ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.128 by jsr166, Sun May 6 23:29:25 2018 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 + *
5 + * This code is free software; you can redistribute it and/or modify it
6 + * under the terms of the GNU General Public License version 2 only, as
7 + * published by the Free Software Foundation.  Oracle designates this
8 + * particular file as subject to the "Classpath" exception as provided
9 + * by Oracle in the LICENSE file that accompanied this code.
10 + *
11 + * This code is distributed in the hope that it will be useful, but WITHOUT
12 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 + * version 2 for more details (a copy is included in the LICENSE file that
15 + * accompanied this code).
16 + *
17 + * You should have received a copy of the GNU General Public License version
18 + * 2 along with this work; if not, write to the Free Software Foundation,
19 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 + *
21 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 + * or visit www.oracle.com if you need additional information or have any
23 + * questions.
24 + */
25 +
26   package java.util;
27  
28 < import java.util.*;
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > import jdk.internal.misc.SharedSecrets;
31  
32   /**
33 < * An unbounded (resizable) priority queue based on a priority
34 < * heap.The take operation returns the least element with respect to
35 < * the given ordering. (If more than one element is tied for least
36 < * value, one of them is arbitrarily chosen to be returned -- no
37 < * guarantees are made for ordering across ties.) Ordering follows the
38 < * java.util.Collection conventions: Either the elements must be
39 < * Comparable, or a Comparator must be supplied. Comparison failures
40 < * throw ClassCastExceptions during insertions and extractions.
41 < **/
42 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
43 <    public PriorityQueue(int initialCapacity) {}
44 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
45 <
46 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
47 <
48 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
49 <
50 <    public boolean add(E x) {
51 <        return false;
33 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34 > * The elements of the priority queue are ordered according to their
35 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36 > * provided at queue construction time, depending on which constructor is
37 > * used.  A priority queue does not permit {@code null} elements.
38 > * A priority queue relying on natural ordering also does not permit
39 > * insertion of non-comparable objects (doing so may result in
40 > * {@code ClassCastException}).
41 > *
42 > * <p>The <em>head</em> of this queue is the <em>least</em> element
43 > * with respect to the specified ordering.  If multiple elements are
44 > * tied for least value, the head is one of those elements -- ties are
45 > * broken arbitrarily.  The queue retrieval operations {@code poll},
46 > * {@code remove}, {@code peek}, and {@code element} access the
47 > * element at the head of the queue.
48 > *
49 > * <p>A priority queue is unbounded, but has an internal
50 > * <i>capacity</i> governing the size of an array used to store the
51 > * elements on the queue.  It is always at least as large as the queue
52 > * size.  As elements are added to a priority queue, its capacity
53 > * grows automatically.  The details of the growth policy are not
54 > * specified.
55 > *
56 > * <p>This class and its iterator implement all of the
57 > * <em>optional</em> methods of the {@link Collection} and {@link
58 > * Iterator} interfaces.  The Iterator provided in method {@link
59 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
60 > * are <em>not</em> guaranteed to traverse the elements of
61 > * the priority queue in any particular order. If you need ordered
62 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
63 > *
64 > * <p><strong>Note that this implementation is not synchronized.</strong>
65 > * Multiple threads should not access a {@code PriorityQueue}
66 > * instance concurrently if any of the threads modifies the queue.
67 > * Instead, use the thread-safe {@link
68 > * java.util.concurrent.PriorityBlockingQueue} class.
69 > *
70 > * <p>Implementation note: this implementation provides
71 > * O(log(n)) time for the enqueuing and dequeuing methods
72 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
73 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
74 > * methods; and constant time for the retrieval methods
75 > * ({@code peek}, {@code element}, and {@code size}).
76 > *
77 > * <p>This class is a member of the
78 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
79 > * Java Collections Framework</a>.
80 > *
81 > * @since 1.5
82 > * @author Josh Bloch, Doug Lea
83 > * @param <E> the type of elements held in this queue
84 > */
85 > @SuppressWarnings("unchecked")
86 > public class PriorityQueue<E> extends AbstractQueue<E>
87 >    implements java.io.Serializable {
88 >
89 >    private static final long serialVersionUID = -7720805057305804111L;
90 >
91 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
92 >
93 >    /**
94 >     * Priority queue represented as a balanced binary heap: the two
95 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
96 >     * priority queue is ordered by comparator, or by the elements'
97 >     * natural ordering, if comparator is null: For each node n in the
98 >     * heap and each descendant d of n, n <= d.  The element with the
99 >     * lowest value is in queue[0], assuming the queue is nonempty.
100 >     */
101 >    transient Object[] queue; // non-private to simplify nested class access
102 >
103 >    /**
104 >     * The number of elements in the priority queue.
105 >     */
106 >    int size;
107 >
108 >    /**
109 >     * The comparator, or null if priority queue uses elements'
110 >     * natural ordering.
111 >     */
112 >    private final Comparator<? super E> comparator;
113 >
114 >    /**
115 >     * The number of times this priority queue has been
116 >     * <i>structurally modified</i>.  See AbstractList for gory details.
117 >     */
118 >    transient int modCount;     // non-private to simplify nested class access
119 >
120 >    /**
121 >     * Creates a {@code PriorityQueue} with the default initial
122 >     * capacity (11) that orders its elements according to their
123 >     * {@linkplain Comparable natural ordering}.
124 >     */
125 >    public PriorityQueue() {
126 >        this(DEFAULT_INITIAL_CAPACITY, null);
127      }
128 <    public boolean offer(E x) {
129 <        return false;
128 >
129 >    /**
130 >     * Creates a {@code PriorityQueue} with the specified initial
131 >     * capacity that orders its elements according to their
132 >     * {@linkplain Comparable natural ordering}.
133 >     *
134 >     * @param initialCapacity the initial capacity for this priority queue
135 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
136 >     *         than 1
137 >     */
138 >    public PriorityQueue(int initialCapacity) {
139 >        this(initialCapacity, null);
140      }
141 <    public boolean remove(Object x) {
142 <        return false;
141 >
142 >    /**
143 >     * Creates a {@code PriorityQueue} with the default initial capacity and
144 >     * whose elements are ordered according to the specified comparator.
145 >     *
146 >     * @param  comparator the comparator that will be used to order this
147 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
148 >     *         natural ordering} of the elements will be used.
149 >     * @since 1.8
150 >     */
151 >    public PriorityQueue(Comparator<? super E> comparator) {
152 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
153      }
154  
155 <    public E remove() {
156 <        return null;
155 >    /**
156 >     * Creates a {@code PriorityQueue} with the specified initial capacity
157 >     * that orders its elements according to the specified comparator.
158 >     *
159 >     * @param  initialCapacity the initial capacity for this priority queue
160 >     * @param  comparator the comparator that will be used to order this
161 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
162 >     *         natural ordering} of the elements will be used.
163 >     * @throws IllegalArgumentException if {@code initialCapacity} is
164 >     *         less than 1
165 >     */
166 >    public PriorityQueue(int initialCapacity,
167 >                         Comparator<? super E> comparator) {
168 >        // Note: This restriction of at least one is not actually needed,
169 >        // but continues for 1.5 compatibility
170 >        if (initialCapacity < 1)
171 >            throw new IllegalArgumentException();
172 >        this.queue = new Object[initialCapacity];
173 >        this.comparator = comparator;
174      }
175 <    public Iterator<E> iterator() {
176 <      return null;
175 >
176 >    /**
177 >     * Creates a {@code PriorityQueue} containing the elements in the
178 >     * specified collection.  If the specified collection is an instance of
179 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
180 >     * priority queue will be ordered according to the same ordering.
181 >     * Otherwise, this priority queue will be ordered according to the
182 >     * {@linkplain Comparable natural ordering} of its elements.
183 >     *
184 >     * @param  c the collection whose elements are to be placed
185 >     *         into this priority queue
186 >     * @throws ClassCastException if elements of the specified collection
187 >     *         cannot be compared to one another according to the priority
188 >     *         queue's ordering
189 >     * @throws NullPointerException if the specified collection or any
190 >     *         of its elements are null
191 >     */
192 >    public PriorityQueue(Collection<? extends E> c) {
193 >        if (c instanceof SortedSet<?>) {
194 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
195 >            this.comparator = (Comparator<? super E>) ss.comparator();
196 >            initElementsFromCollection(ss);
197 >        }
198 >        else if (c instanceof PriorityQueue<?>) {
199 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
200 >            this.comparator = (Comparator<? super E>) pq.comparator();
201 >            initFromPriorityQueue(pq);
202 >        }
203 >        else {
204 >            this.comparator = null;
205 >            initFromCollection(c);
206 >        }
207      }
208  
209 <    public E element() {
210 <        return null;
209 >    /**
210 >     * Creates a {@code PriorityQueue} containing the elements in the
211 >     * specified priority queue.  This priority queue will be
212 >     * ordered according to the same ordering as the given priority
213 >     * queue.
214 >     *
215 >     * @param  c the priority queue whose elements are to be placed
216 >     *         into this priority queue
217 >     * @throws ClassCastException if elements of {@code c} cannot be
218 >     *         compared to one another according to {@code c}'s
219 >     *         ordering
220 >     * @throws NullPointerException if the specified priority queue or any
221 >     *         of its elements are null
222 >     */
223 >    public PriorityQueue(PriorityQueue<? extends E> c) {
224 >        this.comparator = (Comparator<? super E>) c.comparator();
225 >        initFromPriorityQueue(c);
226      }
227 <    public E poll() {
228 <        return null;
227 >
228 >    /**
229 >     * Creates a {@code PriorityQueue} containing the elements in the
230 >     * specified sorted set.   This priority queue will be ordered
231 >     * according to the same ordering as the given sorted set.
232 >     *
233 >     * @param  c the sorted set whose elements are to be placed
234 >     *         into this priority queue
235 >     * @throws ClassCastException if elements of the specified sorted
236 >     *         set cannot be compared to one another according to the
237 >     *         sorted set's ordering
238 >     * @throws NullPointerException if the specified sorted set or any
239 >     *         of its elements are null
240 >     */
241 >    public PriorityQueue(SortedSet<? extends E> c) {
242 >        this.comparator = (Comparator<? super E>) c.comparator();
243 >        initElementsFromCollection(c);
244 >    }
245 >
246 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
247 >    private static Object[] ensureNonEmpty(Object[] es) {
248 >        return (es.length > 0) ? es : new Object[1];
249 >    }
250 >
251 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
252 >        if (c.getClass() == PriorityQueue.class) {
253 >            this.queue = ensureNonEmpty(c.toArray());
254 >            this.size = c.size();
255 >        } else {
256 >            initFromCollection(c);
257 >        }
258 >    }
259 >
260 >    private void initElementsFromCollection(Collection<? extends E> c) {
261 >        Object[] es = c.toArray();
262 >        int len = es.length;
263 >        // If c.toArray incorrectly doesn't return Object[], copy it.
264 >        if (es.getClass() != Object[].class)
265 >            es = Arrays.copyOf(es, len, Object[].class);
266 >        if (len == 1 || this.comparator != null)
267 >            for (Object e : es)
268 >                if (e == null)
269 >                    throw new NullPointerException();
270 >        this.queue = ensureNonEmpty(es);
271 >        this.size = len;
272 >    }
273 >
274 >    /**
275 >     * Initializes queue array with elements from the given Collection.
276 >     *
277 >     * @param c the collection
278 >     */
279 >    private void initFromCollection(Collection<? extends E> c) {
280 >        initElementsFromCollection(c);
281 >        heapify();
282 >    }
283 >
284 >    /**
285 >     * The maximum size of array to allocate.
286 >     * Some VMs reserve some header words in an array.
287 >     * Attempts to allocate larger arrays may result in
288 >     * OutOfMemoryError: Requested array size exceeds VM limit
289 >     */
290 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
291 >
292 >    /**
293 >     * Increases the capacity of the array.
294 >     *
295 >     * @param minCapacity the desired minimum capacity
296 >     */
297 >    private void grow(int minCapacity) {
298 >        int oldCapacity = queue.length;
299 >        // Double size if small; else grow by 50%
300 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
301 >                                         (oldCapacity + 2) :
302 >                                         (oldCapacity >> 1));
303 >        // overflow-conscious code
304 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
305 >            newCapacity = hugeCapacity(minCapacity);
306 >        queue = Arrays.copyOf(queue, newCapacity);
307 >    }
308 >
309 >    private static int hugeCapacity(int minCapacity) {
310 >        if (minCapacity < 0) // overflow
311 >            throw new OutOfMemoryError();
312 >        return (minCapacity > MAX_ARRAY_SIZE) ?
313 >            Integer.MAX_VALUE :
314 >            MAX_ARRAY_SIZE;
315      }
316 +
317 +    /**
318 +     * Inserts the specified element into this priority queue.
319 +     *
320 +     * @return {@code true} (as specified by {@link Collection#add})
321 +     * @throws ClassCastException if the specified element cannot be
322 +     *         compared with elements currently in this priority queue
323 +     *         according to the priority queue's ordering
324 +     * @throws NullPointerException if the specified element is null
325 +     */
326 +    public boolean add(E e) {
327 +        return offer(e);
328 +    }
329 +
330 +    /**
331 +     * Inserts the specified element into this priority queue.
332 +     *
333 +     * @return {@code true} (as specified by {@link Queue#offer})
334 +     * @throws ClassCastException if the specified element cannot be
335 +     *         compared with elements currently in this priority queue
336 +     *         according to the priority queue's ordering
337 +     * @throws NullPointerException if the specified element is null
338 +     */
339 +    public boolean offer(E e) {
340 +        if (e == null)
341 +            throw new NullPointerException();
342 +        modCount++;
343 +        int i = size;
344 +        if (i >= queue.length)
345 +            grow(i + 1);
346 +        siftUp(i, e);
347 +        size = i + 1;
348 +        return true;
349 +    }
350 +
351      public E peek() {
352 <        return null;
352 >        return (E) queue[0];
353      }
354  
355 <    public boolean isEmpty() {
356 <        return false;
355 >    private int indexOf(Object o) {
356 >        if (o != null) {
357 >            final Object[] es = queue;
358 >            for (int i = 0, n = size; i < n; i++)
359 >                if (o.equals(es[i]))
360 >                    return i;
361 >        }
362 >        return -1;
363      }
364 <    public int size() {
365 <        return 0;
364 >
365 >    /**
366 >     * Removes a single instance of the specified element from this queue,
367 >     * if it is present.  More formally, removes an element {@code e} such
368 >     * that {@code o.equals(e)}, if this queue contains one or more such
369 >     * elements.  Returns {@code true} if and only if this queue contained
370 >     * the specified element (or equivalently, if this queue changed as a
371 >     * result of the call).
372 >     *
373 >     * @param o element to be removed from this queue, if present
374 >     * @return {@code true} if this queue changed as a result of the call
375 >     */
376 >    public boolean remove(Object o) {
377 >        int i = indexOf(o);
378 >        if (i == -1)
379 >            return false;
380 >        else {
381 >            removeAt(i);
382 >            return true;
383 >        }
384      }
385 +
386 +    /**
387 +     * Identity-based version for use in Itr.remove.
388 +     *
389 +     * @param o element to be removed from this queue, if present
390 +     */
391 +    void removeEq(Object o) {
392 +        final Object[] es = queue;
393 +        for (int i = 0, n = size; i < n; i++) {
394 +            if (o == es[i]) {
395 +                removeAt(i);
396 +                break;
397 +            }
398 +        }
399 +    }
400 +
401 +    /**
402 +     * Returns {@code true} if this queue contains the specified element.
403 +     * More formally, returns {@code true} if and only if this queue contains
404 +     * at least one element {@code e} such that {@code o.equals(e)}.
405 +     *
406 +     * @param o object to be checked for containment in this queue
407 +     * @return {@code true} if this queue contains the specified element
408 +     */
409 +    public boolean contains(Object o) {
410 +        return indexOf(o) >= 0;
411 +    }
412 +
413 +    /**
414 +     * Returns an array containing all of the elements in this queue.
415 +     * The elements are in no particular order.
416 +     *
417 +     * <p>The returned array will be "safe" in that no references to it are
418 +     * maintained by this queue.  (In other words, this method must allocate
419 +     * a new array).  The caller is thus free to modify the returned array.
420 +     *
421 +     * <p>This method acts as bridge between array-based and collection-based
422 +     * APIs.
423 +     *
424 +     * @return an array containing all of the elements in this queue
425 +     */
426      public Object[] toArray() {
427 <        return null;
427 >        return Arrays.copyOf(queue, size);
428 >    }
429 >
430 >    /**
431 >     * Returns an array containing all of the elements in this queue; the
432 >     * runtime type of the returned array is that of the specified array.
433 >     * The returned array elements are in no particular order.
434 >     * If the queue fits in the specified array, it is returned therein.
435 >     * Otherwise, a new array is allocated with the runtime type of the
436 >     * specified array and the size of this queue.
437 >     *
438 >     * <p>If the queue fits in the specified array with room to spare
439 >     * (i.e., the array has more elements than the queue), the element in
440 >     * the array immediately following the end of the collection is set to
441 >     * {@code null}.
442 >     *
443 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
444 >     * array-based and collection-based APIs.  Further, this method allows
445 >     * precise control over the runtime type of the output array, and may,
446 >     * under certain circumstances, be used to save allocation costs.
447 >     *
448 >     * <p>Suppose {@code x} is a queue known to contain only strings.
449 >     * The following code can be used to dump the queue into a newly
450 >     * allocated array of {@code String}:
451 >     *
452 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
453 >     *
454 >     * Note that {@code toArray(new Object[0])} is identical in function to
455 >     * {@code toArray()}.
456 >     *
457 >     * @param a the array into which the elements of the queue are to
458 >     *          be stored, if it is big enough; otherwise, a new array of the
459 >     *          same runtime type is allocated for this purpose.
460 >     * @return an array containing all of the elements in this queue
461 >     * @throws ArrayStoreException if the runtime type of the specified array
462 >     *         is not a supertype of the runtime type of every element in
463 >     *         this queue
464 >     * @throws NullPointerException if the specified array is null
465 >     */
466 >    public <T> T[] toArray(T[] a) {
467 >        final int size = this.size;
468 >        if (a.length < size)
469 >            // Make a new array of a's runtime type, but my contents:
470 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
471 >        System.arraycopy(queue, 0, a, 0, size);
472 >        if (a.length > size)
473 >            a[size] = null;
474 >        return a;
475 >    }
476 >
477 >    /**
478 >     * Returns an iterator over the elements in this queue. The iterator
479 >     * does not return the elements in any particular order.
480 >     *
481 >     * @return an iterator over the elements in this queue
482 >     */
483 >    public Iterator<E> iterator() {
484 >        return new Itr();
485      }
486  
487 <    public <T> T[] toArray(T[] array) {
487 >    private final class Itr implements Iterator<E> {
488 >        /**
489 >         * Index (into queue array) of element to be returned by
490 >         * subsequent call to next.
491 >         */
492 >        private int cursor;
493 >
494 >        /**
495 >         * Index of element returned by most recent call to next,
496 >         * unless that element came from the forgetMeNot list.
497 >         * Set to -1 if element is deleted by a call to remove.
498 >         */
499 >        private int lastRet = -1;
500 >
501 >        /**
502 >         * A queue of elements that were moved from the unvisited portion of
503 >         * the heap into the visited portion as a result of "unlucky" element
504 >         * removals during the iteration.  (Unlucky element removals are those
505 >         * that require a siftup instead of a siftdown.)  We must visit all of
506 >         * the elements in this list to complete the iteration.  We do this
507 >         * after we've completed the "normal" iteration.
508 >         *
509 >         * We expect that most iterations, even those involving removals,
510 >         * will not need to store elements in this field.
511 >         */
512 >        private ArrayDeque<E> forgetMeNot;
513 >
514 >        /**
515 >         * Element returned by the most recent call to next iff that
516 >         * element was drawn from the forgetMeNot list.
517 >         */
518 >        private E lastRetElt;
519 >
520 >        /**
521 >         * The modCount value that the iterator believes that the backing
522 >         * Queue should have.  If this expectation is violated, the iterator
523 >         * has detected concurrent modification.
524 >         */
525 >        private int expectedModCount = modCount;
526 >
527 >        Itr() {}                        // prevent access constructor creation
528 >
529 >        public boolean hasNext() {
530 >            return cursor < size ||
531 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
532 >        }
533 >
534 >        public E next() {
535 >            if (expectedModCount != modCount)
536 >                throw new ConcurrentModificationException();
537 >            if (cursor < size)
538 >                return (E) queue[lastRet = cursor++];
539 >            if (forgetMeNot != null) {
540 >                lastRet = -1;
541 >                lastRetElt = forgetMeNot.poll();
542 >                if (lastRetElt != null)
543 >                    return lastRetElt;
544 >            }
545 >            throw new NoSuchElementException();
546 >        }
547 >
548 >        public void remove() {
549 >            if (expectedModCount != modCount)
550 >                throw new ConcurrentModificationException();
551 >            if (lastRet != -1) {
552 >                E moved = PriorityQueue.this.removeAt(lastRet);
553 >                lastRet = -1;
554 >                if (moved == null)
555 >                    cursor--;
556 >                else {
557 >                    if (forgetMeNot == null)
558 >                        forgetMeNot = new ArrayDeque<>();
559 >                    forgetMeNot.add(moved);
560 >                }
561 >            } else if (lastRetElt != null) {
562 >                PriorityQueue.this.removeEq(lastRetElt);
563 >                lastRetElt = null;
564 >            } else {
565 >                throw new IllegalStateException();
566 >            }
567 >            expectedModCount = modCount;
568 >        }
569 >    }
570 >
571 >    public int size() {
572 >        return size;
573 >    }
574 >
575 >    /**
576 >     * Removes all of the elements from this priority queue.
577 >     * The queue will be empty after this call returns.
578 >     */
579 >    public void clear() {
580 >        modCount++;
581 >        final Object[] es = queue;
582 >        for (int i = 0, n = size; i < n; i++)
583 >            es[i] = null;
584 >        size = 0;
585 >    }
586 >
587 >    public E poll() {
588 >        final Object[] es;
589 >        final E result;
590 >
591 >        if ((result = (E) ((es = queue)[0])) != null) {
592 >            modCount++;
593 >            final int n;
594 >            final E x = (E) es[(n = --size)];
595 >            es[n] = null;
596 >            if (n > 0) {
597 >                final Comparator<? super E> cmp;
598 >                if ((cmp = comparator) == null)
599 >                    siftDownComparable(0, x, es, n);
600 >                else
601 >                    siftDownUsingComparator(0, x, es, n, cmp);
602 >            }
603 >        }
604 >        return result;
605 >    }
606 >
607 >    /**
608 >     * Removes the ith element from queue.
609 >     *
610 >     * Normally this method leaves the elements at up to i-1,
611 >     * inclusive, untouched.  Under these circumstances, it returns
612 >     * null.  Occasionally, in order to maintain the heap invariant,
613 >     * it must swap a later element of the list with one earlier than
614 >     * i.  Under these circumstances, this method returns the element
615 >     * that was previously at the end of the list and is now at some
616 >     * position before i. This fact is used by iterator.remove so as to
617 >     * avoid missing traversing elements.
618 >     */
619 >    E removeAt(int i) {
620 >        // assert i >= 0 && i < size;
621 >        final Object[] es = queue;
622 >        modCount++;
623 >        int s = --size;
624 >        if (s == i) // removed last element
625 >            es[i] = null;
626 >        else {
627 >            E moved = (E) es[s];
628 >            es[s] = null;
629 >            siftDown(i, moved);
630 >            if (es[i] == moved) {
631 >                siftUp(i, moved);
632 >                if (es[i] != moved)
633 >                    return moved;
634 >            }
635 >        }
636          return null;
637      }
638  
639 +    /**
640 +     * Inserts item x at position k, maintaining heap invariant by
641 +     * promoting x up the tree until it is greater than or equal to
642 +     * its parent, or is the root.
643 +     *
644 +     * To simplify and speed up coercions and comparisons, the
645 +     * Comparable and Comparator versions are separated into different
646 +     * methods that are otherwise identical. (Similarly for siftDown.)
647 +     *
648 +     * @param k the position to fill
649 +     * @param x the item to insert
650 +     */
651 +    private void siftUp(int k, E x) {
652 +        if (comparator != null)
653 +            siftUpUsingComparator(k, x, queue, comparator);
654 +        else
655 +            siftUpComparable(k, x, queue);
656 +    }
657 +
658 +    private static <T> void siftUpComparable(int k, T x, Object[] es) {
659 +        Comparable<? super T> key = (Comparable<? super T>) x;
660 +        while (k > 0) {
661 +            int parent = (k - 1) >>> 1;
662 +            Object e = es[parent];
663 +            if (key.compareTo((T) e) >= 0)
664 +                break;
665 +            es[k] = e;
666 +            k = parent;
667 +        }
668 +        es[k] = key;
669 +    }
670 +
671 +    private static <T> void siftUpUsingComparator(
672 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
673 +        while (k > 0) {
674 +            int parent = (k - 1) >>> 1;
675 +            Object e = es[parent];
676 +            if (cmp.compare(x, (T) e) >= 0)
677 +                break;
678 +            es[k] = e;
679 +            k = parent;
680 +        }
681 +        es[k] = x;
682 +    }
683 +
684 +    /**
685 +     * Inserts item x at position k, maintaining heap invariant by
686 +     * demoting x down the tree repeatedly until it is less than or
687 +     * equal to its children or is a leaf.
688 +     *
689 +     * @param k the position to fill
690 +     * @param x the item to insert
691 +     */
692 +    private void siftDown(int k, E x) {
693 +        if (comparator != null)
694 +            siftDownUsingComparator(k, x, queue, size, comparator);
695 +        else
696 +            siftDownComparable(k, x, queue, size);
697 +    }
698 +
699 +    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
700 +        // assert n > 0;
701 +        Comparable<? super T> key = (Comparable<? super T>)x;
702 +        int half = n >>> 1;           // loop while a non-leaf
703 +        while (k < half) {
704 +            int child = (k << 1) + 1; // assume left child is least
705 +            Object c = es[child];
706 +            int right = child + 1;
707 +            if (right < n &&
708 +                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
709 +                c = es[child = right];
710 +            if (key.compareTo((T) c) <= 0)
711 +                break;
712 +            es[k] = c;
713 +            k = child;
714 +        }
715 +        es[k] = key;
716 +    }
717 +
718 +    private static <T> void siftDownUsingComparator(
719 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
720 +        // assert n > 0;
721 +        int half = n >>> 1;
722 +        while (k < half) {
723 +            int child = (k << 1) + 1;
724 +            Object c = es[child];
725 +            int right = child + 1;
726 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
727 +                c = es[child = right];
728 +            if (cmp.compare(x, (T) c) <= 0)
729 +                break;
730 +            es[k] = c;
731 +            k = child;
732 +        }
733 +        es[k] = x;
734 +    }
735 +
736 +    /**
737 +     * Establishes the heap invariant (described above) in the entire tree,
738 +     * assuming nothing about the order of the elements prior to the call.
739 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
740 +     */
741 +    private void heapify() {
742 +        final Object[] es = queue;
743 +        int n = size, i = (n >>> 1) - 1;
744 +        final Comparator<? super E> cmp;
745 +        if ((cmp = comparator) == null)
746 +            for (; i >= 0; i--)
747 +                siftDownComparable(i, (E) es[i], es, n);
748 +        else
749 +            for (; i >= 0; i--)
750 +                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
751 +    }
752 +
753 +    /**
754 +     * Returns the comparator used to order the elements in this
755 +     * queue, or {@code null} if this queue is sorted according to
756 +     * the {@linkplain Comparable natural ordering} of its elements.
757 +     *
758 +     * @return the comparator used to order this queue, or
759 +     *         {@code null} if this queue is sorted according to the
760 +     *         natural ordering of its elements
761 +     */
762 +    public Comparator<? super E> comparator() {
763 +        return comparator;
764 +    }
765 +
766 +    /**
767 +     * Saves this queue to a stream (that is, serializes it).
768 +     *
769 +     * @param s the stream
770 +     * @throws java.io.IOException if an I/O error occurs
771 +     * @serialData The length of the array backing the instance is
772 +     *             emitted (int), followed by all of its elements
773 +     *             (each an {@code Object}) in the proper order.
774 +     */
775 +    private void writeObject(java.io.ObjectOutputStream s)
776 +        throws java.io.IOException {
777 +        // Write out element count, and any hidden stuff
778 +        s.defaultWriteObject();
779 +
780 +        // Write out array length, for compatibility with 1.5 version
781 +        s.writeInt(Math.max(2, size + 1));
782 +
783 +        // Write out all elements in the "proper order".
784 +        final Object[] es = queue;
785 +        for (int i = 0, n = size; i < n; i++)
786 +            s.writeObject(es[i]);
787 +    }
788 +
789 +    /**
790 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
791 +     * (that is, deserializes it).
792 +     *
793 +     * @param s the stream
794 +     * @throws ClassNotFoundException if the class of a serialized object
795 +     *         could not be found
796 +     * @throws java.io.IOException if an I/O error occurs
797 +     */
798 +    private void readObject(java.io.ObjectInputStream s)
799 +        throws java.io.IOException, ClassNotFoundException {
800 +        // Read in size, and any hidden stuff
801 +        s.defaultReadObject();
802 +
803 +        // Read in (and discard) array length
804 +        s.readInt();
805 +
806 +        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
807 +        final Object[] es = queue = new Object[Math.max(size, 1)];
808 +
809 +        // Read in all elements.
810 +        for (int i = 0, n = size; i < n; i++)
811 +            es[i] = s.readObject();
812 +
813 +        // Elements are guaranteed to be in "proper order", but the
814 +        // spec has never explained what that might be.
815 +        heapify();
816 +    }
817 +
818 +    /**
819 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
820 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
821 +     * queue. The spliterator does not traverse elements in any particular order
822 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
823 +     *
824 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
825 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
826 +     * Overriding implementations should document the reporting of additional
827 +     * characteristic values.
