ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.39 by dl, Sun Sep 7 15:06:19 2003 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
12 > * This queue orders elements according to an order specified at construction
13 > * time, which is specified in the same manner as {@link java.util.TreeSet}
14 > * and {@link java.util.TreeMap}: elements are ordered either according to
15 > * their <i>natural order</i> (see {@link Comparable}), or according to a
16 > * {@link java.util.Comparator}, depending on which constructor is used.
17 > * <p>The <em>head</em> of this queue is the <em>least</em> element with
18 > * respect to the specified ordering.  If multiple elements are tied for least
19 > * value, the head is one of those elements. A priority queue does not permit
20 > * <tt>null</tt> elements.
21 > *
22 > * <p>The {@link #remove()} and {@link #poll()} methods remove and
23 > * return the head of the queue.
24 > *
25 > * <p>The {@link #element()} and {@link #peek()} methods return, but do
26 > * not delete, the head of the queue.
27 > *
28 > * <p>A priority queue has a <i>capacity</i>.  The capacity is the
29 > * size of the array used internally to store the elements on the
30 > * queue.
31 > * It is always at least as large as the queue size.  As
32 > * elements are added to a priority queue, its capacity grows
33 > * automatically.  The details of the growth policy are not specified.
34 > *
35 > * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
36 > * guaranteed to traverse the elements of the PriorityQueue in any
37 > * particular order. If you need ordered traversal, consider using
38 > * <tt>Arrays.sort(pq.toArray())</tt>.
39 > *
40 > * <p> <strong>Note that this implementation is not synchronized.</strong>
41 > * Multiple threads should not access a <tt>PriorityQueue</tt>
42 > * instance concurrently if any of the threads modifies the list
43 > * structurally. Instead, use the thread-safe {@link
44 > * java.util.concurrent.PriorityBlockingQueue} class.
45 > *
46 > *
47 > * <p>Implementation note: this implementation provides O(log(n)) time
48 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
50 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
51 > * constant time for the retrieval methods (<tt>peek</tt>,
52 > * <tt>element</tt>, and <tt>size</tt>).
53 > *
54 > * <p>This class is a member of the
55 > * <a href="{@docRoot}/../guide/collections/index.html">
56 > * Java Collections Framework</a>.
57 > * @since 1.5
58 > * @version %I%, %G%
59 > * @author Josh Bloch
60 > */
61 > public class PriorityQueue<E> extends AbstractQueue<E>
62 >    implements Queue<E>, java.io.Serializable {
63  
64 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
64 >    private static final long serialVersionUID = -7720805057305804111L;
65  
66 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
66 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
67  
68 <    public boolean add(E x) {
69 <        return false;
68 >    /**
69 >     * Priority queue represented as a balanced binary heap: the two children
70 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
71 >     * ordered by comparator, or by the elements' natural ordering, if
72 >     * comparator is null:  For each node n in the heap and each descendant d
73 >     * of n, n <= d.
74 >     *
75 >     * The element with the lowest value is in queue[1], assuming the queue is
76 >     * nonempty.  (A one-based array is used in preference to the traditional
77 >     * zero-based array to simplify parent and child calculations.)
78 >     *
79 >     * queue.length must be >= 2, even if size == 0.
80 >     */
81 >    private transient Object[] queue;
82 >
83 >    /**
84 >     * The number of elements in the priority queue.
85 >     */
86 >    private int size = 0;
87 >
88 >    /**
89 >     * The comparator, or null if priority queue uses elements'
90 >     * natural ordering.
91 >     */
92 >    private final Comparator<? super E> comparator;
93 >
94 >    /**
95 >     * The number of times this priority queue has been
96 >     * <i>structurally modified</i>.  See AbstractList for gory details.
97 >     */
98 >    private transient int modCount = 0;
99 >
100 >    /**
101 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
102 >     * (11) that orders its elements according to their natural
103 >     * ordering (using <tt>Comparable</tt>).
104 >     */
105 >    public PriorityQueue() {
106 >        this(DEFAULT_INITIAL_CAPACITY, null);
107      }
108 <    public boolean offer(E x) {
109 <        return false;
108 >
109 >    /**
110 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
111 >     * that orders its elements according to their natural ordering
112 >     * (using <tt>Comparable</tt>).
113 >     *
114 >     * @param initialCapacity the initial capacity for this priority queue.
115 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
116 >     * than 1
117 >     */
118 >    public PriorityQueue(int initialCapacity) {
119 >        this(initialCapacity, null);
120      }
121 <    public boolean remove(Object x) {
122 <        return false;
121 >
122 >    /**
123 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
124 >     * that orders its elements according to the specified comparator.
125 >     *
126 >     * @param initialCapacity the initial capacity for this priority queue.
127 >     * @param comparator the comparator used to order this priority queue.
128 >     * If <tt>null</tt> then the order depends on the elements' natural
129 >     * ordering.
130 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
131 >     * than 1
132 >     */
133 >    public PriorityQueue(int initialCapacity,
134 >                         Comparator<? super E> comparator) {
135 >        if (initialCapacity < 1)
136 >            throw new IllegalArgumentException();
137 >        this.queue = new Object[initialCapacity + 1];
138 >        this.comparator = comparator;
139      }
140  
141 <    public E remove() {
142 <        return null;
141 >    /**
142 >     * Common code to initialize underlying queue array across
143 >     * constructors below.
144 >     */
145 >    private void initializeArray(Collection<? extends E> c) {
146 >        int sz = c.size();
147 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
148 >                                            Integer.MAX_VALUE - 1);
149 >        if (initialCapacity < 1)
150 >            initialCapacity = 1;
151 >
152 >        this.queue = new Object[initialCapacity + 1];
153      }
154 <    public Iterator<E> iterator() {
155 <      return null;
154 >
155 >    /**
156 >     * Initially fill elements of the queue array under the
157 >     * knowledge that it is sorted or is another PQ, in which
158 >     * case we can just place the elements in the order presented.
159 >     */
160 >    private void fillFromSorted(Collection<? extends E> c) {
161 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
162 >            queue[++size] = i.next();
163      }
164  
165 <    public E element() {
166 <        return null;
165 >    /**
166 >     * Initially fill elements of the queue array that is not to our knowledge
167 >     * sorted, so we must rearrange the elements to guarantee the heap
168 >     * invariant.
169 >     */
170 >    private void fillFromUnsorted(Collection<? extends E> c) {
171 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
172 >            queue[++size] = i.next();
173 >        heapify();
174      }
175 +
176 +    /**
177 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
178 +     * specified collection.  The priority queue has an initial
179 +     * capacity of 110% of the size of the specified collection or 1
180 +     * if the collection is empty.  If the specified collection is an
181 +     * instance of a {@link java.util.SortedSet} or is another
182 +     * <tt>PriorityQueue</tt>, the priority queue will be sorted
183 +     * according to the same comparator, or according to its elements'
184 +     * natural order if the collection is sorted according to its
185 +     * elements' natural order.  Otherwise, the priority queue is
186 +     * ordered according to its elements' natural order.
187 +     *
188 +     * @param c the collection whose elements are to be placed
189 +     *        into this priority queue.
190 +     * @throws ClassCastException if elements of the specified collection
191 +     *         cannot be compared to one another according to the priority
192 +     *         queue's ordering.
193 +     * @throws NullPointerException if <tt>c</tt> or any element within it
194 +     * is <tt>null</tt>
195 +     */
196 +    public PriorityQueue(Collection<? extends E> c) {
197 +        initializeArray(c);
198 +        if (c instanceof SortedSet) {
199 +            // @fixme double-cast workaround for compiler
200 +            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
201 +            comparator = (Comparator<? super E>)s.comparator();
202 +            fillFromSorted(s);
203 +        } else if (c instanceof PriorityQueue) {
204 +            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
205 +            comparator = (Comparator<? super E>)s.comparator();
206 +            fillFromSorted(s);
207 +        } else {
208 +            comparator = null;
209 +            fillFromUnsorted(c);
210 +        }
211 +    }
212 +
213 +    /**
214 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
215 +     * specified collection.  The priority queue has an initial
216 +     * capacity of 110% of the size of the specified collection or 1
217 +     * if the collection is empty.  This priority queue will be sorted
218 +     * according to the same comparator as the given collection, or
219 +     * according to its elements' natural order if the collection is
220 +     * sorted according to its elements' natural order.
221 +     *
222 +     * @param c the collection whose elements are to be placed
223 +     *        into this priority queue.
224 +     * @throws ClassCastException if elements of the specified collection
225 +     *         cannot be compared to one another according to the priority
226 +     *         queue's ordering.
227 +     * @throws NullPointerException if <tt>c</tt> or any element within it
228 +     * is <tt>null</tt>
229 +     */
230 +    public PriorityQueue(PriorityQueue<? extends E> c) {
231 +        initializeArray(c);
232 +        comparator = (Comparator<? super E>)c.comparator();
233 +        fillFromSorted(c);
234 +    }
235 +
236 +    /**
237 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
238 +     * specified collection.  The priority queue has an initial
239 +     * capacity of 110% of the size of the specified collection or 1
240 +     * if the collection is empty.  This priority queue will be sorted
241 +     * according to the same comparator as the given collection, or
242 +     * according to its elements' natural order if the collection is
243 +     * sorted according to its elements' natural order.
244 +     *
245 +     * @param c the collection whose elements are to be placed
246 +     *        into this priority queue.
247 +     * @throws ClassCastException if elements of the specified collection
248 +     *         cannot be compared to one another according to the priority
249 +     *         queue's ordering.
250 +     * @throws NullPointerException if <tt>c</tt> or any element within it
251 +     * is <tt>null</tt>
252 +     */
253 +    public PriorityQueue(SortedSet<? extends E> c) {
254 +        initializeArray(c);
255 +        comparator = (Comparator<? super E>)c.comparator();
256 +        fillFromSorted(c);
257 +    }
258 +
259 +    /**
260 +     * Resize array, if necessary, to be able to hold given index
261 +     */
262 +    private void grow(int index) {
263 +        int newlen = queue.length;
264 +        if (index < newlen) // don't need to grow
265 +            return;
266 +        if (index == Integer.MAX_VALUE)
267 +            throw new OutOfMemoryError();
268 +        while (newlen <= index) {
269 +            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
270 +                newlen = Integer.MAX_VALUE;
271 +            else
272 +                newlen <<= 2;
273 +        }
274 +        Object[] newQueue = new Object[newlen];
275 +        System.arraycopy(queue, 0, newQueue, 0, queue.length);
276 +        queue = newQueue;
277 +    }
278 +            
279 +
280 +    // Queue Methods
281 +
282 +    /**
283 +     * Add the specified element to this priority queue.
284 +     *
285 +     * @return <tt>true</tt>
286 +     * @throws ClassCastException if the specified element cannot be compared
287 +     * with elements currently in the priority queue according
288 +     * to the priority queue's ordering.
289 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
290 +     */
291 +    public boolean offer(E o) {
292 +        if (o == null)
293 +            throw new NullPointerException();
294 +        modCount++;
295 +        ++size;
296 +
297 +        // Grow backing store if necessary
298 +        if (size >= queue.length)
299 +            grow(size);
300 +
301 +        queue[size] = o;
302 +        fixUp(size);
303 +        return true;
304 +    }
305 +
306      public E poll() {
307 <        return null;
307 >        if (size == 0)
308 >            return null;
309 >        return remove();
310      }
311 +
312      public E peek() {
313 <        return null;
313 >        return (E) queue[1];
314 >    }
315 >
316 >    // Collection Methods - the first two override to update docs
317 >
318 >    /**
319 >     * Adds the specified element to this queue.
320 >     * @return <tt>true</tt> (as per the general contract of
321 >     * <tt>Collection.add</tt>).
322 >     *
323 >     * @throws NullPointerException {@inheritDoc}
324 >     * @throws ClassCastException if the specified element cannot be compared
325 >     * with elements currently in the priority queue according
326 >     * to the priority queue's ordering.
327 >     */
328 >    public boolean add(E o) {
329 >        return super.add(o);
330 >    }
331 >
332 >  
333 >    /**
334 >     * Adds all of the elements in the specified collection to this queue.
335 >     * The behavior of this operation is undefined if
336 >     * the specified collection is modified while the operation is in
337 >     * progress.  (This implies that the behavior of this call is undefined if
338 >     * the specified collection is this queue, and this queue is nonempty.)
339 >     * <p>
340 >     * This implementation iterates over the specified collection, and adds
341 >     * each object returned by the iterator to this collection, in turn.
342 >     * @throws NullPointerException {@inheritDoc}
343 >     * @throws ClassCastException if any element cannot be compared
344 >     * with elements currently in the priority queue according
345 >     * to the priority queue's ordering.
346 >     */
347 >    public boolean addAll(Collection<? extends E> c) {
348 >        return super.addAll(c);
349      }
350  
351 <    public boolean isEmpty() {
351 >
352 >    /**
353 >     * Removes a single instance of the specified element from this
354 >     * queue, if it is present.  More formally,
355 >     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
356 >     * o.equals(e))</tt>, if the queue contains one or more such
357 >     * elements.  Returns <tt>true</tt> if the queue contained the
358 >     * specified element (or equivalently, if the queue changed as a
359 >     * result of the call).
360 >     *
361 >     * <p>This implementation iterates over the queue looking for the
362 >     * specified element.  If it finds the element, it removes the element
363 >     * from the queue using the iterator's remove method.<p>
364 >     *
365 >     */
366 >    public boolean remove(Object o) {
367 >        if (o == null)
368 >            return false;
369 >
370 >        if (comparator == null) {
371 >            for (int i = 1; i <= size; i++) {
372 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
373 >                    removeAt(i);
374 >                    return true;
375 >                }
376 >            }
377 >        } else {
378 >            for (int i = 1; i <= size; i++) {
379 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
380 >                    removeAt(i);
381 >                    return true;
382 >                }
383 >            }
384 >        }
385          return false;
386      }
387 +
388 +    /**
389 +     * Returns an iterator over the elements in this queue. The iterator
390 +     * does not return the elements in any particular order.
391 +     *
392 +     * @return an iterator over the elements in this queue.
393 +     */
394 +    public Iterator<E> iterator() {
395 +        return new Itr();
396 +    }
397 +
398 +    private class Itr implements Iterator<E> {
399 +
400 +        /**
401 +         * Index (into queue array) of element to be returned by
402 +         * subsequent call to next.
403 +         */
404 +        private int cursor = 1;
405 +
406 +        /**
407 +         * Index of element returned by most recent call to next,
408 +         * unless that element came from the forgetMeNot list.
409 +         * Reset to 0 if element is deleted by a call to remove.
410 +         */
411 +        private int lastRet = 0;
412 +
413 +        /**
414 +         * The modCount value that the iterator believes that the backing
415 +         * List should have.  If this expectation is violated, the iterator
416 +         * has detected concurrent modification.
417 +         */
418 +        private int expectedModCount = modCount;
419 +
420 +        /**
421 +         * A list of elements that were moved from the unvisited portion of
422 +         * the heap into the visited portion as a result of "unlucky" element
423 +         * removals during the iteration.  (Unlucky element removals are those
424 +         * that require a fixup instead of a fixdown.)  We must visit all of
425 +         * the elements in this list to complete the iteration.  We do this
426 +         * after we've completed the "normal" iteration.
427 +         *
428 +         * We expect that most iterations, even those involving removals,
429 +         * will not use need to store elements in this field.
430 +         */
431 +        private ArrayList<E> forgetMeNot = null;
432 +
433 +        /**
434 +         * Element returned by the most recent call to next iff that
435 +         * element was drawn from the forgetMeNot list.
436 +         */
437 +        private Object lastRetElt = null;
438 +
439 +        public boolean hasNext() {
440 +            return cursor <= size || forgetMeNot != null;
441 +        }
442 +
443 +        public E next() {
444 +            checkForComodification();
445 +            E result;
446 +            if (cursor <= size) {
447 +                result = (E) queue[cursor];
448 +                lastRet = cursor++;
449 +            }
450 +            else if (forgetMeNot == null)
451 +                throw new NoSuchElementException();
452 +            else {
453 +                int remaining = forgetMeNot.size();
454 +                result = forgetMeNot.remove(remaining - 1);
455 +                if (remaining == 1)
456 +                    forgetMeNot = null;
457 +                lastRet = 0;
458 +                lastRetElt = result;
459 +            }
460 +            return result;
461 +        }
462 +
463 +        public void remove() {
464 +            checkForComodification();
465 +
466 +            if (lastRet != 0) {
467 +                E moved = PriorityQueue.this.removeAt(lastRet);
468 +                lastRet = 0;
469 +                if (moved == null) {
470 +                    cursor--;
471 +                } else {
472 +                    if (forgetMeNot == null)
473 +                        forgetMeNot = new ArrayList<E>();
474 +                    forgetMeNot.add(moved);
475 +                }
476 +            } else if (lastRetElt != null) {
477 +                PriorityQueue.this.remove(lastRetElt);
478 +                lastRetElt = null;
479 +            } else {
480 +                throw new IllegalStateException();
481 +            }
482 +
483 +            expectedModCount = modCount;
484 +        }
485 +
486 +        final void checkForComodification() {
487 +            if (modCount != expectedModCount)
488 +                throw new ConcurrentModificationException();
489 +        }
490 +    }
491 +
492      public int size() {
493 <        return 0;
493 >        return size;
494      }
495 <    public Object[] toArray() {
496 <        return null;
495 >
496 >    /**
497 >     * Remove all elements from the priority queue.
498 >     */
499 >    public void clear() {
500 >        modCount++;
501 >
502 >        // Null out element references to prevent memory leak
503 >        for (int i=1; i<=size; i++)
504 >            queue[i] = null;
505 >
506 >        size = 0;
507 >    }
508 >
509 >    /**
510 >     * Removes and returns the first element from queue.
511 >     */
512 >    public E remove() {
513 >        if (size == 0)
514 >            throw new NoSuchElementException();
515 >        modCount++;
516 >
517 >        E result = (E) queue[1];
518 >        queue[1] = queue[size];
519 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
520 >        if (size > 1)
521 >            fixDown(1);
522 >
523 >        return result;
524      }
525  
526 <    public <T> T[] toArray(T[] array) {
526 >    /**
527 >     * Removes and returns the ith element from queue.  (Recall that queue
528 >     * is one-based, so 1 <= i <= size.)
529 >     *
530 >     * Normally this method leaves the elements at positions from 1 up to i-1,
531 >     * inclusive, untouched.  Under these circumstances, it returns null.
532 >     * Occasionally, in order to maintain the heap invariant, it must move
533 >     * the last element of the list to some index in the range [2, i-1],
534 >     * and move the element previously at position (i/2) to position i.
535 >     * Under these circumstances, this method returns the element that was
536 >     * previously at the end of the list and is now at some position between
537 >     * 2 and i-1 inclusive.
538 >     */
539 >    private E removeAt(int i) {
540 >        assert i > 0 && i <= size;
541 >        modCount++;
542 >
543 >        E moved = (E) queue[size];
544 >        queue[i] = moved;
545 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
546 >        if (i <= size) {
547 >            fixDown(i);
548 >            if (queue[i] == moved) {
549 >                fixUp(i);
550 >                if (queue[i] != moved)
551 >                    return moved;
552 >            }
553 >        }
554          return null;
555      }
556  
557 +    /**
558 +     * Establishes the heap invariant (described above) assuming the heap
559 +     * satisfies the invariant except possibly for the leaf-node indexed by k
560 +     * (which may have a nextExecutionTime less than its parent's).
561 +     *
562 +     * This method functions by "promoting" queue[k] up the hierarchy
563 +     * (by swapping it with its parent) repeatedly until queue[k]
564 +     * is greater than or equal to its parent.
565 +     */
566 +    private void fixUp(int k) {
567 +        if (comparator == null) {
568 +            while (k > 1) {
569 +                int j = k >> 1;
570 +                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
571 +                    break;
572 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
573 +                k = j;
574 +            }
575 +        } else {
576 +            while (k > 1) {
577 +                int j = k >>> 1;
578 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
579 +                    break;
580 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
581 +                k = j;
582 +            }
583 +        }
584 +    }
585 +
586 +    /**
587 +     * Establishes the heap invariant (described above) in the subtree
588 +     * rooted at k, which is assumed to satisfy the heap invariant except
589 +     * possibly for node k itself (which may be greater than its children).
590 +     *
591 +     * This method functions by "demoting" queue[k] down the hierarchy
592 +     * (by swapping it with its smaller child) repeatedly until queue[k]
593 +     * is less than or equal to its children.
594 +     */
595 +    private void fixDown(int k) {
596 +        int j;
597 +        if (comparator == null) {
598 +            while ((j = k << 1) <= size && (j > 0)) {
599 +                if (j<size &&
600 +                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
601 +                    j++; // j indexes smallest kid
602 +
603 +                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
604 +                    break;
605 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
606 +                k = j;
607 +            }
608 +        } else {
609 +            while ((j = k << 1) <= size && (j > 0)) {
610 +                if (j<size &&
611 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
612 +                    j++; // j indexes smallest kid
613 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
614 +                    break;
615 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
616 +                k = j;
617 +            }
618 +        }
619 +    }
620 +
621 +    /**
622 +     * Establishes the heap invariant (described above) in the entire tree,
623 +     * assuming nothing about the order of the elements prior to the call.
624 +     */
625 +    private void heapify() {
626 +        for (int i = size/2; i >= 1; i--)
627 +            fixDown(i);
628 +    }
629 +
630 +    /**
631 +     * Returns the comparator used to order this collection, or <tt>null</tt>
632 +     * if this collection is sorted according to its elements natural ordering
633 +     * (using <tt>Comparable</tt>).
634 +     *
635 +     * @return the comparator used to order this collection, or <tt>null</tt>
636 +     * if this collection is sorted according to its elements natural ordering.
637 +     */
638 +    public Comparator<? super E> comparator() {
639 +        return comparator;
640 +    }
641 +
642 +    /**
643 +     * Save the state of the instance to a stream (that
644 +     * is, serialize it).
645 +     *
646 +     * @serialData The length of the array backing the instance is
647 +     * emitted (int), followed by all of its elements (each an
648 +     * <tt>Object</tt>) in the proper order.
649 +     * @param s the stream
650 +     */
651 +    private void writeObject(java.io.ObjectOutputStream s)
652 +        throws java.io.IOException{
653 +        // Write out element count, and any hidden stuff
654 +        s.defaultWriteObject();
655 +
656 +        // Write out array length
657 +        s.writeInt(queue.length);
658 +
659 +        // Write out all elements in the proper order.
660 +        for (int i=1; i<=size; i++)
661 +            s.writeObject(queue[i]);
662 +    }
663 +
664 +    /**
665 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
666 +     * deserialize it).
667 +     * @param s the stream
668 +     */
669 +    private void readObject(java.io.ObjectInputStream s)
670 +        throws java.io.IOException, ClassNotFoundException {
671 +        // Read in size, and any hidden stuff
672 +        s.defaultReadObject();
673 +
674 +        // Read in array length and allocate array
675 +        int arrayLength = s.readInt();
676 +        queue = new Object[arrayLength];
677 +
678 +        // Read in all elements in the proper order.
679 +        for (int i=1; i<=size; i++)
680 +            queue[i] = (E) s.readObject();
681 +    }
682 +
683   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines