collection or an
121     * element of the specified collection is <tt>null</tt>.
122     */
123     public PriorityQueue(Collection<E> initialElements) {
124     int sz = initialElements.size();
125     int initialCapacity = (int)Math.min((sz * 110L) / 100,
126     Integer.MAX_VALUE - 1);
127     if (initialCapacity < 1)
128     initialCapacity = 1;
129     queue = new E[initialCapacity + 1];
130    
131 dl 1.5
132 tim 1.2 if (initialElements instanceof Sorted) {
133     comparator = ((Sorted)initialElements).comparator();
134     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
135     queue[++size] = i.next();
136     } else {
137     comparator = null;
138     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139     add(i.next());
140     }
141 tim 1.1 }
142    
143 tim 1.2 // Queue Methods
144    
145     /**
146 dl 1.7 * Remove and return the minimal element from this priority queue
147     * if it contains one or more elements, otherwise return
148     * <tt>null</tt>. The term <i>minimal</i> is defined according to
149     * this priority queue's order.
150 tim 1.2 *
151     * @return the minimal element from this priority queue if it contains
152     * one or more elements, otherwise <tt>null</tt>.
153     */
154 tim 1.1 public E poll() {
155 tim 1.2 if (size == 0)
156     return null;
157     return remove(1);
158 tim 1.1 }
159 tim 1.2
160     /**
161 dl 1.7 * Return, but do not remove, the minimal element from the
162     * priority queue, or return <tt>null</tt> if the queue is empty.
163     * The term <i>minimal</i> is defined according to this priority
164     * queue's order. This method returns the same object reference
165     * that would be returned by by the <tt>poll</tt> method. The two
166     * methods differ in that this method does not remove the element
167     * from the priority queue.
168 tim 1.2 *
169     * @return the minimal element from this priority queue if it contains
170     * one or more elements, otherwise <tt>null</tt>.
171     */
172 tim 1.1 public E peek() {
173 tim 1.2 return queue[1];
174 tim 1.1 }
175    
176 tim 1.2 // Collection Methods
177    
178     /**
179     * Removes a single instance of the specified element from this priority
180     * queue, if it is present. Returns true if this collection contained the
181     * specified element (or equivalently, if this collection changed as a
182     * result of the call).
183     *
184 dl 1.7 * @param element the element to be removed from this collection,
185     * if present.
186 tim 1.2 * @return <tt>true</tt> if this collection changed as a result of the
187     * call
188     * @throws ClassCastException if the specified element cannot be compared
189 dl 1.7 * with elements currently in the priority queue according
190 tim 1.2 * to the priority queue's ordering.
191     * @throws NullPointerException if the specified element is null.
192     */
193     public boolean remove(Object element) {
194     if (element == null)
195     throw new NullPointerException();
196    
197     if (comparator == null) {
198     for (int i = 1; i <= size; i++) {
199     if (((Comparable)queue[i]).compareTo(element) == 0) {
200     remove(i);
201     return true;
202     }
203     }
204     } else {
205     for (int i = 1; i <= size; i++) {
206     if (comparator.compare(queue[i], (E) element) == 0) {
207     remove(i);
208     return true;
209     }
210     }
211     }
212 tim 1.1 return false;
213     }
214 tim 1.2
215     /**
216     * Returns an iterator over the elements in this priority queue. The
217 brian 1.6 * elements of the priority queue will be returned by this iterator in the
218     * order specified by the queue, which is to say the order they would be
219     * returned by repeated calls to <tt>poll</tt>.
220 dl 1.5 *
221 tim 1.2 * @return an <tt>Iterator</tt> over the elements in this priority queue.
222     */
223     public Iterator<E> iterator() {
224 dl 1.7 return new Itr();
225 tim 1.2 }
226    
227     private class Itr implements Iterator<E> {
228 dl 1.7 /**
229     * Index (into queue array) of element to be returned by
230 tim 1.2 * subsequent call to next.
231 dl 1.7 */
232     private int cursor = 1;
233 tim 1.2
234 dl 1.7 /**
235     * Index of element returned by most recent call to next or
236     * previous. Reset to 0 if this element is deleted by a call
237     * to remove.
238     */
239     private int lastRet = 0;
240    
241     /**
242     * The modCount value that the iterator believes that the backing
243     * List should have. If this expectation is violated, the iterator
244     * has detected concurrent modification.
245     */
246     private int expectedModCount = modCount;
247 tim 1.2
248 dl 1.7 public boolean hasNext() {
249     return cursor <= size;
250     }
251    
252     public E next() {
253 tim 1.2 checkForComodification();
254     if (cursor > size)
255 dl 1.7 throw new NoSuchElementException();
256 tim 1.2 E result = queue[cursor];
257     lastRet = cursor++;
258     return result;
259 dl 1.7 }
260 tim 1.2
261 dl 1.7 public void remove() {
262     if (lastRet == 0)
263     throw new IllegalStateException();
264 tim 1.2 checkForComodification();
265    
266     PriorityQueue.this.remove(lastRet);
267     if (lastRet < cursor)
268     cursor--;
269     lastRet = 0;
270     expectedModCount = modCount;
271 dl 1.7 }
272 tim 1.2
273 dl 1.7 final void checkForComodification() {
274     if (modCount != expectedModCount)
275     throw new ConcurrentModificationException();
276     }
277 tim 1.2 }
278    
279     /**
280     * Returns the number of elements in this priority queue.
281 dl 1.5 *
282 tim 1.2 * @return the number of elements in this priority queue.
283     */
284 tim 1.1 public int size() {
285 tim 1.2 return size;
286 tim 1.1 }
287 tim 1.2
288     /**
289     * Add the specified element to this priority queue.
290     *
291     * @param element the element to add.
292     * @return true
293     * @throws ClassCastException if the specified element cannot be compared
294 dl 1.7 * with elements currently in the priority queue according
295 tim 1.2 * to the priority queue's ordering.
296     * @throws NullPointerException if the specified element is null.
297     */
298     public boolean offer(E element) {
299     if (element == null)
300     throw new NullPointerException();
301     modCount++;
302    
303     // Grow backing store if necessary
304     if (++size == queue.length) {
305     E[] newQueue = new E[2 * queue.length];
306     System.arraycopy(queue, 0, newQueue, 0, size);
307     queue = newQueue;
308     }
309    
310     queue[size] = element;
311     fixUp(size);
312     return true;
313 tim 1.1 }
314    
315 tim 1.2 /**
316     * Remove all elements from the priority queue.
317     */
318     public void clear() {
319     modCount++;
320    
321     // Null out element references to prevent memory leak
322     for (int i=1; i<=size; i++)
323     queue[i] = null;
324    
325     size = 0;
326     }
327    
328     /**
329     * Removes and returns the ith element from queue. Recall
330     * that queue is one-based, so 1 <= i <= size.
331     *
332     * XXX: Could further special-case i==size, but is it worth it?
333     * XXX: Could special-case i==0, but is it worth it?
334     */
335     private E remove(int i) {
336     assert i <= size;
337     modCount++;
338    
339     E result = queue[i];
340     queue[i] = queue[size];
341     queue[size--] = null; // Drop extra ref to prevent memory leak
342     if (i <= size)
343     fixDown(i);
344     return result;
345 tim 1.1 }
346    
347 tim 1.2 /**
348     * Establishes the heap invariant (described above) assuming the heap
349     * satisfies the invariant except possibly for the leaf-node indexed by k
350     * (which may have a nextExecutionTime less than its parent's).
351     *
352     * This method functions by "promoting" queue[k] up the hierarchy
353     * (by swapping it with its parent) repeatedly until queue[k]
354     * is greater than or equal to its parent.
355     */
356     private void fixUp(int k) {
357     if (comparator == null) {
358     while (k > 1) {
359     int j = k >> 1;
360     if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
361     break;
362     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
363     k = j;
364     }
365     } else {
366     while (k > 1) {
367     int j = k >> 1;
368     if (comparator.compare(queue[j], queue[k]) <= 0)
369     break;
370     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
371     k = j;
372     }
373     }
374     }
375    
376     /**
377     * Establishes the heap invariant (described above) in the subtree
378     * rooted at k, which is assumed to satisfy the heap invariant except
379     * possibly for node k itself (which may be greater than its children).
380     *
381     * This method functions by "demoting" queue[k] down the hierarchy
382     * (by swapping it with its smaller child) repeatedly until queue[k]
383     * is less than or equal to its children.
384     */
385     private void fixDown(int k) {
386     int j;
387     if (comparator == null) {
388     while ((j = k << 1) <= size) {
389     if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
390     j++; // j indexes smallest kid
391     if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
392     break;
393     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
394     k = j;
395     }
396     } else {
397     while ((j = k << 1) <= size) {
398     if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
399     j++; // j indexes smallest kid
400     if (comparator.compare(queue[k], queue[j]) <= 0)
401     break;
402     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
403     k = j;
404     }
405     }
406     }
407    
408     /**
409     * Returns the comparator associated with this priority queue, or
410     * <tt>null</tt> if it uses its elements' natural ordering.
411     *
412     * @return the comparator associated with this priority queue, or
413 dl 1.7 * <tt>null</tt> if it uses its elements' natural ordering.
414 tim 1.2 */
415 dl 1.8 public Comparator comparator() {
416 tim 1.2 return comparator;
417     }
418 dl 1.5
419     /**
420     * Save the state of the instance to a stream (that
421     * is, serialize it).
422     *
423     * @serialData The length of the array backing the instance is
424     * emitted (int), followed by all of its elements (each an
425     * <tt>Object</tt>) in the proper order.
426 dl 1.7 * @param s the stream
427 dl 1.5 */
428     private synchronized void writeObject(java.io.ObjectOutputStream s)
429     throws java.io.IOException{
430 dl 1.7 // Write out element count, and any hidden stuff
431     s.defaultWriteObject();
432 dl 1.5
433     // Write out array length
434     s.writeInt(queue.length);
435    
436 dl 1.7 // Write out all elements in the proper order.
437     for (int i=0; i<size; i++)
438 dl 1.5 s.writeObject(queue[i]);
439     }
440    
441     /**
442     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
443     * deserialize it).
444 dl 1.7 * @param s the stream
445 dl 1.5 */
446     private synchronized void readObject(java.io.ObjectInputStream s)
447     throws java.io.IOException, ClassNotFoundException {
448 dl 1.7 // Read in size, and any hidden stuff
449     s.defaultReadObject();
450 dl 1.5
451     // Read in array length and allocate array
452     int arrayLength = s.readInt();
453     queue = new E[arrayLength];
454    
455 dl 1.7 // Read in all elements in the proper order.
456     for (int i=0; i<size; i++)
457 dl 1.5 queue[i] = (E)s.readObject();
458     }
459    
460 tim 1.1 }