828 +     *
829 +     * @return a {@code Spliterator} over the elements in this queue
830 +     * @since 1.8
831 +     */
832 +    public final Spliterator<E> spliterator() {
833 +        return new PriorityQueueSpliterator(0, -1, 0);
834 +    }
835 +
836 +    final class PriorityQueueSpliterator implements Spliterator<E> {
837 +        private int index;            // current index, modified on advance/split
838 +        private int fence;            // -1 until first use
839 +        private int expectedModCount; // initialized when fence set
840 +
841 +        /** Creates new spliterator covering the given range. */
842 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
843 +            this.index = origin;
844 +            this.fence = fence;
845 +            this.expectedModCount = expectedModCount;
846 +        }
847 +
848 +        private int getFence() { // initialize fence to size on first use
849 +            int hi;
850 +            if ((hi = fence) < 0) {
851 +                expectedModCount = modCount;
852 +                hi = fence = size;
853 +            }
854 +            return hi;
855 +        }
856 +
857 +        public PriorityQueueSpliterator trySplit() {
858 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
859 +            return (lo >= mid) ? null :
860 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
861 +        }
862 +
863 +        public void forEachRemaining(Consumer<? super E> action) {
864 +            if (action == null)
865 +                throw new NullPointerException();
866 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
867 +            final Object[] es = queue;
868 +            int i, hi; E e;
869 +            for (i = index, index = hi = fence; i < hi; i++) {
870 +                if ((e = (E) es[i]) == null)
871 +                    break;      // must be CME
872 +                action.accept(e);
873 +            }
874 +            if (modCount != expectedModCount)
875 +                throw new ConcurrentModificationException();
876 +        }
877 +
878 +        public boolean tryAdvance(Consumer<? super E> action) {
879 +            if (action == null)
880 +                throw new NullPointerException();
881 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
882 +            int i;
883 +            if ((i = index) < fence) {
884 +                index = i + 1;
885 +                E e;
886 +                if ((e = (E) queue[i]) == null
887 +                    || modCount != expectedModCount)
888 +                    throw new ConcurrentModificationException();
889 +                action.accept(e);
890 +                return true;
891 +            }
892 +            return false;
893 +        }
894 +
895 +        public long estimateSize() {
896 +            return getFence() - index;
897 +        }
898 +
899 +        public int characteristics() {
900 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
901 +        }
902 +    }
903 +
904 +    /**
905 +     * @throws NullPointerException {@inheritDoc}
906 +     */
907 +    public boolean removeIf(Predicate<? super E> filter) {
908 +        Objects.requireNonNull(filter);
909 +        return bulkRemove(filter);
910 +    }
911 +
912 +    /**
913 +     * @throws NullPointerException {@inheritDoc}
914 +     */
915 +    public boolean removeAll(Collection<?> c) {
916 +        Objects.requireNonNull(c);
917 +        return bulkRemove(e -> c.contains(e));
918 +    }
919 +
920 +    /**
921 +     * @throws NullPointerException {@inheritDoc}
922 +     */
923 +    public boolean retainAll(Collection<?> c) {
924 +        Objects.requireNonNull(c);
925 +        return bulkRemove(e -> !c.contains(e));
926 +    }
927 +
928 +    // A tiny bit set implementation
929 +
930 +    private static long[] nBits(int n) {
931 +        return new long[((n - 1) >> 6) + 1];
932 +    }
933 +    private static void setBit(long[] bits, int i) {
934 +        bits[i >> 6] |= 1L << i;
935 +    }
936 +    private static boolean isClear(long[] bits, int i) {
937 +        return (bits[i >> 6] & (1L << i)) == 0;
938 +    }
939 +
940 +    /** Implementation of bulk remove methods. */
941 +    private boolean bulkRemove(Predicate<? super E> filter) {
942 +        final int expectedModCount = ++modCount;
943 +        final Object[] es = queue;
944 +        final int end = size;
945 +        int i;
946 +        // Optimize for initial run of survivors
947 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
948 +            ;
949 +        if (i >= end) {
950 +            if (modCount != expectedModCount)
951 +                throw new ConcurrentModificationException();
952 +            return false;
953 +        }
954 +        // Tolerate predicates that reentrantly access the collection for
955 +        // read (but writers still get CME), so traverse once to find
956 +        // elements to delete, a second pass to physically expunge.
957 +        final int beg = i;
958 +        final long[] deathRow = nBits(end - beg);
959 +        deathRow[0] = 1L;   // set bit 0
960 +        for (i = beg + 1; i < end; i++)
961 +            if (filter.test((E) es[i]))
962 +                setBit(deathRow, i - beg);
963 +        if (modCount != expectedModCount)
964 +            throw new ConcurrentModificationException();
965 +        int w = beg;
966 +        for (i = beg; i < end; i++)
967 +            if (isClear(deathRow, i - beg))
968 +                es[w++] = es[i];
969 +        for (i = size = w; i < end; i++)
970 +            es[i] = null;
971 +        heapify();
972 +        return true;
973 +    }
974 +
975 +    /**
976 +     * @throws NullPointerException {@inheritDoc}
977 +     */
978 +    public void forEach(Consumer<? super E> action) {
979 +        Objects.requireNonNull(action);
980 +        final int expectedModCount = modCount;
981 +        final Object[] es = queue;
982 +        for (int i = 0, n = size; i < n; i++)
983 +            action.accept((E) es[i]);
984 +        if (expectedModCount != modCount)
985 +            throw new ConcurrentModificationException();
986 +    }
987   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines