ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.131 by jsr166, Wed May 22 17:36:58 2019 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 + *
5 + * This code is free software; you can redistribute it and/or modify it
6 + * under the terms of the GNU General Public License version 2 only, as
7 + * published by the Free Software Foundation.  Oracle designates this
8 + * particular file as subject to the "Classpath" exception as provided
9 + * by Oracle in the LICENSE file that accompanied this code.
10 + *
11 + * This code is distributed in the hope that it will be useful, but WITHOUT
12 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 + * version 2 for more details (a copy is included in the LICENSE file that
15 + * accompanied this code).
16 + *
17 + * You should have received a copy of the GNU General Public License version
18 + * 2 along with this work; if not, write to the Free Software Foundation,
19 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 + *
21 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 + * or visit www.oracle.com if you need additional information or have any
23 + * questions.
24 + */
25 +
26   package java.util;
27  
28 < import java.util.*;
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31 > import jdk.internal.util.ArraysSupport;
32  
33   /**
34 < * An unbounded (resizable) priority queue based on a priority
35 < * heap.The take operation returns the least element with respect to
36 < * the given ordering. (If more than one element is tied for least
37 < * value, one of them is arbitrarily chosen to be returned -- no
38 < * guarantees are made for ordering across ties.) Ordering follows the
39 < * java.util.Collection conventions: Either the elements must be
40 < * Comparable, or a Comparator must be supplied. Comparison failures
41 < * throw ClassCastExceptions during insertions and extractions.
42 < **/
43 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
44 <    public PriorityQueue(int initialCapacity) {}
45 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
46 <
47 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
48 <
49 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
50 <
51 <    public boolean add(E x) {
52 <        return false;
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42 > *
43 > * <p>The <em>head</em> of this queue is the <em>least</em> element
44 > * with respect to the specified ordering.  If multiple elements are
45 > * tied for least value, the head is one of those elements -- ties are
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48 > * element at the head of the queue.
49 > *
50 > * <p>A priority queue is unbounded, but has an internal
51 > * <i>capacity</i> governing the size of an array used to store the
52 > * elements on the queue.  It is always at least as large as the queue
53 > * size.  As elements are added to a priority queue, its capacity
54 > * grows automatically.  The details of the growth policy are not
55 > * specified.
56 > *
57 > * <p>This class and its iterator implement all of the
58 > * <em>optional</em> methods of the {@link Collection} and {@link
59 > * Iterator} interfaces.  The Iterator provided in method {@link
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62 > * the priority queue in any particular order. If you need ordered
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 > *
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69 > * java.util.concurrent.PriorityBlockingQueue} class.
70 > *
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77 > *
78 > * <p>This class is a member of the
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80 > * Java Collections Framework</a>.
81 > *
82 > * @since 1.5
83 > * @author Josh Bloch, Doug Lea
84 > * @param <E> the type of elements held in this queue
85 > */
86 > @SuppressWarnings("unchecked")
87 > public class PriorityQueue<E> extends AbstractQueue<E>
88 >    implements java.io.Serializable {
89 >
90 >    private static final long serialVersionUID = -7720805057305804111L;
91 >
92 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
93 >
94 >    /**
95 >     * Priority queue represented as a balanced binary heap: the two
96 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
97 >     * priority queue is ordered by comparator, or by the elements'
98 >     * natural ordering, if comparator is null: For each node n in the
99 >     * heap and each descendant d of n, n <= d.  The element with the
100 >     * lowest value is in queue[0], assuming the queue is nonempty.
101 >     */
102 >    transient Object[] queue; // non-private to simplify nested class access
103 >
104 >    /**
105 >     * The number of elements in the priority queue.
106 >     */
107 >    int size;
108 >
109 >    /**
110 >     * The comparator, or null if priority queue uses elements'
111 >     * natural ordering.
112 >     */
113 >    private final Comparator<? super E> comparator;
114 >
115 >    /**
116 >     * The number of times this priority queue has been
117 >     * <i>structurally modified</i>.  See AbstractList for gory details.
118 >     */
119 >    transient int modCount;     // non-private to simplify nested class access
120 >
121 >    /**
122 >     * Creates a {@code PriorityQueue} with the default initial
123 >     * capacity (11) that orders its elements according to their
124 >     * {@linkplain Comparable natural ordering}.
125 >     */
126 >    public PriorityQueue() {
127 >        this(DEFAULT_INITIAL_CAPACITY, null);
128      }
129 <    public boolean offer(E x) {
130 <        return false;
129 >
130 >    /**
131 >     * Creates a {@code PriorityQueue} with the specified initial
132 >     * capacity that orders its elements according to their
133 >     * {@linkplain Comparable natural ordering}.
134 >     *
135 >     * @param initialCapacity the initial capacity for this priority queue
136 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
137 >     *         than 1
138 >     */
139 >    public PriorityQueue(int initialCapacity) {
140 >        this(initialCapacity, null);
141      }
142 <    public boolean remove(Object x) {
143 <        return false;
142 >
143 >    /**
144 >     * Creates a {@code PriorityQueue} with the default initial capacity and
145 >     * whose elements are ordered according to the specified comparator.
146 >     *
147 >     * @param  comparator the comparator that will be used to order this
148 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
149 >     *         natural ordering} of the elements will be used.
150 >     * @since 1.8
151 >     */
152 >    public PriorityQueue(Comparator<? super E> comparator) {
153 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
154      }
155  
156 <    public E remove() {
157 <        return null;
156 >    /**
157 >     * Creates a {@code PriorityQueue} with the specified initial capacity
158 >     * that orders its elements according to the specified comparator.
159 >     *
160 >     * @param  initialCapacity the initial capacity for this priority queue
161 >     * @param  comparator the comparator that will be used to order this
162 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
163 >     *         natural ordering} of the elements will be used.
164 >     * @throws IllegalArgumentException if {@code initialCapacity} is
165 >     *         less than 1
166 >     */
167 >    public PriorityQueue(int initialCapacity,
168 >                         Comparator<? super E> comparator) {
169 >        // Note: This restriction of at least one is not actually needed,
170 >        // but continues for 1.5 compatibility
171 >        if (initialCapacity < 1)
172 >            throw new IllegalArgumentException();
173 >        this.queue = new Object[initialCapacity];
174 >        this.comparator = comparator;
175      }
176 <    public Iterator<E> iterator() {
177 <      return null;
176 >
177 >    /**
178 >     * Creates a {@code PriorityQueue} containing the elements in the
179 >     * specified collection.  If the specified collection is an instance of
180 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
181 >     * priority queue will be ordered according to the same ordering.
182 >     * Otherwise, this priority queue will be ordered according to the
183 >     * {@linkplain Comparable natural ordering} of its elements.
184 >     *
185 >     * @param  c the collection whose elements are to be placed
186 >     *         into this priority queue
187 >     * @throws ClassCastException if elements of the specified collection
188 >     *         cannot be compared to one another according to the priority
189 >     *         queue's ordering
190 >     * @throws NullPointerException if the specified collection or any
191 >     *         of its elements are null
192 >     */
193 >    public PriorityQueue(Collection<? extends E> c) {
194 >        if (c instanceof SortedSet<?>) {
195 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
196 >            this.comparator = (Comparator<? super E>) ss.comparator();
197 >            initElementsFromCollection(ss);
198 >        }
199 >        else if (c instanceof PriorityQueue<?>) {
200 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
201 >            this.comparator = (Comparator<? super E>) pq.comparator();
202 >            initFromPriorityQueue(pq);
203 >        }
204 >        else {
205 >            this.comparator = null;
206 >            initFromCollection(c);
207 >        }
208      }
209  
210 <    public E element() {
211 <        return null;
210 >    /**
211 >     * Creates a {@code PriorityQueue} containing the elements in the
212 >     * specified priority queue.  This priority queue will be
213 >     * ordered according to the same ordering as the given priority
214 >     * queue.
215 >     *
216 >     * @param  c the priority queue whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of {@code c} cannot be
219 >     *         compared to one another according to {@code c}'s
220 >     *         ordering
221 >     * @throws NullPointerException if the specified priority queue or any
222 >     *         of its elements are null
223 >     */
224 >    public PriorityQueue(PriorityQueue<? extends E> c) {
225 >        this.comparator = (Comparator<? super E>) c.comparator();
226 >        initFromPriorityQueue(c);
227      }
228 <    public E poll() {
229 <        return null;
228 >
229 >    /**
230 >     * Creates a {@code PriorityQueue} containing the elements in the
231 >     * specified sorted set.   This priority queue will be ordered
232 >     * according to the same ordering as the given sorted set.
233 >     *
234 >     * @param  c the sorted set whose elements are to be placed
235 >     *         into this priority queue
236 >     * @throws ClassCastException if elements of the specified sorted
237 >     *         set cannot be compared to one another according to the
238 >     *         sorted set's ordering
239 >     * @throws NullPointerException if the specified sorted set or any
240 >     *         of its elements are null
241 >     */
242 >    public PriorityQueue(SortedSet<? extends E> c) {
243 >        this.comparator = (Comparator<? super E>) c.comparator();
244 >        initElementsFromCollection(c);
245 >    }
246 >
247 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
248 >    private static Object[] ensureNonEmpty(Object[] es) {
249 >        return (es.length > 0) ? es : new Object[1];
250 >    }
251 >
252 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
253 >        if (c.getClass() == PriorityQueue.class) {
254 >            this.queue = ensureNonEmpty(c.toArray());
255 >            this.size = c.size();
256 >        } else {
257 >            initFromCollection(c);
258 >        }
259 >    }
260 >
261 >    private void initElementsFromCollection(Collection<? extends E> c) {
262 >        Object[] es = c.toArray();
263 >        int len = es.length;
264 >        // If c.toArray incorrectly doesn't return Object[], copy it.
265 >        if (es.getClass() != Object[].class)
266 >            es = Arrays.copyOf(es, len, Object[].class);
267 >        if (len == 1 || this.comparator != null)
268 >            for (Object e : es)
269 >                if (e == null)
270 >                    throw new NullPointerException();
271 >        this.queue = ensureNonEmpty(es);
272 >        this.size = len;
273 >    }
274 >
275 >    /**
276 >     * Initializes queue array with elements from the given Collection.
277 >     *
278 >     * @param c the collection
279 >     */
280 >    private void initFromCollection(Collection<? extends E> c) {
281 >        initElementsFromCollection(c);
282 >        heapify();
283 >    }
284 >
285 >    /**
286 >     * Increases the capacity of the array.
287 >     *
288 >     * @param minCapacity the desired minimum capacity
289 >     */
290 >    private void grow(int minCapacity) {
291 >        int oldCapacity = queue.length;
292 >        // Double size if small; else grow by 50%
293 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
294 >                minCapacity - oldCapacity, /* minimum growth */
295 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
296 >                                           /* preferred growth */);
297 >        queue = Arrays.copyOf(queue, newCapacity);
298 >    }
299 >
300 >    /**
301 >     * Inserts the specified element into this priority queue.
302 >     *
303 >     * @return {@code true} (as specified by {@link Collection#add})
304 >     * @throws ClassCastException if the specified element cannot be
305 >     *         compared with elements currently in this priority queue
306 >     *         according to the priority queue's ordering
307 >     * @throws NullPointerException if the specified element is null
308 >     */
309 >    public boolean add(E e) {
310 >        return offer(e);
311      }
312 +
313 +    /**
314 +     * Inserts the specified element into this priority queue.
315 +     *
316 +     * @return {@code true} (as specified by {@link Queue#offer})
317 +     * @throws ClassCastException if the specified element cannot be
318 +     *         compared with elements currently in this priority queue
319 +     *         according to the priority queue's ordering
320 +     * @throws NullPointerException if the specified element is null
321 +     */
322 +    public boolean offer(E e) {
323 +        if (e == null)
324 +            throw new NullPointerException();
325 +        modCount++;
326 +        int i = size;
327 +        if (i >= queue.length)
328 +            grow(i + 1);
329 +        siftUp(i, e);
330 +        size = i + 1;
331 +        return true;
332 +    }
333 +
334      public E peek() {
335 <        return null;
335 >        return (E) queue[0];
336      }
337  
338 <    public boolean isEmpty() {
339 <        return false;
338 >    private int indexOf(Object o) {
339 >        if (o != null) {
340 >            final Object[] es = queue;
341 >            for (int i = 0, n = size; i < n; i++)
342 >                if (o.equals(es[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346      }
347 <    public int size() {
348 <        return 0;
347 >
348 >    /**
349 >     * Removes a single instance of the specified element from this queue,
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354 >     * result of the call).
355 >     *
356 >     * @param o element to be removed from this queue, if present
357 >     * @return {@code true} if this queue changed as a result of the call
358 >     */
359 >    public boolean remove(Object o) {
360 >        int i = indexOf(o);
361 >        if (i == -1)
362 >            return false;
363 >        else {
364 >            removeAt(i);
365 >            return true;
366 >        }
367 >    }
368 >
369 >    /**
370 >     * Identity-based version for use in Itr.remove.
371 >     *
372 >     * @param o element to be removed from this queue, if present
373 >     */
374 >    void removeEq(Object o) {
375 >        final Object[] es = queue;
376 >        for (int i = 0, n = size; i < n; i++) {
377 >            if (o == es[i]) {
378 >                removeAt(i);
379 >                break;
380 >            }
381 >        }
382      }
383 +
384 +    /**
385 +     * Returns {@code true} if this queue contains the specified element.
386 +     * More formally, returns {@code true} if and only if this queue contains
387 +     * at least one element {@code e} such that {@code o.equals(e)}.
388 +     *
389 +     * @param o object to be checked for containment in this queue
390 +     * @return {@code true} if this queue contains the specified element
391 +     */
392 +    public boolean contains(Object o) {
393 +        return indexOf(o) >= 0;
394 +    }
395 +
396 +    /**
397 +     * Returns an array containing all of the elements in this queue.
398 +     * The elements are in no particular order.
399 +     *
400 +     * <p>The returned array will be "safe" in that no references to it are
401 +     * maintained by this queue.  (In other words, this method must allocate
402 +     * a new array).  The caller is thus free to modify the returned array.
403 +     *
404 +     * <p>This method acts as bridge between array-based and collection-based
405 +     * APIs.
406 +     *
407 +     * @return an array containing all of the elements in this queue
408 +     */
409      public Object[] toArray() {
410 <        return null;
410 >        return Arrays.copyOf(queue, size);
411 >    }
412 >
413 >    /**
414 >     * Returns an array containing all of the elements in this queue; the
415 >     * runtime type of the returned array is that of the specified array.
416 >     * The returned array elements are in no particular order.
417 >     * If the queue fits in the specified array, it is returned therein.
418 >     * Otherwise, a new array is allocated with the runtime type of the
419 >     * specified array and the size of this queue.
420 >     *
421 >     * <p>If the queue fits in the specified array with room to spare
422 >     * (i.e., the array has more elements than the queue), the element in
423 >     * the array immediately following the end of the collection is set to
424 >     * {@code null}.
425 >     *
426 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
427 >     * array-based and collection-based APIs.  Further, this method allows
428 >     * precise control over the runtime type of the output array, and may,
429 >     * under certain circumstances, be used to save allocation costs.
430 >     *
431 >     * <p>Suppose {@code x} is a queue known to contain only strings.
432 >     * The following code can be used to dump the queue into a newly
433 >     * allocated array of {@code String}:
434 >     *
435 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436 >     *
437 >     * Note that {@code toArray(new Object[0])} is identical in function to
438 >     * {@code toArray()}.
439 >     *
440 >     * @param a the array into which the elements of the queue are to
441 >     *          be stored, if it is big enough; otherwise, a new array of the
442 >     *          same runtime type is allocated for this purpose.
443 >     * @return an array containing all of the elements in this queue
444 >     * @throws ArrayStoreException if the runtime type of the specified array
445 >     *         is not a supertype of the runtime type of every element in
446 >     *         this queue
447 >     * @throws NullPointerException if the specified array is null
448 >     */
449 >    public <T> T[] toArray(T[] a) {
450 >        final int size = this.size;
451 >        if (a.length < size)
452 >            // Make a new array of a's runtime type, but my contents:
453 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
454 >        System.arraycopy(queue, 0, a, 0, size);
455 >        if (a.length > size)
456 >            a[size] = null;
457 >        return a;
458 >    }
459 >
460 >    /**
461 >     * Returns an iterator over the elements in this queue. The iterator
462 >     * does not return the elements in any particular order.
463 >     *
464 >     * @return an iterator over the elements in this queue
465 >     */
466 >    public Iterator<E> iterator() {
467 >        return new Itr();
468 >    }
469 >
470 >    private final class Itr implements Iterator<E> {
471 >        /**
472 >         * Index (into queue array) of element to be returned by
473 >         * subsequent call to next.
474 >         */
475 >        private int cursor;
476 >
477 >        /**
478 >         * Index of element returned by most recent call to next,
479 >         * unless that element came from the forgetMeNot list.
480 >         * Set to -1 if element is deleted by a call to remove.
481 >         */
482 >        private int lastRet = -1;
483 >
484 >        /**
485 >         * A queue of elements that were moved from the unvisited portion of
486 >         * the heap into the visited portion as a result of "unlucky" element
487 >         * removals during the iteration.  (Unlucky element removals are those
488 >         * that require a siftup instead of a siftdown.)  We must visit all of
489 >         * the elements in this list to complete the iteration.  We do this
490 >         * after we've completed the "normal" iteration.
491 >         *
492 >         * We expect that most iterations, even those involving removals,
493 >         * will not need to store elements in this field.
494 >         */
495 >        private ArrayDeque<E> forgetMeNot;
496 >
497 >        /**
498 >         * Element returned by the most recent call to next iff that
499 >         * element was drawn from the forgetMeNot list.
500 >         */
501 >        private E lastRetElt;
502 >
503 >        /**
504 >         * The modCount value that the iterator believes that the backing
505 >         * Queue should have.  If this expectation is violated, the iterator
506 >         * has detected concurrent modification.
507 >         */
508 >        private int expectedModCount = modCount;
509 >
510 >        Itr() {}                        // prevent access constructor creation
511 >
512 >        public boolean hasNext() {
513 >            return cursor < size ||
514 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
515 >        }
516 >
517 >        public E next() {
518 >            if (expectedModCount != modCount)
519 >                throw new ConcurrentModificationException();
520 >            if (cursor < size)
521 >                return (E) queue[lastRet = cursor++];
522 >            if (forgetMeNot != null) {
523 >                lastRet = -1;
524 >                lastRetElt = forgetMeNot.poll();
525 >                if (lastRetElt != null)
526 >                    return lastRetElt;
527 >            }
528 >            throw new NoSuchElementException();
529 >        }
530 >
531 >        public void remove() {
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (lastRet != -1) {
535 >                E moved = PriorityQueue.this.removeAt(lastRet);
536 >                lastRet = -1;
537 >                if (moved == null)
538 >                    cursor--;
539 >                else {
540 >                    if (forgetMeNot == null)
541 >                        forgetMeNot = new ArrayDeque<>();
542 >                    forgetMeNot.add(moved);
543 >                }
544 >            } else if (lastRetElt != null) {
545 >                PriorityQueue.this.removeEq(lastRetElt);
546 >                lastRetElt = null;
547 >            } else {
548 >                throw new IllegalStateException();
549 >            }
550 >            expectedModCount = modCount;
551 >        }
552 >    }
553 >
554 >    public int size() {
555 >        return size;
556 >    }
557 >
558 >    /**
559 >     * Removes all of the elements from this priority queue.
560 >     * The queue will be empty after this call returns.
561 >     */
562 >    public void clear() {
563 >        modCount++;
564 >        final Object[] es = queue;
565 >        for (int i = 0, n = size; i < n; i++)
566 >            es[i] = null;
567 >        size = 0;
568 >    }
569 >
570 >    public E poll() {
571 >        final Object[] es;
572 >        final E result;
573 >
574 >        if ((result = (E) ((es = queue)[0])) != null) {
575 >            modCount++;
576 >            final int n;
577 >            final E x = (E) es[(n = --size)];
578 >            es[n] = null;
579 >            if (n > 0) {
580 >                final Comparator<? super E> cmp;
581 >                if ((cmp = comparator) == null)
582 >                    siftDownComparable(0, x, es, n);
583 >                else
584 >                    siftDownUsingComparator(0, x, es, n, cmp);
585 >            }
586 >        }
587 >        return result;
588      }
589  
590 <    public <T> T[] toArray(T[] array) {
590 >    /**
591 >     * Removes the ith element from queue.
592 >     *
593 >     * Normally this method leaves the elements at up to i-1,
594 >     * inclusive, untouched.  Under these circumstances, it returns
595 >     * null.  Occasionally, in order to maintain the heap invariant,
596 >     * it must swap a later element of the list with one earlier than
597 >     * i.  Under these circumstances, this method returns the element
598 >     * that was previously at the end of the list and is now at some
599 >     * position before i. This fact is used by iterator.remove so as to
600 >     * avoid missing traversing elements.
601 >     */
602 >    E removeAt(int i) {
603 >        // assert i >= 0 && i < size;
604 >        final Object[] es = queue;
605 >        modCount++;
606 >        int s = --size;
607 >        if (s == i) // removed last element
608 >            es[i] = null;
609 >        else {
610 >            E moved = (E) es[s];
611 >            es[s] = null;
612 >            siftDown(i, moved);
613 >            if (es[i] == moved) {
614 >                siftUp(i, moved);
615 >                if (es[i] != moved)
616 >                    return moved;
617 >            }
618 >        }
619          return null;
620      }
621  
622 +    /**
623 +     * Inserts item x at position k, maintaining heap invariant by
624 +     * promoting x up the tree until it is greater than or equal to
625 +     * its parent, or is the root.
626 +     *
627 +     * To simplify and speed up coercions and comparisons, the
628 +     * Comparable and Comparator versions are separated into different
629 +     * methods that are otherwise identical. (Similarly for siftDown.)
630 +     *
631 +     * @param k the position to fill
632 +     * @param x the item to insert
633 +     */
634 +    private void siftUp(int k, E x) {
635 +        if (comparator != null)
636 +            siftUpUsingComparator(k, x, queue, comparator);
637 +        else
638 +            siftUpComparable(k, x, queue);
639 +    }
640 +
641 +    private static <T> void siftUpComparable(int k, T x, Object[] es) {
642 +        Comparable<? super T> key = (Comparable<? super T>) x;
643 +        while (k > 0) {
644 +            int parent = (k - 1) >>> 1;
645 +            Object e = es[parent];
646 +            if (key.compareTo((T) e) >= 0)
647 +                break;
648 +            es[k] = e;
649 +            k = parent;
650 +        }
651 +        es[k] = key;
652 +    }
653 +
654 +    private static <T> void siftUpUsingComparator(
655 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
656 +        while (k > 0) {
657 +            int parent = (k - 1) >>> 1;
658 +            Object e = es[parent];
659 +            if (cmp.compare(x, (T) e) >= 0)
660 +                break;
661 +            es[k] = e;
662 +            k = parent;
663 +        }
664 +        es[k] = x;
665 +    }
666 +
667 +    /**
668 +     * Inserts item x at position k, maintaining heap invariant by
669 +     * demoting x down the tree repeatedly until it is less than or
670 +     * equal to its children or is a leaf.
671 +     *
672 +     * @param k the position to fill
673 +     * @param x the item to insert
674 +     */
675 +    private void siftDown(int k, E x) {
676 +        if (comparator != null)
677 +            siftDownUsingComparator(k, x, queue, size, comparator);
678 +        else
679 +            siftDownComparable(k, x, queue, size);
680 +    }
681 +
682 +    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
683 +        // assert n > 0;
684 +        Comparable<? super T> key = (Comparable<? super T>)x;
685 +        int half = n >>> 1;           // loop while a non-leaf
686 +        while (k < half) {
687 +            int child = (k << 1) + 1; // assume left child is least
688 +            Object c = es[child];
689 +            int right = child + 1;
690 +            if (right < n &&
691 +                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
692 +                c = es[child = right];
693 +            if (key.compareTo((T) c) <= 0)
694 +                break;
695 +            es[k] = c;
696 +            k = child;
697 +        }
698 +        es[k] = key;
699 +    }
700 +
701 +    private static <T> void siftDownUsingComparator(
702 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
703 +        // assert n > 0;
704 +        int half = n >>> 1;
705 +        while (k < half) {
706 +            int child = (k << 1) + 1;
707 +            Object c = es[child];
708 +            int right = child + 1;
709 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
710 +                c = es[child = right];
711 +            if (cmp.compare(x, (T) c) <= 0)
712 +                break;
713 +            es[k] = c;
714 +            k = child;
715 +        }
716 +        es[k] = x;
717 +    }
718 +
719 +    /**
720 +     * Establishes the heap invariant (described above) in the entire tree,
721 +     * assuming nothing about the order of the elements prior to the call.
722 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
723 +     */
724 +    private void heapify() {
725 +        final Object[] es = queue;
726 +        int n = size, i = (n >>> 1) - 1;
727 +        final Comparator<? super E> cmp;
728 +        if ((cmp = comparator) == null)
729 +            for (; i >= 0; i--)
730 +                siftDownComparable(i, (E) es[i], es, n);
731 +        else
732 +            for (; i >= 0; i--)
733 +                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
734 +    }
735 +
736 +    /**
737 +     * Returns the comparator used to order the elements in this
738 +     * queue, or {@code null} if this queue is sorted according to
739 +     * the {@linkplain Comparable natural ordering} of its elements.
740 +     *
741 +     * @return the comparator used to order this queue, or
742 +     *         {@code null} if this queue is sorted according to the
743 +     *         natural ordering of its elements
744 +     */
745 +    public Comparator<? super E> comparator() {
746 +        return comparator;
747 +    }
748 +
749 +    /**
750 +     * Saves this queue to a stream (that is, serializes it).
751 +     *
752 +     * @param s the stream
753 +     * @throws java.io.IOException if an I/O error occurs
754 +     * @serialData The length of the array backing the instance is
755 +     *             emitted (int), followed by all of its elements
756 +     *             (each an {@code Object}) in the proper order.
757 +     */
758 +    private void writeObject(java.io.ObjectOutputStream s)
759 +        throws java.io.IOException {
760 +        // Write out element count, and any hidden stuff
761 +        s.defaultWriteObject();
762 +
763 +        // Write out array length, for compatibility with 1.5 version
764 +        s.writeInt(Math.max(2, size + 1));
765 +
766 +        // Write out all elements in the "proper order".
767 +        final Object[] es = queue;
768 +        for (int i = 0, n = size; i < n; i++)
769 +            s.writeObject(es[i]);
770 +    }
771 +
772 +    /**
773 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
774 +     * (that is, deserializes it).
775 +     *
776 +     * @param s the stream
777 +     * @throws ClassNotFoundException if the class of a serialized object
778 +     *         could not be found
779 +     * @throws java.io.IOException if an I/O error occurs
780 +     */
781 +    private void readObject(java.io.ObjectInputStream s)
782 +        throws java.io.IOException, ClassNotFoundException {
783 +        // Read in size, and any hidden stuff
784 +        s.defaultReadObject();
785 +
786 +        // Read in (and discard) array length
787 +        s.readInt();
788 +
789 +        jsr166.Platform.checkArray(s, Object[].class, size);
790 +        final Object[] es = queue = new Object[Math.max(size, 1)];
791 +
792 +        // Read in all elements.
793 +        for (int i = 0, n = size; i < n; i++)
794 +            es[i] = s.readObject();
795 +
796 +        // Elements are guaranteed to be in "proper order", but the
797 +        // spec has never explained what that might be.
798 +        heapify();
799 +    }
800 +
801 +    /**
802 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 +     * queue. The spliterator does not traverse elements in any particular order
805 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 +     *
807 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 +     * Overriding implementations should document the reporting of additional
810 +     * characteristic values.
811 +     *
812 +     * @return a {@code Spliterator} over the elements in this queue
813 +     * @since 1.8
814 +     */
815 +    public final Spliterator<E> spliterator() {
816 +        return new PriorityQueueSpliterator(0, -1, 0);
817 +    }
818 +
819 +    final class PriorityQueueSpliterator implements Spliterator<E> {
820 +        private int index;            // current index, modified on advance/split
821 +        private int fence;            // -1 until first use
822 +        private int expectedModCount; // initialized when fence set
823 +
824 +        /** Creates new spliterator covering the given range. */
825 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
826 +            this.index = origin;
827 +            this.fence = fence;
828 +            this.expectedModCount = expectedModCount;
829 +        }
830 +
831 +        private int getFence() { // initialize fence to size on first use
832 +            int hi;
833 +            if ((hi = fence) < 0) {
834 +                expectedModCount = modCount;
835 +                hi = fence = size;
836 +            }
837 +            return hi;
838 +        }
839 +
840 +        public PriorityQueueSpliterator trySplit() {
841 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
842 +            return (lo >= mid) ? null :
843 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
844 +        }
845 +
846 +        public void forEachRemaining(Consumer<? super E> action) {
847 +            if (action == null)
848 +                throw new NullPointerException();
849 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
850 +            final Object[] es = queue;
851 +            int i, hi; E e;
852 +            for (i = index, index = hi = fence; i < hi; i++) {
853 +                if ((e = (E) es[i]) == null)
854 +                    break;      // must be CME
855 +                action.accept(e);
856 +            }
857 +            if (modCount != expectedModCount)
858 +                throw new ConcurrentModificationException();
859 +        }
860 +
861 +        public boolean tryAdvance(Consumer<? super E> action) {
862 +            if (action == null)
863 +                throw new NullPointerException();
864 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 +            int i;
866 +            if ((i = index) < fence) {
867 +                index = i + 1;
868 +                E e;
869 +                if ((e = (E) queue[i]) == null
870 +                    || modCount != expectedModCount)
871 +                    throw new ConcurrentModificationException();
872 +                action.accept(e);
873 +                return true;
874 +            }
875 +            return false;
876 +        }
877 +
878 +        public long estimateSize() {
879 +            return getFence() - index;
880 +        }
881 +
882 +        public int characteristics() {
883 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884 +        }
885 +    }
886 +
887 +    /**
888 +     * @throws NullPointerException {@inheritDoc}
889 +     */
890 +    public boolean removeIf(Predicate<? super E> filter) {
891 +        Objects.requireNonNull(filter);
892 +        return bulkRemove(filter);
893 +    }
894 +
895 +    /**
896 +     * @throws NullPointerException {@inheritDoc}
897 +     */
898 +    public boolean removeAll(Collection<?> c) {
899 +        Objects.requireNonNull(c);
900 +        return bulkRemove(e -> c.contains(e));
901 +    }
902 +
903 +    /**
904 +     * @throws NullPointerException {@inheritDoc}
905 +     */
906 +    public boolean retainAll(Collection<?> c) {
907 +        Objects.requireNonNull(c);
908 +        return bulkRemove(e -> !c.contains(e));
909 +    }
910 +
911 +    // A tiny bit set implementation
912 +
913 +    private static long[] nBits(int n) {
914 +        return new long[((n - 1) >> 6) + 1];
915 +    }
916 +    private static void setBit(long[] bits, int i) {
917 +        bits[i >> 6] |= 1L << i;
918 +    }
919 +    private static boolean isClear(long[] bits, int i) {
920 +        return (bits[i >> 6] & (1L << i)) == 0;
921 +    }
922 +
923 +    /** Implementation of bulk remove methods. */
924 +    private boolean bulkRemove(Predicate<? super E> filter) {
925 +        final int expectedModCount = ++modCount;
926 +        final Object[] es = queue;
927 +        final int end = size;
928 +        int i;
929 +        // Optimize for initial run of survivors
930 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
931 +            ;
932 +        if (i >= end) {
933 +            if (modCount != expectedModCount)
934 +                throw new ConcurrentModificationException();
935 +            return false;
936 +        }
937 +        // Tolerate predicates that reentrantly access the collection for
938 +        // read (but writers still get CME), so traverse once to find
939 +        // elements to delete, a second pass to physically expunge.
940 +        final int beg = i;
941 +        final long[] deathRow = nBits(end - beg);
942 +        deathRow[0] = 1L;   // set bit 0
943 +        for (i = beg + 1; i < end; i++)
944 +            if (filter.test((E) es[i]))
945 +                setBit(deathRow, i - beg);
946 +        if (modCount != expectedModCount)
947 +            throw new ConcurrentModificationException();
948 +        int w = beg;
949 +        for (i = beg; i < end; i++)
950 +            if (isClear(deathRow, i - beg))
951 +                es[w++] = es[i];
952 +        for (i = size = w; i < end; i++)
953 +            es[i] = null;
954 +        heapify();
955 +        return true;
956 +    }
957 +
958 +    /**
959 +     * @throws NullPointerException {@inheritDoc}
960 +     */
961 +    public void forEach(Consumer<? super E> action) {
962 +        Objects.requireNonNull(action);
963 +        final int expectedModCount = modCount;
964 +        final Object[] es = queue;
965 +        for (int i = 0, n = size; i < n; i++)
966 +            action.accept((E) es[i]);
967 +        if (expectedModCount != modCount)
968 +            throw new ConcurrentModificationException();
969 +    }
970   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines